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Abstract 7 

In this study, multi-scale engineering properties related to the harvesting, simulation and textural evaluation 8 

of two tomato cultivars at six ripening stages were simultaneously investigated. A potential ripening scale based 9 

on the ratio of R:G:B for a given ripening stage was suggested. The geometric mean diameter was most closely 10 

correlated with the fruit mass. Tomato fruit feature an irregular shape and asymmetric internal structure at the 11 

macro-scale, non-unique tissue thickness at the meso-scale and an irregular change of size, shape and arrangement 12 

of single cells at the micro-scale. The hardness and shear strength of fruit at different scales and the single cell 13 

mechanics varied with the fruit ripening stage but not the chosen cultivars. The contribution of exocarp to the 14 

hardness of whole fruit gradually increased with fruit ripeness. The hardness and shear strength of fruit tissues and 15 

the fruit’s single cells varied between 0.37 and 2.25 MPa and 0.04 and 11.58 MPa, respectively. This puncture 16 

experimental method is well-suited to measure the hardness and shear strength of tomato fruit at different scales 17 

and single tomato cell mechanics.  18 

Keywords: Solanum lycopersicum; Tomato cell; Multi-scale biomechanics; Ripeness; Puncture test    19 

1 Introduction  20 

Numerous large-scale tomato-growing farms are in operation worldwide because tomatoes are a component 21 

of the diet of millions of people. Because the harvesting season is short and harvesting work is concentrated 22 

during a brief period of time, labor shortages tend to limit the farm acreage (Tanigaki, Fujiura, Akase, & Imagawa, 23 
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2008). Additionally, given the long distance between farms and sale markets, the design and development of 24 

intelligent equipment for mechanical harvesting, packaging and transport have received increasing attention 25 

(Kondo, Yata, Taniwaki, Tanihara, Monta, & Kurita, 2007; Li, Li, Yang, & Wang, 2013a). Furthermore, fruits with 26 

a distinct multi-scale nature are very susceptible to mechanical damage during postharvest handling; thus, 27 

multi-scale modeling, internal damage simulation and postharvest textural evaluation are extremely important 28 

(Genard et al., 2007; Mebatsion, Verboven, Ho, Verlinden, & Nicolai, 2008; Ghysels, Samaey, Van Liedekerke, 29 

Tijskens, Ramon, & Roose, 2010; Ho et al., 2013). Determining the multi-scale engineering properties of tomato 30 

fruits is essential to achieve these aims.  31 

Some engineering properties of tomato fruits have been previously investigated. Arazuri et al. (2007), Li et al. 32 

(2011) and Sirisomboon et al. (2012) reported the geometric and mechanical macro-properties of tomato fruits at 33 

three different stages of ripeness (Arazuri, Jaren, Arana & Perez De Ciriza, 2007; Li, Li, & Liu, 2011; 34 

Sirisomboon, Tanaka, & Kojima, 2012). Hetzroni et al. (2011) and Li et al. (2012a) determined the physical and 35 

biomechanical properties of the peels and internal tissues of five tomato cultivars at the meso-scale (Hetzroni, 36 

Vana, & Mizrach, 2011; Li, Li, Yang, Liu, & Xu, 2012a). Rancic et al. (2010) presented the geometric 37 

characteristics of the fruits and tissues of two tomato genotypes during fruit development (Rancic, Quarrie, & 38 

Pecinar, 2010). Bargel and Neinhuis (2005) focused on the morphology and biomechanics of skin and 39 

enzymatically isolated the cuticular membranes of three tomato cultivars during fruit growth and ripening (Bargel 40 

& Neinhuis, 2005).  41 

Tomato fruits are hierarchically structured at the macro-scale, consisting of different tissue types at the 42 

meso-scale, each of which is a highly structured arrangement of cells at the micro-scale (Li & Thomas, 2014a, b). 43 

However, some important engineering parameters for multi-scale modeling and simulation, such as the geometry 44 

of the whole fruit, the size and shape of the different tissues, the cell sizes in each tissue and the multi-scale 45 

biomechanics, have never been fully determined for single fruit, even though these characteristics significantly 46 
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differ. Additionally, little is known about the relationship between different physical parameters and the 47 

micro-mechanics at the cell level. Therefore, a clear gap in knowledge exists between the published data on fruit 48 

engineering properties and the necessary data related to intelligent harvesting, multi-scale simulation and 49 

postharvest textural evaluation. The objective of this study was to investigate the multi-scale engineering 50 

properties of tomato fruits. 51 

2 Materials and Methods 52 

2.1 Materials 53 

The experiments were conducted in May 2014 at Henan Polytechnic University. Fruits of two tomato 54 

varieties, Fendu 79 and Omeiya 333, were used for this study. The tomato fruits were hand-harvested from the 55 

Jiaozuo Manfeng Vegetable Planting Base at six ripening stages (green, breaker, turning, pink, light red and red) 56 

according to the USDA standards (USDA, 1991), as shown in Fig. 1a. These fruits were inspected to ensure that 57 

they were not damaged or infested with insects prior to transport to the laboratory. Subsequently, the fruits’ 58 

surfaces were manually cleaned and dried. In total, 60 tomato fruits (5 samples × 2 varieties × 6 ripening stages) 59 

were used to measure the multi-scale geometric characteristics, and 12 tomato fruits (1 sample × 2 varieties × 6 60 

ripening stages) were used for the puncture test. 61 

2.2 Quantification of ripeness  62 

One tomato fruit was randomly selected from each ripening stage (green, breaker, turning, pink, light red and 63 

red). These tomatoes were grouped and placed on a blank paper with the support of wedges, as shown in Fig. 1a. 64 

A JPEG photo of tomato fruits from front view was then obtained using a digital camera (Canon 95IS, Photo size: 65 

3648×2736 pixels). Subsequently, ten pixel points were randomly grabbed from each tomato fruit using a color 66 

picker software (ColorPix version 1.1, http://www.colorschemer.com/colorpix_info.php). The three primary color 67 

values of grabbed points, namely Red-Green-Blue (RGB), were then based on the automatic transformation 68 

provided by the software.  69 
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2.3 Multi-scale geometric characteristics measurement 70 

The sampled fruits were labeled and then cut into halves with a sharp knife along the stem-blossom axis (Fig. 71 

2a). One half of each fruit was cut again along the equatorial axis (Fig. 2b). Further descriptions of the tomato 72 

fruit anatomy are given in Thomas (1996). The following were measured using an electronic digital caliper (to an 73 

accuracy of 0.01 mm): height above the fruit’s equatorial axis (section) (H1); height below the fruit’s equatorial 74 

axis (H2); diameter of the equatorial section (Df); maximum thickness (Wmmax), minimum thickness (Wmmin), 75 

middle thickness of the mesocarp tissue (Wmmid); thickness of the septa tissue (Ws); and columella diameter (Dct). 76 

Subsequently, rectangular tissue blocks, including the exocarp and some of the adhering mesocarp, were excised 77 

and soaked in boiling water for 5 minutes. The exocarp samples remained after the mesocarp was carefully 78 

scraped off using a razor blade. The thicknesses of the exocarp samples (We) were then measured with an 79 

electronic digital caliper. 80 

As shown in Fig. 2a, some tissue blocks, including the exocarp and mesocarp and some columella tissue 81 

blocks, were excised from the sample zones shown in the other half of the fruits. The mesocarp and columella 82 

tissue samples were cut into thin rectangular slices (length × width × thickness: 15 mm × 10 mm × 0.5 mm) using 83 

a razor blade. The exocarp samples remained after the adhering mesocarp sample was carefully scraped off. These 84 

tissue samples were made into temporary mounts and then vertically observed using a Belona BL-SM1280 85 

biological microscope that featured a 130w electronic eyepiece (Captured image size: 1280x1024 pixels, 86 

Resolution: 96 PPI). The diameters (Dc) (Fig. 2c) of cells in different tomato fruit tissue types were measured with 87 

a virtual cross ruler using the image processing software Future WinJoe of the eyepiece (Assumption: spherical 88 

cell). The reported values of the cell geometric characteristics are the means of 5 cells in corresponding tissues. 89 

The multi-scale geometric characteristics of tomato fruits were measured within 24 h of sampling at room 90 

temperature (23 ± 1ºC, 56-58 % RH). 91 

2.4 Puncture test 92 
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The puncture test, which involves compression and shear components, is one of the most widely used 93 

methods for the objective measurement of the biomechanics of fruits. The compression component results 94 

from the compression effect of a probe tip plate that contacts an area of planar tissue at a puncture point. The 95 

peak puncture force of the biomaterial (e.g. fruit, tissue and cell) at a unit compression area in a puncture test 96 

has been considered to represent the biomaterial hardness in studies of apple fruit by Harker et al. (2002) and 97 

studies of tomato fruit by Biswas et al. (2014) (Harker, Maindonald, Murray, Gunson, Hallett & Walker, 98 

2002; Biswas, East, Hewett, & Heyes, 2014). The shear component results from the shear effect of the probe 99 

tip edge, which contacts a toroidal tissue area at a puncture depth. The peak puncture force of the biomaterial 100 

(e.g. fruit, tissue and cell) at a unit shear area in a puncture test is considered the shear strength of the 101 

biomaterial.  102 

The puncture test of fruits and their exocarp, mesocarp and columella tissues were used to determine the 103 

multi-scale hardness and shear strength of tomato fruits as related to texture evaluation. The tests utilized a GY-4 104 

manual fruit sclerometer with a 3.5-mm diameter flat-head stainless steel cylindrical probe (Fig. 3a). The 105 

compression speed was approximately 1 mm/s, which was measured using a DM6236P Digital Velometer 106 

(Resolution: 0.2 mm/s). A 5-mm diameter counter bore was created in the base plate of the manual test stand. The 107 

test was conducted as follows: 108 

First, a tomato fruit was placed on a base plate with the stem-blossom axis parallel to the flat plate. Six points 109 

(Fig. 3-b1) on the equatorial section of the fruit were punctured to a depth of 10 mm. The fruit hardness, Pfh, was 110 

calculated with 6 points (replications) using the equation in Fig. 3-c1, and its mean value is reported.  111 

Second, the centerlines of the puncture probe and the counter bore were adjusted on the same straight line. 112 

The conjoint exocarp and mesocarp, mesocarp and columella tissues were cut into several standard cuboid 113 

samples (Fig. 3-b2, b3) and then fully punctured to counter bore. The tissue sample thickness, d2, was measured 114 

using an electronic digital caliper. The hardness, Pth, and shear strength, σtf, of the mesocarp and columella tissues 115 
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were calculated with 3 samples (replications) using the equation in Fig. 3-c2, and their mean values are reported. 116 

Because the puncture resistance of the exocarp tissue always exceeded that of the mesocarp tissue (Li et al., 117 

2012a), the peak puncture force of the exocarp tissue was retained (obtained by the fruit sclerometer) when the 118 

conjoint exocarp and mesocarp sample was punctured (Fig. 3-b2). Each tissue (e.g., exocarp, mesocarp or 119 

columella) consists of cells. To simplify the later analysis and the multi-scale modeling in future, we assumed that 120 

i) the hardness or shear strength values of each tissue and its single cells are the same during the puncture test, 121 

namely Pth=Pch, σtf=σcf; and that ii) the hardness and the shear strength for single cells in each tissue are 122 

approximations.  123 

Third, the tissue was assumed to consist of multilayers of regularly arranged cells (Fig. 3-b3). The mean or 124 

maximum compression force applied to a single cell, Fch, and the mean shear force applied to a single cell, Fcf, 125 

were calculated using 3 samples (replications) and the equation in Fig. 3-c3, and their mean values are reported. 126 

The labels n1 and n2 are the numbers of cells compressed and sheared by the probe during the tissue puncture test, 127 

respectively. n’1 represents the number of first-layer cells compressed directly by the probe. 128 

2.5 Statistical analysis 129 

    The results were analyzed for statistical significance using a variance analysis in the SAS9.1 software, with a 130 

significance level of α=0.05. 131 

3 Results and Discussion 132 

3.1 Ripening stage 133 

According to the United States Standards for Grades of Fresh Tomatoes, the six ripening stages of tomato 134 

fruits include green, breaker, turning, pink, light red, and red. “Green” indicates a completely green color on the 135 

fruit surface; “breaker” indicates fruit that is not fully green and features a red area on the surface (< 10 %); more 136 

than 10% but less than 30% of the surface of “turning” fruit is red; more than 30% but less than 60% of the 137 

surfaces of “pink” fruit are red; more than 60% but less than 90% of the surfaces of “light red” are red; and “red” 138 
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denotes fruit whose surfaces are more than 90% red. The above ripeness classification is a simple qualitative 139 

recognition method. The RGB values and their standard deviations corresponding to six ripening stages are 140 

presented in Fig. 1b. A ripening scale based on the ratio of R:G:B obtained from quantifying the RGB value has 141 

been proposed. The standard deviations showed that the three primary colors, RGB, fluctuated for a given 142 

ripening stage. The RGB threshold values of different ripening stages contribute to quantitative recognition and 143 

are vital for the color-sorting device of a tomato harvester and other quality detection systems (Li, Kan, Tan, 144 

Zhang, Sui, & Chen, 2012b).  145 

As the fruit ripened, the color gradually changed from green to red, mainly because of the increased lycopene 146 

and decreased chlorophyll content in fruit tissues (Salunkhe et al., 1974), while the hardness gradually decreased 147 

due to multiple coordinated processes, including the disassembly of polysaccharide in the primary cell wall and 148 

middle lamella and transpirational water/turgor loss (Saladie, Jadav, & Yu, 2007). Therefore, tomato fruits at the 149 

pink and light-red stages are considered optimal for harvesting due to the long distance transportation from farms 150 

to markets and thus are the most important fruit for biomechanical measurements and simulation analysis. After 151 

quantitative transformation, the R, G, and B values ± standard deviations were 150±31, 110±27, and 70±18 for 152 

pink tomatoes and 152±15, 78±13, and 54±9 for light red tomatoes, respectively. 153 

3.2 Multi-scale geometry 154 

3.2.1 Fruit  155 

The height, diameter and mass of the two tomato cultivars varied from 51.75-61.86 mm, 58.56-74.19 mm 156 

and 89.49-224.56 g, respectively, which further illustrated that the shapes of tomato fruits are irregular. Based on 157 

these data, the finger grasping stroke and the surface width should exceed 61.86 mm and 37.09, respectively, for 158 

the two-finger harvesting robot designed by Monta, Kondo, & Ting. (1998) and Li et al. (2013a). The centrifugal 159 

force of the separation device of the tomato harvester designed by Li et al. (2012b) should be sufficient to separate 160 

the largest (224.56 g) fruits from tomato stems; and the grid gap of its conveyor chain should not exceed 51.75 161 
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mm. Fig. 4a shows the height and diameter of the two tomato cultivars at the six ripening stages. The height and 162 

diameter of the two tomato cultivars at the six ripening stages did not significantly differ because the fruits had 163 

already been selected during manual harvesting. Therefore, the macro size of the fruits will not affect the 164 

following physical-mechanical characteristics in section 3.3 and 3.4 .  165 

Fig. 4b shows the fruit heights above and below the equatorial section. The height above the equatorial 166 

section of tomato fruits was 21.93±3.73 mm, and the height below the equatorial section was 33.47±4.03 mm. The 167 

fruit height below the equatorial section was larger than the height above the equatorial section. This finding 168 

further illustrates that the macro-structure of tomato fruits is asymmetrical and that consistent, significant 169 

differences in the fruit mechanics can be expected during quasi-static compression, dynamic impact or free drop 170 

experiments from different force action points, as reported by Li et al. (2011) and Van Linden, Scheelinck, Desmet, 171 

& De Baerdemaeker. (2006). Therefore, a real multi-scale fruit model is more valuable for a mechanical handling 172 

(such as harvesting, transporting and packaging) simulation than an ideal model. 173 

Fig. 4c shows the regression relationships between the fruit mass and height and the equatorial diameter and 174 

geometric mean diameter. The fruit mass and its geometric mean diameter most closely correlated according to the 175 

determination coefficient, R2. of the regression functions (n=12). When a robot harvests fruit, the stable grasp 176 

force of fingers needs to be calculated from the friction coefficient and mass (Chen, Hasegawaa, & amashita, 2006; 177 

Li et al., 2013a), but the fruit mass cannot be directly measured with a balance. According to the Fig. 4c, the 178 

geometric mean diameter can be considered as the most accurate parameter for predicting the fruit mass for robot 179 

harvesting.  180 

3.2.2 Tissue 181 

The results of the two-factor analysis of variance indicated significant differences in the thickness of the 182 

exocarp tissue, We, but no significant differences in the other geometric parameters of the tissues of the two 183 

tomato cultivars. Furthermore, the measured geometric parameters of the tissues did not correlate with ripeness. 184 
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This lack of correlation may have been due to the fact that the geometric sizes of tomato fruits no longer rapidly 185 

grow as a result of insignificant cell enlargement 5~8 weeks after anthesis, when the tomato fruit has accumulated 186 

the majority of its final mass from the mature green stage (Thomas, 1996). 187 

The thicknesses of Fendu 79 and Omeiya 333 exocarp tissue were 0.17±0.02 mm and 0.14±0.03 mm, 188 

respectively. The thicknesses (Wmmax, Wmmin and Wmmid) of the mesocarp tissue, the thickness (Ws) of the septa 189 

tissue and the columella diameter (Dct) were 7.56±1.02 mm, 5.17±0.63 mm, 4.17±0.84 mm, 6.38±0.62 mm and 190 

9.76±0.75 mm, respectively, which further illustrated non-unique tissue thickness at the meso-scale. All of the 191 

exocarp tissues were thicker than those examined by Hetzroni et al. (2011) and Bargel & Neinhuis (2005). Lahaye, 192 

Devaux, Poole, Seymour, & Causse (2013) proposed that tomato pericarp tissue thickness ranged from 5.2 to 9.3 193 

mm. These measured geometric data are essential for tissue geometric modeling in multi-scale simulations but 194 

have not been fully determined for individual fruit cultivars. The measured geometric sizes of tissues demonstrate 195 

the complex internal structural characteristics of tomato fruits. Structural failure has been suggested as another 196 

type of mechanical damage to tomato fruits in addition to the failure of tissues (Li, Li, Yang, & Liu, 2013b).  197 

3.2.3 Cell 198 

The cell diameters in different types of tissues of the two tomato cultivars at six ripening stages are presented 199 

in Fig. 5a. The sizes of cells in the mesocarp and columella tissues significantly varied, as illustrated by several 200 

large standard deviation values. The results of the analysis of variance show that the two tomato cultivars and the 201 

three tissue types (e.g. exocarp, mesocarp, and columella) markedly affected the cell diameter, Dc. The mean cell 202 

diameters of the exocarp, mesocarp and columella tissues were 32 µm, 327 µm and 340 µm, respectively, for 203 

Fendu 79 tomato fruits and 35 µm, 389 µm and 429 µm, respectively, for Omeiya 333 tomato fruits.  204 

Fig. 5b shows a picture of the microstructure of the exocarp, mesocarp and columella tissues of Fendu 79 205 

tomato fruits at the breaker stage. The mesocarp and columella tissues contained significantly fewer cells per unit 206 

volume than the exocarp tissue. The cells from the exocarp tissue were small irregular polygons that were 207 
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compactly and densely arranged due to the cutin membrane, while the cells from the mesocarp and columella 208 

tissues were large and sparsely and loosely arranged. Therefore, the failure stress and elastic modulus of exocarp 209 

tissues are always exceed those of the internal mesocarp and columella tissues based on the biomaterial structure 210 

and components, as reported by Li et al. (2012a) and Bargel & Neinhuis (2005).  211 

Furthermore, the cell diameters in the tissues did not correlate with fruit ripeness in the experimental results. 212 

During fruit development, slow cell division and enlargement occurs for 2~3 weeks, followed by rapid cell 213 

enlargement for another 3~5 weeks. Subsequently, cell enlargement continues but will not significantly change 214 

from the mature green stage (Thomas, 1996). Therefore, the cell size did not markedly differ between the six 215 

ripening stages. 216 

3.3 Multi-scale biomechanics 217 

The results of the analysis of variance showed that the hardness, single cell mechanics and shear strength 218 

of fruit at different scales (e.g. fruit, exocarp, mesocarp, columella and cell) were not significantly different 219 

between the two cultivars. Therefore, one of the fruit cultivars, Fendu 79, was used as an example to illustrate 220 

the multi-scale mechanical properties in this section. 221 

3.3.1 Multi-scale mechanical properties obtained from compression component 222 

The multi-scale mechanical properties of tomato fruits at six ripening stages obtained from compression 223 

testing are given in Table 1. The ripening stage significantly affected the hardness of fruit at different scales. The 224 

hardness of fruit at different scales negatively correlated with fruit ripeness. The hardness of whole fruits did not 225 

significantly differ from that of exocarp tissue, and the hardness of exocarp tissue and its cells exceeded those of 226 

the mesocarp and columella tissues and their cells. This finding illustrates that the exocarp tissue is the most 227 

important factor for fruit hardness and would have a largest impact on the protection of internal tissues during 228 

mechanical handling. Similarly, some puncture studies reported tomato hardness values on the order of 1~2 MPa 229 

for six varieties of ripe fruit (Stommel, Abbott, Campbell, & Francis, 2005), decreases from 1.2 to 0.1 MPa for 230 
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mesocarp and columella tissues as the fruit ripened (Wu & Abbott, 2002), and values of 0.4~0.7 MPa for the 231 

mesocarp and columella of ripe fruit punctured by probes of three sizes (Lana, Tijskens, Theije, Dekker, & Barrett, 232 

2007). These published results are similar to those reported here. Furthermore, the difference in the hardness 233 

between whole fruit and exocarp gradually decreased as the fruit ripened, which further illustrated that the 234 

contribution of the exocarp to the hardness of whole fruit gradually increased as the fruit ripened. This viewpoint 235 

is also supported by Jackman & Stanley (1994).  236 

Hardness indicates the strength with which fruit can resist to external compression force. The transporter, 237 

seller and consumer can use these forces to accurately evaluate the quality of postharvest fruit. In material science, 238 

the hardness of metal and plastic materials is always measured based on a national standard method. However, 239 

such a measurement method for biomaterials is currently lacking. The peak puncture force (Goyal, Kingsly, 240 

Kumar, & Walia, 2007) and peak compression stress (Wu & Abbott, 2002) have been used to characterize the fruit 241 

hardness in previous studies, and this approach differs from that utilized in this study. Therefore, comparing the 242 

data presented herein with previously published results for further analysis is difficult.  243 

In micro-scale research, the mean numbers of compressed cells in the exocarp, mesocarp and columella 244 

tissue samples were 63553, 1614 and 1503, respectively. During the puncture test, the applied mean compression 245 

force to single cells in the mesocarp and columella tissues was significantly larger than that experienced by single 246 

cells in the exocarp tissue. The numbers of cells in the exocarp, mesocarp and columella tissue samples, which 247 

directly contacted the probe end, were 11963, 115 and 106, respectively. The applied maximum compression force 248 

to single cells in the mesocarp and columella tissues was at least 110 times larger than that applied to single cells 249 

in the exocarp tissue. Some previous studies have reported bursting force ranges of single cells in ripe tomato 250 

mesocarp tissue of 0~24 mN and a mean bursting force of 3.6 mN (Blewett, 2000). In contrast, the data in Table 2 251 

show that the cells that directly contacted the probe end at the first several layers will burst, and their protoplasts 252 

flow out during the puncture test. Conspicuously, a piece of tissue that was dropped into the counter bore 253 
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contained some damaged cells in its upper layer and some undamaged cells in its lower layer, and some liquids 254 

remained on the end of the probe and the base plate after puncture. 255 

3.3.2 Multi-scale mechanical properties obtained from the shear component 256 

The multi-scale mechanical properties of tomato fruit at six ripening stages obtained from the shear 257 

component are listed in Table 2. The shear strength of fruit at different scales significantly differed by the ripening 258 

stage. The shear strength of fruit at different scales (e.g., fruit, exocarp, mesocarp, columella and cells) negatively 259 

correlated with fruit ripeness. At the meso- and micro-scale, the shear strengths of the mesocarp and columella 260 

tissues did not significantly differ, and the shear strength of the exocarp tissue and its single cells was an order of 261 

magnitude larger than those of the mesocarp, columella tissues and their single cells. This finding illustrates that 262 

the mesocarp, columella tissues and their single cells were prone to shear failure at a smaller external force than 263 

the exocarp tissue and its single cells. Some previous studies reported shear strength values of light-red tomato 264 

exocarp and mesocarp tissues of 2.98±1.03 MPa and 0.07±0.02 MPa, respectively, as determined by a shear 265 

experiment (Li et al., 2012a). In contrast, Table 2 shows that shear strength values in mesocarp that are close to 266 

these values, but shear strength values in the exocarp that are approximately 0.5 times. In micro-scale research, 267 

the mean numbers of sheared cells in the exocarp, columella and mesocarp tissues were 2324, 603 and 584, 268 

respectively. The applied mean shear force to single cells in the mesocarp and columella tissues was larger than 269 

that applied to single cells in the exocarp tissue during a puncture test.  270 

The shear strength, especially the maximum shear stress of biomaterials at failure (damage), is another 271 

important characteristic of materials. This parameter can be helpful for the development of a fruit processing 272 

machines, such as an auto-slicer; the design of packaging methods to prevent puncture damage during transporting; 273 

and the textural assessment of crunchiness during chewing.  274 

4 Conclusions 275 

In this study, the multi-scale engineering properties of two tomato cultivars at six ripening stages were 276 
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simultaneously investigated. Our results show that the geometric mean diameter is the most suitable index to 277 

predict fruit mass. A potential ripening scale based on the ratio of R:G:B obtained by quantifying the RGB value 278 

for a given ripening stage has been proposed. The mechanical properties of tomato fruit, their tissues and their 279 

single cells are heterogeneous and anisotropic due to the irregular shape and asymmetric internal structure at the 280 

macro-scale, the non-unique tissue thickness at the meso-scale and the irregular change of size, shape and 281 

arrangement of single cells at the micro-scale. The hardness and shear strength of fruit at different scales and the 282 

single cell mechanics varied with the fruit ripening stage but not the chosen cultivars. The contribution of the 283 

exocarp to the hardness of whole fruit gradually increased with fruit ripeness. This puncture experimental method 284 

is well suited to measure the hardness and shear strength of multi-scale tomato fruit and the mechanics of single 285 

tomato cells. The measured multi-scale engineering parameters are extremely important for intelligent harvesting, 286 

multi-scale damage simulation and the postharvest textural evaluation of tomato fruits.  287 
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Figure and Table Captions 365 

 366 

Figure 1 - Tomato fruits at six ripening stages and their corresponding RGB values.  367 

Figure 2 – Multi-scale geometrical characteristics of tomato fruits. 368 

Figure 3 - Puncture test of tomato fruits and the calculation of the mechanical parameters. 369 

Figure 4 - Geometric characteristics of tomato fruits at the macro level.  370 

Figure 5 - Cell diameters in different types of tissues of two tomato cultivars with microstructure pictures.  371 

Table 1 Multi-scale mechanical properties of Fendu 79 tomato fruit obtained from compression testing. 372 

Table 2 Multi-scale mechanical properties of Fendu 79 tomato fruit obtained from shear testing 373 

374 
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Figure 1 375 

 376 

 377 

 378 

 379 
Fig. 1 Tomato fruits at six ripening stages and their corresponding RGB values. (a) Six ripening stages of tomato 380 

fruits. (b) RGB values of tomato fruits at the six ripening stages, R-Red, G-Green, B-Blue. Data are expressed as 381 

the mean ± SD (n=10). 382 

383 
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Figure 2 384 

 385 

 386 

 387 

 388 

 389 

 390 
Fig. 2 Multi-scale geometrical characteristics of tomato fruits. (a) Longitudinal section of a tomato fruit along the 391 

stem-apex axis. The white rectangle shows the sampling zone in exocarp and mesocarp tissue, and the arrow is 392 

pointing to the angle of observation. The black rectangle shows the sampling zone in columella tissue, and the 393 

arrow shows the angle of observation. (b) Transverse equatorial half-section of a tomato fruit. (c) Cells in the 394 

columella tissue of breaker tomato fruit. H1-Height above the fruit’s equatorial axis, H2-Height below the fruit’s 395 

equatorial axis, Df -Diameter of the equatorial section, Wmmax, Wmmin and Wmmid - Maximum, minimum and middle 396 

thickness of the mesocarp tissue, Ws-Thickness of the septa tissue, Dct-Columella diameter, Dc-Cell diameter.  397 

 398 

399 

200µm 
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Figure 3 400 

 401 

 402 

 403 
Fig. 3 Puncture test of tomato fruits and the calculation of the mechanical parameters. Pfh, Pth and Pch are the 404 

hardness of fruits, tissues and single cells, respectively, subjected to probing; σtf and σcf are the shear strength of 405 

tissues and single cells subjected to probing; Fmax is the applied peak puncture force of the probe; Fch is the 406 

applied mean compression force to single cells during the puncture test; Fcmax is the applied maximum 407 

compression force to single cells during the puncture test; Fcf is the applied mean shear force to single cell during 408 

the puncture test; S1 and S2 are the valid compression and shear areas, respectively; Dc and Sc are the diameter and 409 

equatorial section areas of a cell; d1 and d2 are the probe diameter and tissue sample thickness, respectively; n1 and 410 

n2 are the numbers of cells compressed by probe and sheared by probe, respectively, and. k is the number of cell 411 

layers (k= d2/Dc); n
’
1 is the number of first-layer cells compressed by the probe. 412 

 413 

 414 

 415 

416 
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Figure 4 417 

 418 

 419 

 420 

 421 
Fig. 4 Geometric characteristics of tomato fruits at the macro level. (a) Heights and Equatorial diameters of 422 

tomato fruits at the six ripening stages, ordinate unit: mm. H-Fruit height, Df -Equatorial diameter. Data are 423 

expressed as the mean ± SD (n=5). (b) Fruit height above or below the equatorial section, ordinate unit: mm, 424 

abscissa unit: number. H1-Fruit height above the equatorial section, H2-Fruit height below the equatorial section. 425 

(c) Regression relationships between M and H, Df, Dg, respectively. M-fruit mass, Dg-geometric mean diameter, 426 

ordinate unit: g, abscissa unit: mm. 427 

428 
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Figure 5 429 

 430 

 431 

 432 

 433 
Fig. 5 Cell diameters in different types of tissues of two tomato cultivars and microstructural pictures. (a) Cell 434 

diameters of Fendu 79 and Omeiya 333 tomato fruits. Data are expressed as the mean ± SD (n=5). For each 435 

variety, the letters above the error bar indicate significant differences (P < 0.05) according to Student’s t-test. (b) 436 

Microstructure of exocarp, mesocarp and columella tissues of Fendu 79 tomato fruits at the breaker stage437 

200µm 200µm 200µm 
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Table 1 438 

 439 

 440 

 441 

Table 1 Multi-scale mechanical properties of Fendu 79 tomato fruit resulted from compression component 442 

Multi-scale 
Mechanical 

Parameters 

Ripening stage 

Green Breaker Turning Pink Light red Red 

ANOVA: 

Multiple-comparison 

a ab abc 
abc bc c 

Macro-scale 

(MPa) Pfh
  

Fruit* 2.35±0.20 2.02±0.31 1.92±0.21 1.45±0.10 1.20±0.17 1.15±0.06 

Meso-/Micro- 

Scale (MPa) 

Pth and Pch 

Exocarp * 2.25±0.23 1.97±0.07 1.87±0.09 1.45±0.09 1.14±0.11 1.12±0.17 

Mesocarp ** 1.36±0.06 1.15±0.35 0.80±0.27 0.72±0.27 0.53±0.06 0.40±0.02 

Columella**  1.82±0.14 1.04±0.09 0.60±0.06 0.51±0.22 0.41±0.07 0.37±0.07 

Micro-scale 

(mN) 

Cell in exocarp++ 

Fcmax 
1.808± 

0.188 

1.580± 

0.059 

1.505± 

0.075 

1.162± 

0.068 

0.920± 

0.085 

0.903± 

0.133 

Fch 
0.340± 

0.035 

0.297± 

0.011 

0.283± 

0.014 

0.219± 

0.013 

0.173± 

0.016 

0.170± 

0.025 

Cell in mesocarp+ 

Fcmax 
113.62± 

5.24 

109.86± 

29.02 

89.57± 

22.61 

60.00± 

22.88 

33.04± 

5.21 

32.17± 

1.81 

Fch 8.16±0.97 7.76±0.69 7.53±0.80 4.99±1.92 2.50±0.42 2.00±0.89 

Cell in columella+ 

Fcmax 
164.78± 

13.08 

94.65± 

8.51 

54.40± 

5.69 

44.34± 

19.66 

37.11± 

6.42 

33.96± 

6.80 

Fch 11.66±1.28 5.42±0.50 5.06±0.25 3.98±1.11 3.50±0.34 1.58±0.32 

Date are expressed as the mean ± SD (n=6 for macro-scale, n=3 for meso- and micro-scale). Different letters 443 

(namely a, ab, abc, bc, c) in the same row indicate significant differences (P < 0.05) according to Student’s t-test. 444 

The superscript marks (*) in the macro- and meso-scale column indicate significant differences (P < 0.05), and the 445 

superscript marks (+) in the micro-scale column indicate significant differences (P < 0.05). 446 

Pfh, Pth and Pch are the hardness of fruits, tissues and single cells, respectively, subjected to probing; Fch is the 447 

applied mean compression force to a single cell during a puncture test; Fcmax is the applied maximum compression 448 

force to single cell during the puncture test. 449 

 450 

 451 

452 
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Table 2 453 

 454 

Table 2 Multi-scale mechanical properties of Fendu 79 tomato fruit resulted from shear component 455 

Multi-scale Biomaterials 
Ripening stage 

Green Breaker Turning Pink Light red Red 

ANOVA: Multiple-comparison a ab abc abc bc c 

Meso-/Micro- 

Scale (MPa) 

σtf and σcf 

Exocarp* 11.58±1.20 10.12±0.38 9.63±0.48 7.44±0.44 5.89±0.54 5.78±0.85 

Mesocarp**  0.26±0.03 0.25±0.02 0.24±0.03 0.16±0.06 0.09±0.01 0.06±0.03 

Columella**  0.33±0.04 0.15±0.01 0.14±0.01 0.11±0.03 0.10±0.01 0.04±0.01 

Micro-scale 

(mN) 

Fcf 

Cell in exocarp+ 9.31±0.97 7.82±0.30 7.74±0.39 5.98±0.35 4.73±0.44 4.65±0.68 

Cell in 

mesocarp++ 
21.82±2.60 20.77±1.84 20.14±2.15 13.34±5.14 6.70±1.12 5.37±2.39 

Cell in 

columella++ 
29.99±3.30 13.94±1.28 13.03±0.63 10.26±2.86 9.01±0.88 4.06±0.83 

Date are expressed as the mean ± SD (n=3). Different letters (namely a, ab, abc, bc, c) in the same row indicate 456 

significant difference (P < 0.05) according to Student’s t-test. The superscript marks (*) in the meso-scale column 457 

indicate significant differences (P < 0.05), and the superscript marks (+) in the micro-scale column indicate 458 

significant differences (P < 0.05). 459 

σtf and σcf are the shear strength of tissues and single cells subjected to probing; Fcf is the applied mean shear force 460 

to a single cell during the puncture test. 461 

 462 
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� Geometric mean diameter was most closely correlated with tomato fruit mass 

� Multi-scale geometry of tomatoes showed heterogeneous and anisotropic properties 

� The contribution of exocarp to the hardness of whole fruit increased with ripeness 

� Puncture experiment is suited to measure the multi-scale mechanics of fruit 


