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Abstract 

Exercise increases energy expenditure however acutely this does not cause 

compensatory changes in appetite or food intake. This unresponsiveness contrasts 

the rapid counter-regulatory changes seen after food restriction. The present 

investigation examined whether corrective changes in appetite-regulatory 

parameters occur after a time delay, namely, on the day after a single bout of 

exercise. Nine healthy males completed two, two-day trials (exercise & control) in a 

random order. On the exercise trial participants completed 90 min of moderate-

intensity treadmill running on day one (10:30 – 12:00 h). On day two appetite-

regulatory hormones and subjective appetite perceptions were assessed frequently 

in response to two test meals provided at 08:00 and 12:00 h. Identical procedures 

occurred in the control trial except no exercise was performed on day one. 

Circulating levels of leptin were reduced on the day after exercise (AUC 5841 ± 3335 

vs. 7266 ± 3949 ng-1·mL-1·7 h, P = 0.012). Conversely, no compensatory changes 

were seen for circulating acylated ghrelin, total PYY, insulin or appetite perceptions. 

Unexpectedly, levels of acylated ghrelin were reduced on the exercise trial following 

the second test meal on day two (AUC 279 ± 136 vs. 326 ± 136 pg-1·mL-1·3 h, P = 

0.021). These findings indicate that short-term energy deficits induced by exercise 

initially prompt a compensatory response by chronic but not acute hormonal 

regulators of appetite and energy balance. Within this 24 h time-frame however there 

is no conscious recognition of the perturbation to energy balance. 

 

Key words: Exercise, Appetite Regulation, Gut Peptides, Compensation 
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1. Introduction 

The relationship between exercise and appetite regulation has important implications 

regarding the role of exercise in weight management [1]. In recent years, 

advancements in scientific understanding regarding the psycho-biological regulation 

of appetite and food intake have ignited research interest around the interaction 

between exercise, appetite regulation and energy balance [2]. Within this sphere, 

one particular issue that has received significant attention is the impact of exercise 

on hormonal mediators of appetite which are central components of the body’s 

homeostatic system governing energy balance and weight control [3,4]. 

 

The body’s appetite-regulatory system includes several peptides of gastro-intestinal, 

pancreatic and adipose tissue origin, which communicate acute nutrient status and 

chronic energy availability to the central nervous system [4]. Leptin and insulin act as 

chronic mediators of energy balance, with circulating concentrations being present in 

proportion to stored energy within adipose tissue [5]. Additionally, on a meal-to-meal 

basis, food intake is regulated by a selection of gastrointestinal peptides, most 

notably acylated ghrelin, peptide-YY (PYY), glucagon-like peptide-1 (GLP-1), 

cholecystokinin (CCK) and oxyntomodulin [6]. Ghrelin is secreted from the stomach 

and remains unique as the only circulating appetite stimulating hormone. 

Furthermore, the prandial profile of ghrelin is suggestive of an important role in meal 

initiation [7,8]. Conversely, each of the other short-acting peptides has an inhibitory 

effect on appetite. Highly prominent is PYY which is secreted chiefly from the distal 

intestine and colon in direct proportion to the energy content of an ingested meal 

[9,10]. Within key appetite-regulatory brain centres these afferent signals are 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 
 

integrated and the summed response initiated which impacts directly up on appetite 

and eating, as well as thermogenesis and substrate metabolism [11]. 

 

Research has demonstrated that single bouts of exercise have a marked impact on 

the circulating levels of appetite-regulatory hormones with changes occurring rapidly 

after the initiation of exercise [2]. Notably however, these alterations appear to be 

transient. For example, circulating levels of acylated ghrelin are distinctly suppressed 

during exercise of moderate-intensity or higher [12,13,14]. This perturbation however 

is absent within 30 min after exercise. Similarly, circulating concentrations of PYY 

increase during moderate- to high-intensity exercise however customary levels are 

re-established shortly thereafter [2,15,16]. Each of these responses is consistent 

with an appetite-inhibitory profile which may in part contribute to a well-characterised 

inhibition of appetite at moderate-high exercise intensities, a phenomenon which has 

been termed ‘exercise-induced anorexia’ [17].  

 

Studies have shown that acute energy deficits induced by food restriction lead to 

rapid and quite striking compensatory alterations to appetite and appetite-regulatory 

hormones i.e. hormones change in directions expected to stimulate appetite and 

eating [14,18]. Intuitively, it may be expected that energy deficits induced by exercise 

would lead to similar responses in appetite-regulatory parameters however several 

studies have failed to observe any compensatory changes in circulating appetite 

hormones (acylated ghrelin or PYY) on the day that exercise is performed. This 

unresponsiveness occurs with bouts of exercise associated with high levels of 

energy expenditure i.e. large perturbations to energy balance, and over several 

hours of observation afterwards [13,14]. This is consistent with a lack of change in 
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energy intake [19]. It remains possible that there is a time-delay before exercise-

induced energy deficits manifest as alterations in appetite, appetite regulatory 

parameters and food intake. This notion was postulated half a century ago [20] and 

in the absence of altered oro-gastric input, may reflect a greater time-span 

necessary for the body to detect and respond to exercise-induced energy balance 

perturbations. This notion is supported by previous evidence which identified latent 

changes in circulated leptin on the day after exercise [21,22]; and the findings of a 

recent study which documented an exercise-induced suppression of fasting and 

meal-stimulated plasma acylated ghrelin response 12 h after undertaking exercise 

[23]. 

 

The present study assessed the latent effects of exercise on appetite and critical 

mediators of appetite control and energy balance on the day after a single bout of 

exercise. Specifically, we sought to confirm and extend previous findings by 

characterising the meal-stimulated (breakfast and lunch) responses of key acute and 

chronic appetite-regulatory hormones (acylated ghrelin, total PYY, leptin & insulin) 

on the day after a single bout of exercise. We hypothesised that meal-stimulated 

acylated ghrelin (suppression) and PYY (elevation) responses would be attenuated 

on the day after exercise whilst circulating levels of leptin would be reduced. 

Furthermore, we thought that these changes would be associated with 

commensurately altered subjective appetite perceptions.  
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2. Materials & Methods 

2.1 Participants 

After receiving local ethical advisory committee approval nine young, healthy male 

volunteers (age 22.0 ± 1.2 y; weight 72.0 ± 6.9 kg; BMI 22.6 ± 1.8 kg·m2; waist 

circumference 74.4 ± 1.8 cm; estimated basal metabolic rate 7247 ± 405 kJ; 2OV

max 60.6 ± 7.6 mL·kg·min-1) gave their written informed consent to participate. 

Participants were weight stable (< 2 kg change in body mass in the last three 

months), non-smokers, free of cardio-metabolic disease, had a BMI within the 

healthy range (18.5 – 24.9 kg·m2) and were not taking any medications or 

supplements. Participants were active i.e. typically games players, but were not 

accustomed to undertaking endurance exercise regularly. 

  

 

2.2 Pre-assessment and Study Familiarisation 

Before main trials, participants attended the laboratory where they were familiarised 

with the study procedures and underwent necessary pre-assessments. Participants 

completed questionnaires assessing health status and physical activity habits after 

which measurements of height, weight and waist circumference were taken. 

Participants then completed two treadmill running tests; 1) a progressive 16 min 

submaximal test to determine the relationship between treadmill running speed and 

oxygen consumption; 2) a maximum oxygen uptake test ( 2OV max). These tests 

have been described in depth previously [12]. 

 

2.3 Main Experimental Trials 
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In subsequent weeks participants completed two main experimental trials (exercise 

and control) separated by a washout period of at least seven days. Each main trial 

spanned across two days and was preceded by a 48 h lead-in phase where diet and 

physical activity (absence of) were standardised. Within this standardisation phase 

dietary intake was controlled by the participants i.e. on each participant’s first trial 

they ate ad libitum however participants recorded what they ate and replicated it 

exactly in the lead up to their second main trial. Adherence to this procedure was 

confirmed verbally by the study experimenters before main trials. Each main trial was 

composed of an intervention phase (day one) and a data-collection phase (day two). 

This design permitted the assessment of appetite-regulatory responses on the day 

after exercise. The order of main trials was randomised with five participants 

completing the control trial first and four completing the exercise trial first. Figure 1 

provides a schematic illustration of the main trial protocol. 

 

 

Figure 1: Schematic illustration of the main trial protocol. For day two, thin back arrows represent 
appetite scales; large arrows represent blood samples; black rectangles indicate test meals. 

 

Main trials began on the morning of day one and ended at approximately 15:10 on 

day two. During this period participants were required to attend the laboratory 
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between 10:00-13:30 on day one and 07:30-15:10 on day two. In the time away from 

the laboratory participants were instructed to remain completely inactive and this was 

checked repeatedly by the study experimenters via telephone. During the study, 

participants travelled to and from the laboratory via motorised transport unless they 

lived within 400 meters in which case they were permitted to walk. During main trials 

participants were provided with all of their food which was consumed at set times 

that were standardised across trials. Water was permitted ad libitum on day one, 

however to avoid any impact on appetite and/or gastric function during the data-

collection phase of trials water consumption was standardised on day two.  

 

On day one of the exercise trial participants consumed their standardised breakfast 

at home at 07:30. At 10:00 participants arrived at the laboratory ahead of their 

treadmill run (10:30-12:00). Herein, participants ran on a motorised treadmill 

(Technogym Excite Med, Cesena, Italy) for 90 min at a speed predicted to elicit 70% 

of their maximum oxygen uptake. At 15 min intervals oxygen uptake was assessed 

via expired air collections into a Douglas Bag and the speed of the treadmill was 

adjusted if necessary to maintain the desired exercise intensity. Ratings of perceived 

exertion were also assessed using the Borg scale [24]. Following the run participants 

rested in the laboratory until lunch (13:00). After lunch participants went home where 

they remained (inactive) until returning to the laboratory the following morning. At 

18:00 participants consumed their standardised evening meal which was followed by 

their evening snack at 20:00. 

  

Participants arrived at the laboratory on the morning of day two at 07:15. A cannula 

was then inserted into an antecubital vein after which participants rested for 30 min. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 
 

At 08:00 the data-collection phase of the trial began whereby baseline blood 

samples were collected and appetite scales completed. A test meal was then 

consumed over 10 min. On the final bite a clock was started which ran continuously 

for seven hours. At 4h a second test meal was consumed. Across this period blood 

samples were collected for the assessment of appetite-regulatory hormones at 0.5, 1, 

1.5, 2, 3, 4, 4.5, 5, 5.5, 6 & 7h. Subjective appetite perceptions (hunger, fullness, 

satisfaction & prospective consumption) were assessed at 30 min intervals 

throughout using visual analogue scales [25]. Main trials ended after the final blood 

sample and appetite scale at 7 h, at which point the cannula was removed and 

participants left the laboratory. 

 

Identical procedures were undertaken in the control trial except on day one 

participants did not complete any exercise. Instead, they rested within the laboratory 

and expired air samples were collected every 15 min in order to permit the 

calculation of net energy expenditure during exercise i.e. gross exercise energy 

expenditure minus resting energy expenditure.   

 

2.4 Food Provision & Test Meals 

On day one of main trials participants received all of their food pre-packaged from 

the study team with the food provided being identical in the exercise and control trial. 

The amount of food (energy) each participant received was calculated as 1.4x their 

estimated basal metabolic rate [26]. This is an amount of food deemed sufficient to 

meet the needs of an individual on an inactive day. On day one breakfast consisted 

of white bread and chocolate spread (carbohydrate 64%, fat 25%, protein 11%, 2029 

± 113 kJ - 20% of daily energy provision). Lunch and dinner was a balanced meal 
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consisting of a tuna and mayonnaise sandwich, salted crisps, chocolate muffin and 

green apple (carbohydrate 48%, fat 33%, protein 19%, 3552 ± 197 kJ - each meal 35% 

of daily energy provision). Finally, participants received a chocolate biscuit for the 

evening snack (carbohydrate 52%, fat 46%, protein 2%, 1013 ± 59 kJ - 10% of daily 

energy provision). 

  

On day two of trials participants received two (baseline and 4 h) balanced (48% 

carbohydrate, 19% protein, 33% fat, 2565 kJ energy) test meals that were identical 

within and between trials. Each participant received the exact same meal i.e. the 

meal was not normalised to participants’ daily energy requirements. Each test meal 

consisted of white bread (109g), cheddar cheese (48g), malt loaf (30g) semi-

skimmed milk (100mL) and strawberry milkshake powder (7.5g). Each meal was 

consumed within 10 min. To ensure euhydration on day two, participants consumed 

500 mL of water up on rising. Participants also drank 250 mL of water one hour after 

each test meal (1 h and 5 h).  

 

2.5 Blood Biochemistry 

During day two of main trials venous blood samples were collected via a 21G 

cannula (Venflon, Becton Dickinson, Helsingborg, Sweden) that was kept patent 

throughout by flushing with isotonic saline (0.9% w/v sodium chloride). Samples 

were collected into ice-cooled EDTA monovettes for the determination of plasma 

leptin, acylated ghrelin, insulin and glucose. To preserve the integrity of the acylated 

ghrelin sample, monovettes for this peptide were pre-treated with a serine protease 

inhibitor as described previously [12]. Samples for total PYY were collected into ice-

cooled syringes containing 10µL/mL di-peptidyl peptidase-4 inhibitor (Millipore, 
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Watford, UK) and after mixing were immediately dispensed into EDTA tubes 

containing aprotinin (Nordic Pharma Ltd, Reading, UK) (500 KIU/mL). Plasma was 

obtained after spinning whole blood samples at 1600 g for 10 min in a refrigerated 

centrifuge (4oC) and was stored at -80oC until analysis. At baseline and 4 h 

measurements of haematocrit and haemoglobin were taken to estimate changes in 

plasma volume using the method described by Dill & Costill [27].  

 

Concentrations of plasma acylated ghrelin (SPI BIO, Montigney le Bretonneux, 

France), total PYY (Millipore, Watford, UK), leptin (R and D Systems Europe Ltd., 

Abingdon, UK) & insulin (Mercodia, Uppsala, Sweden) were determined using 

enzyme-linked immunosorbant assay kits. Plasma glucose concentrations were 

determined using an enzyme-linked assay kit (Life Technologies Ltd, Paisley, UK). 

The associated within-batch coefficient of variation for the assays was as follows: 

acylated ghrelin (7.8%), leptin (6.3%), insulin (3.5%), total PYY (7.1%) and glucose 

(2.5%).  

 

2.6 Statistical Analysis 

Data were analysed using the Statistical Package for the Social Sciences (SPSS) 

software version 21.0 for Windows. Two-way repeated measures ANOVA were used 

to examine responses over time for appetite-regulatory hormones and appetite 

perceptions. Where significant differences were found these were explored using 

post hoc analysis using the Bonferroni correction for multiple comparisons. When 

significant main effects were found area under the curve was calculated using the 

trapezoid method. Statistical significance was accepted at the 5% level. Repeated 

measures ANOVA (trial x time) showed no differences in plasma volume within (P = 
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0.504) or between (P = 0.834) trials therefore unadjusted plasma hormone 

concentrations are presented. Results are presented as Mean ± SD unless stated 

otherwise. 

The sample size for this investigation was determined using data derived from the 

authors’ previous research which detected compensatory acylated ghrelin responses 

to food restriction [14]. Based on total trial AUC data (control vs. food restriction), 

with alpha set at 5%, beta at 80%, and a previously observed mean difference and 

standard deviation of 315 and 260 pg·mL-1·9·-1 - it was determined that at least eight 

participants were required to provide sufficient statistical power for the present 

investigation. 

 

    

3 Results 

3.1 Exercise Responses 

The 90 min run undertaken on day one was completed at 11.1 ± 1.7 km·h-1 which 

elicited 67.8 ± 4.3% of participants’ maximum oxygen uptake. This induced a net 

energy expenditure of 4908 ± 523 kJ which was derived predominantly from 

carbohydrate oxidation rather than fat (74 ± 14 vs. 26 ± 14%). A reported RPE value 

of 15 ± 1 indicated that participants perceived the run to be ‘hard’.  

3.2 Appetite Hormone & Glucose Responses  

On the morning of day two, plasma acylated ghrelin concentrations were no different 

between the exercise and control trial (P = 0.56) (Figure 2 upper panel).  
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Figure 2: Plasma acylated ghrelin (upper panel) & PYY (lower panel) concentrations 

in the control (▲) and exercise (■) trials. For clarity values are mean ± SEM, n = 9. 

Black squares indicate test meals (-10 min and 4 h). 
 
Two-way repeated measures ANOVA (trial x time) revealed significant time (P < 

0.001) and interaction (P = 0.009) main effects for acylated ghrelin indicating 

divergent changes over time between trials. Following correction for multiple 

comparisons using the Bonferroni method no differences at individual time points 
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were found. Further analysis of the acylated ghrelin AUC identified significantly 

reduced levels (14%) on the exercise trial following consumption of the second test 

meal at 4 h (Table 1). However, when normalised to pre-lunch values at 4 h this 

difference did not remain significant (P = 0.290). Moreover, the percentage 

suppression of circulating acylated ghrelin was no different between trials within the 

90 min after eating at the meals consumed at baseline (0 h) or 4 h (both P > 0.05).  

 
Table 1: Day two circulating acylated ghrelin and leptin area under the 
concentration-time curve profiles 
 

 
Total Trial 

(0-7 h) 

Test Meal 1 
Response 

(0-4 h) 

Test Meal 2 
Response 

(4-7 h) 

 units 7 h units 4 h units 3 h 

Acylated Ghrelin    

Control 698 ± 298 371 ± 166 326 ± 136 

  Exercise 623 ± 312 344 ± 179 279 ± 136* 
Leptin          

Control 7266 ± 3949 3697 ± 3068 3570 ± 2006 

  Exercise 5841 ± 3335* 3068 ± 1626* 2773 ± 1725* 

Values are pg·mL·unit time and ng·mL·unit time for acylated ghrelin and leptin 
(mean ± SD, n = 9). *different from control (P < 0.05) 
 

At baseline on day two the fasting plasma concentration of total PYY was no 

different between the exercise and control trial (Figure 2 lower panel). Two-way 

repeated measures ANOVA (trial x time) revealed no differences between trials (all 

P > 0.05).  

 

On day two, baseline circulating levels of plasma leptin were significantly lower on 

the exercise trial compared with control (P = 0.03) (Figure 3 upper panel).  
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Figure 3: Plasma leptin (upper panel) & insulin (lower panel) concentrations in the 

control (▲) and exercise (■) trials. For clarity values are mean ± SEM, n = 9. Black 

squares indicate test meals (-10 min and 4 h). 
 

For circulating leptin, two-way repeated measures ANOVA (trial x time) revealed 

significant trial (P = 0.016), time (P < 0.001) and interaction (P = 0.009) main effects. 

After correction for multiple comparisons using the Bonferroni method no differences 

were found at individual time points between trials. The plasma leptin AUC showed 
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significantly reduced circulating levels across the entirety of day two (Table 1). At 

baseline on day two there was no difference in the fasting plasma concentration of 

insulin between the exercise and control trial (Figure 3 lower panel). Two-way 

repeated measures ANOVA (trial x time) revealed no between trial differences for 

plasma insulin (all P > 0.05). For circulating glucose there was no difference in the 

fasting plasma concentration between trials on the morning of day two (P = 0.233). 

Furthermore, two-way repeated measures ANOVA (trial x time) revealed no 

differences between trials for plasma glucose (all P > 0.05, data not shown).  

 

To examine alterations in insulin resistance on the morning after exercise HOMA-IR 

was calculated using fasting concentrations of glucose and insulin [28]. At baseline 

on day two of the exercise trial HOMA-IR was significantly lower (31%) compared 

with control (P = 0.031). On day two, further analysis revealed significant positive 

associations between HOMA-IR and circulating leptin AUC within the exercise trial 

for the total trial (r = 0.678) and 4-7 h AUC (r = 0.699) (both P < 0.05). No significant 

relationships between leptin and insulin resistance were apparent in the control trial. 

Furthermore, there were no significant relationships between HOMA-IR and 

circulating acylated ghrelin or total PYY. 

 

3.3 Appetite Responses 

There were no significant differences in fasting appetite perceptions on day two 

(hunger, fullness, satisfaction and PFC) between the exercise and control trial (all P > 

0.05) (Figure 4). For each appetite perception two-way repeated measures ANOVA 

(trial x time) revealed a main effect of time (all P < 0.001) representing changes in 
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response to test meals. However, no significant trial (all P > 0.05) or interaction (all 

P > 0.05) main effects were found. 

 

 

 

Figure 4: Subjective ratings of hunger (top left), prospective food consumption (top 

right), fullness (bottom left) and satisfaction (bottom right) in the control (▲) and 

exercise (■) trials. For clarity values are mean ± SEM, n = 9. Black squares indicate 

test meals (-10 min and 4 h). 

 

4 Discussion 

Several studies have shown that there are no acute compensatory changes in 

appetite or appetite-regulatory hormones on the day during which an acute bout of 

exercise is performed [19,29]. This investigation extended the period of observation 

in order to determine whether compensatory changes in appetite-regulatory 

parameters may occur after a time delay, namely, on the day after exercise. Based 

on previous research suggesting that alterations in appetite regulatory parameters 

may occur after a time-delay [20,21,23], we hypothesised that meal-stimulated 

acylated ghrelin (suppression) and PYY (elevation) responses would be attenuated 
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on the day after exercise whilst circulating levels of leptin would be reduced. 

Furthermore, we thought that these changes would be associated with 

commensurately altered subjective ratings of appetite. In contrast to our hypotheses, 

the novel findings from this study are that acute exercise did not lead to 

compensatory fasting or prandial acylated ghrelin, total PYY or subjective appetite 

responses on the day after exercise. Paradoxically, circulating levels of acylated 

ghrelin were actually lower following a lunchtime meal consumed 24 h after the end 

of exercise. In addition to these novel outcomes, this study has also re-affirmed 

previous findings documenting a delayed reduction in circulating leptin after a single 

bout of exercise (with a large associated energy deficit) [21,22,30].  

 

Within the acute appetite-regulatory system acylated ghrelin remains unique as the 

only circulating peptide that stimulates appetite and eating. Specifically, on a meal-

to-meal basis, levels of acylated ghrelin rise and fall in timing with prandial changes 

in hunger, a pattern suggesting an important role in regulating meal initiation and/or 

termination [7,8]. Alongside this acute action, significant attention has also been 

given to understanding the extended role that acylated ghrelin plays within the 

regulation of energy balance and body weight. In this scenario, acylated ghrelin 

responds dynamically to changes in energy balance with increases in circulating 

levels during periods of energy deficit being a key homeostatic response to defend 

body weight [31,32].  

 

In the present investigation we hypothesised that exercise completed on day one 

would lead to higher circulating levels of acylated ghrelin on day two as a counter-

regulatory response to the energy deficit. Conversely, on day two, we saw no 
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changes in circulating levels of acylated ghrelin at rest or in response to the morning 

test meal. Interestingly, however, after consumption of the second test meal 

consumed at lunch (13:00), circulating levels of acylated ghrelin (AUC) were actually 

lower on the exercise trial. In an exercise context, previous studies have described 

an attenuated postprandial acylated ghrelin response, i.e. a less marked suppression, 

after individuals have completed multiple bouts of exercise across several days 

[33,34]. Furthermore, one recent study with a similar design to the present study also 

reported an attenuated postprandial ghrelin response on the day after participants 

had performed 1 h of moderate-intensity exercise [23]. This physiological change 

reflects an impaired satiety response and in theory would be associated with a more 

rapid onset of subsequent eating and potentially a greater energy intake at meals. It 

is not entirely clear why the findings differed in the present investigation. In the 

studies of Hagobian et al [34] and Mackelvie et al [33] it is possible that the 

attenuated meal-related change in acylated ghrelin reflects the accumulated energy 

deficit created over multiple days; however it should be noted that in the former study 

this response was only seen in women and not men. The present investigation 

studied the more short-term impact of a single bout of exercise on acylated ghrelin 

and this difference may contribute to the divergent outcome. The reason for the 

difference in findings between the present investigation and that of Heden et al [23] 

is less clear given the similarity in study design, participants examined and test 

meals implemented. Specifically, Heden et al [23] reported lower fasting levels of 

acylated ghrelin on the morning of day two after exercise and observed an 

attenuated meal-related (breakfast) suppression. Conversely, we did not see any 

difference in fasting levels of acylated ghrelin on day two, nor did we detect any 

difference in the postprandial acylated ghrelin AUC (0-4 h). This lack of change in 
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fasting acylated ghrelin concentration is consistent with what we have previously 

found when fasting samples were collected on the day after a 90 min treadmill run 

(22.5 h post-exercise) in young, healthy, males [13]. Although the precise 

mechanisms are unknown, key differences between studies may explain the 

divergent outcomes, including the elapsed time before sampling (12 h vs. 20 h), 

intensity of exercise (moderate vs. moderate-vigorous) and energy expenditure 

elicited (1800 vs. 4908 kJ). Furthermore, in the study conducted by Heden et al [23] 

participants remained fasted overnight after performing exercise that evening, whilst 

in the present investigation participants consumed two meals and a snack in-

between exercise and the beginning of blood assessments the next day. This 

protocol difference may have impacted on acylated ghrelin via alterations in 

substrate metabolism. Nonetheless, despite these alterations in acylated ghrelin, 

neither investigation observed any change in subjective appetite perceptions 

indicating that this physiological change did not translate into altered behaviour.  

 

The mechanisms responsible for alterations in circulating acylated ghrelin in 

response to exercise are not well understood. In the present study, closer scrutiny of 

the acylated ghrelin data shows that the lower AUC (4-7 h) in the exercise trial was 

primarily due to a reduced level of acylated ghrelin before the afternoon test meal (at 

4 h). This was evidenced by the negation of difference between trials (4-7 h AUC) 

when values were normalised to those at 4 h; and by the lack of difference in 

postprandial suppression. Consequently, the lower acylated ghrelin values identified 

appear to be due to an attenuated pre-prandial rise leading up to the second test 

meal. Indeed, each of the nine participants all had lower circulating acylated ghrelin 

concentrations at 4 h on the exercise trial as compared with control. This information 
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suggests that exercise altered the regulatory mechanisms governing the pre-meal 

ghrelin surge rather than post-ingestive factors. Unfortunately the present study 

cannot delineate the specific mechanisms responsible for this finding therefore 

further research is needed to advance this work and to better understand the 

broader impact of exercise on the regulation of ghrelin. 

 

PYY is an anorectic peptide secreted primarily by the distal intestine in response to 

nutrient intake [9,35]. Circulating levels of PYY typically peak 1-2 h postprandially in 

relation to the energy and macronutrient content of the meal with levels remaining 

elevated for several hours [10,36]. PYY has a critical role in the short-term regulation 

of energy intake due to its important role in promoting satiation, satiety and delaying 

gastrointestinal transit [36-38]. A more long-term influence of PYY on energy 

homeostasis has also been suggested by associations that have been found 

between PYY, substrate oxidation and resting metabolic rate [39-40].  

 

Short-term food restriction [14,41] and reductions in body weight [42] have each 

been shown to lower fasting and/or postprandial circulating levels of PYY. This 

response is likely to be part of an adaptive mechanism defending energy 

homeostasis. The impact of exercise on circulating PYY has been examined in 

several studies with the consensus suggesting that exercise transiently elevates 

levels of PYY [2,15,16]. A potential limitation of the present study was that circulating 

levels of total PYY were measured rather than those of PYY3-36.  The latter variant is 

the modified peptide that confers the specific inhibitory effect of PYY on appetite, 

and although the two correlate well [43], it is possible that PYY3-36 may have 

responded differently to the intervention. Despite this, the present study is the first to 
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characterise prandial total PYY responses on the day following an acute bout of 

exercise. Specifically, we examined whether an acute energy deficit induced by 

exercise would reduce fasting and/or postprandial levels in the circulation on the 

following day. The results clearly show that exercise on the prior day had no impact 

on plasma total PYY responses to meals and these findings therefore demonstrate 

that total PYY is not sensitive to exercise-induced energy deficits of this magnitude 

within this time-frame.  

 

In the present investigation one of the most marked changes induced by exercise 

was a decrease in circulating levels of leptin on the day afterwards. Specifically, in 

the exercise trial fasting plasma concentrations on day two were a third lower 

compared with control. Furthermore, across the whole of the day, circulating levels of 

leptin were reduced by 20% (total trial AUC) after having completed exercise. These 

data confirm previous reports which have documented reductions in leptin in 

response to single bouts of exercise. Notably, the consensus arising from previous 

work, and supported here, are that substantial reductions in circulating leptin occur 

after exercise when associated with sufficiently high energy expenditure (> 3348 kJ) 

and following a latency period of ~12-24 h [21,22]. Existing work has shown that 

circulating levels of leptin are highly responsive to alterations in energy 

balance/availability [44,45]. Consequently, the change observed in the current study 

is likely to be related to the energy deficit imposed by exercise (~ 5020 kJ) which 

was maintained going forward into day two due to strict dietary and physical activity 

control. It is perhaps interesting to note that comparatively the magnitude of this 

decrease in leptin is approximately half of that which occurs in response to fasting 
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over a similar period [46]. The change seen with exercise in this study therefore 

reflects the less severe perturbation to energy balance. 

 

In concert with leptin, insulin also functions as a chronic regulator of energy 

homeostasis, providing information to the central nervous system regarding stored 

energy within adipose tissue [47]. Unlike leptin however, in the short-term, insulin is 

also a critical regulator of circulating glucose and responds dynamically to systemic 

perturbations in glycaemia. Additionally, both fasting and postprandial insulin 

concentrations are mediated at a higher level by insulin sensitivity within peripheral 

tissues, such as skeletal muscle, liver and adipose tissue. In the present 

investigation we did not detect any significant changes in fasting or postprandial 

concentrations of insulin or glucose in the circulation. The nature of the imposed 

exercise was therefore insufficient to induce alterations in these parameters in this 

population of young, healthy, and relatively fit men. This information suggests that 

insulin and glucose had no direct effect on circulating acylated ghrelin or leptin. 

Despite this, although not statistically different, lower fasting levels of glucose and 

insulin on day two produced a statistically significant improvement in insulin 

sensitivity when HOMA-IR was calculated (P = 0.031) [28]. Given previous links 

discovered between appetite hormones with insulin resistance [48,49], we chose to 

look closer at the relationships between these factors. No relationships were 

observed between HOMA-IR and acylated ghrelin or total PYY, however significant 

positive correlations were found between leptin AUC and HOMA-IR across the 

exercise trial, but not within control. These data indicate that the relationship 

between insulin resistance/sensitivity and leptin become stronger after exercise 

however the mechanisms mediating this association are unknown. The improvement 
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in insulin sensitivity after acute exercise is well defined [50] however the 

mechanisms governing changes in leptin after exercise are not well understood. The 

alteration in energy flux may be significant with a potential link to insulin action [51,52] 

however additional work is needed to better understand these relationships.  

 

The effect of exercise on subjective appetite perceptions has received widespread 

attention within psycho-biological research over the last 20 years. The most 

consistent finding within this body of literature is that single bouts of exercise 

transiently suppress appetite, a phenomenon that has been termed exercise-induced 

anorexia [17]. This effect is brief, typically lasting no more than 30 min, and does not 

typically affect food intake when measured for several hours afterwards [13,19,53]. 

This response to an exercise-induced energy deficit is in direct contrast to that 

observed when food restriction is used as a method to induce negative energy 

balance. In this scenario, rapid and marked compensatory increases in appetite and 

food intake are noted [14,18]. Although in the immediacy a rather loose coupling 

exists between exercise-induced energy expenditure, appetite and food intake, one 

study has suggested an association may begin to emerge after a delay of 

approximately two days [20]. In the present investigation we sought to explore this 

relationship further within a controlled laboratory setting by assessing changes in 

subjective appetite parameters on the day after exercise. In the present study, at no 

point within day two did exercise affect subject ratings of hunger, fullness, 

satisfaction or prospective food consumption. These results are consistent with those 

from two previous investigations with similar study designs with either similar [54] or 

lower exercise-induced energy deficits [23]. Interestingly, in the recent study 

conducted by Heden et al [23], although no changes in appetite perceptions (hunger 
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and fullness) were detected in lean participants, prior exercise led to lower 

postprandial ratings of fullness in a group of obese individuals. This discrepancy may 

suggest that obese individuals are more sensitive to exercise-related perturbations in 

energy balance than lean individuals. Nonetheless, in the present population a 

period of negative energy balance cannot continue indefinitely and although 

reductions in energy-expending processes are expected to occur, at some point it is 

likely that a compensatory increase in appetite will manifest. The results from the 

current study suggest that this lag phase endures for more than 24 h, however 

further research is needed to determine the exact time-scale of this response. 

 

This study has some limitations which should be recognised. Firstly, although we are 

confident that participants remained inactive during the time away from the 

laboratory in-between days one and two, the lack of objective physical activity data 

prevents us from being 100% certain. Secondly, we studied a small, homogenous 

group of healthy males and this limits the ability to generalise findings to a wider 

population. Finally, we did not assess the impact of this intervention on other 

important appetite regulatory peptides such as glucagon-like-peptide-one, pancreatic 

polypeptide or oxyntomodulin. We therefore do not know how the current 

intervention impacted on this wider network of appetite regulatory signals. Future 

studies that attend to these factors will provide important scientific and translational 

insight. In particular, extending this work into obese individuals would be valuable. 

 

In conclusion, this study has shown that a large (4908 ± 523 kJ) exercise-induced 

energy deficit leads to a compensatory decrease in circulating levels of leptin on the 

day afterwards. Conversely, circulating levels of acylated ghrelin, total PYY and 
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subjective appetite perceptions do not display counter-regulatory responses within 

this time-frame. Interestingly, exercise actually led to a reduction in circulating levels 

of acylated ghrelin in the afternoon on the day following exercise. These data 

suggest that short-acting appetite-regulatory hormones do not couple strongly to 

exercise-induced energy deficits within the 24 h after exercise. Instead, exercise-

induced perturbations in energy balance of this magnitude manifest within this time-

frame as a notable reduction in circulating leptin. This physiological change shows 

that exercise-induced energy deficits are initially sensed within 24 h however the lack 

of change in subjective appetite perceptions suggests that this signal does not reach 

consciousness at this time.  
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Highlights 

 Circulating acylated ghrelin concentrations were reduced on the day 

after exercise 

 Circulating leptin concentrations were reduced on the day after 

exercise 

 Exercise did not affect circulating insulin or total PYY on the day after 

exercise 

 Appetite perceptions were unaltered on the day after exercise 


