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Abstract 11 

The reconstruction of fragmented artefacts is a tedious process that consumes many valuable 12 

work hours of scholars' time. We believe that such work can be made more efficient via new 13 

techniques in interactive virtual environments. The purpose of this research is to explore 14 

approaches to the reconstruction of cuneiform tablets in the real and virtual environment, and 15 

to address the potential barriers to virtual reconstruction of fragments. In this paper we 16 

present the results of an experiment exploring the reconstruction strategies employed by 17 

individual users working with tablet fragments in real and virtual environments. Our findings 18 

have identified physical factors that users find important to the reconstruction process and 19 

further explored the subjective usefulness of stereoscopic 3D in the reconstruction process. 20 

Our results, presented as dynamic graphs of interaction, compare the precise order of 21 

movement and rotation interactions, and the frequency of interaction achieved by successful 22 

and unsuccessful participants with some surprising insights. We present evidence that certain 23 

interaction styles and behaviours characterise success in the reconstruction process.  24 

Keywords 25 

Collaboration, 3D Visualization, Virtual Environments, Fragment Reassembly, Artefact 26 

Reconstruction, Cuneiform. 27 

1. Introduction  28 

There are a considerable number of cuneiform tablets and fragments in the collections of the 29 

world’s museums. Most of the tablets originate from Mesopotamia, the land between the 30 

rivers Tigris and Euphrates which cover modern day Iraq, parts of Syria and Turkey. The 31 

cuneiform tablets were formed of clay taken from the river banks. The cuneiform script is 32 

characterized by wedge shaped impressions on the surface of the clay tablets due to the form 33 

of the reed stylus which was used to write the texts. Cuneiform tablets vary in both width and 34 

length. A survey of tablets (Lewis & Ch'ng 2012) in the Cuneiform Digital Library Initiative 35 
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database (CDLI) showed that most tablets ranged from 20 to 60mm in size, although some 36 

tablets are larger. 37 

As would be expected from cultures at the height of their development, the cuneiform texts 38 

convey a wide range of information, including religious texts, literature, mathematics, 39 

astronomy, medicine, law, letters, royal decrees, contemporary events, educational matters, 40 

and administrative documents like inventories and orders, bills, contracts as well as 41 

certificates of authenticity from traders. The intellectual diversity of the tablet contents is 42 

matched by the variation of the tablet size and condition. This paper explores issues specific 43 

to the field of physical and virtual cuneiform reconstruction, and suggests a system capable of 44 

assisting with the reconstruction of cuneiform tablets using virtual representations of 45 

cuneiform fragments. 46 

Projects like the Cuneiform Digital Library Initiative (http://cdli.ucla.edu), the Cuneiform 47 

Digital Forensic Project (CDFP) (Woolley et al. 2002), and the BDTNS (Database of Neo-48 

Sumerian Texts - http://bdts.filol.csic.es/) have advanced the process of cataloguing 49 

cuneiform collections in the digital realm, and brought collected resources of museums and 50 

universities onto the desktop computer. This has resulted in a reduction in the time required 51 

to search cuneiform archives for text. A networked computer can search through thousands of 52 

text fragments in a fraction of a second, and draw results from multiple resources regardless 53 

of geographical location.   54 

Unfortunately, the process of cuneiform tablet reconstruction has not been affected so  55 

positively by the advancement of technology, and the processes employed to rebuild broken 56 

cuneiform tablets still rely on glue and putty. Manual joining of fragments from catalogue 57 

descriptions and pieces in individual collections are still the prevalent methods of 58 

reconstruction. This is partly because existing digital databases pay particular attention to the 59 

textual content of a fragment rather than its exact physical dimensions, which can make 60 

reuniting broken fragments very difficult for individuals without specific training or access to 61 

the original fragments. More importantly, there are limited tools available that allow for the 62 

digital capture and intuitive manipulation of scanned 3D fragments in a virtual environment.  63 

The virtual reconstruction of cuneiform fragments presents a two-fold problem. Firstly, the 64 

fragments presented on screen must be sufficiently well defined for a user to examine in 65 

detail and make decisions about placement. The shape of the individual fragments must be 66 

easy to identifty when viewed on screen in proximity to other similar fragments, and the 67 

surface of the fragments should be of a sufficient resolution to allow close examination from 68 

multiple viewpoints. Secondly, the nature of the reconstruction task requires fine 69 

manipulation of fragments, and a suitable interface for this task must be considered. As 70 

Poupyrev et al. (1997) explain, the manipulation of objects in virtual environments can be 71 

awkward and inconvenient because of the lack of tactile feedback and other interface 72 

considerations.  73 

With respect to the problems of representation and reproduction, scholars working with 74 

cuneiform texts have relied until now on manual observation and interpretation of the 75 
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physical evidence at hand. Whilst these scholars have been diligent in their task, there has 76 

always existed the possibility for error and misinterpretation. 77 

In the case of purely lithographic representations of cuneiform tablets, the chances of 78 

transcription and substitution errors have existed throughout the publishing pipeline, as was 79 

noted by the past Keeper of Egyptian and Assyrian Antiquities in the British Museum, E. A. 80 

Wallis Budge (1925). Even photographic representations cannot guarantee a robust 81 

representation of fragments, because the camera orientation, position, and lighting can all 82 

affect the clarity and apparent geometry of the object (Hameeuw and Willems 2011). The 83 

advent of high-resolution flatbed scanners and digital photography has led to the digitization 84 

of cuneiform fragments and the foundation of international online databases like the CDLI 85 

and the Database of Neo-Sumerian Texts BDTNS. Unfortunately, the principal issue of 86 

legibility when representing a 3D shape in a 2D medium remains unsolved. The problem of 87 

accurate representation has been discussed for well over 100 years, and one article in The 88 

Journal of the Photographic Society of London in 1866 gave specific reference to the 89 

difficulties of representing cuneiform text (Diamond 1864).  90 

Research has demonstrated the potential of the technology for 3D cuneiform representation 91 

(Woolley et al. 2001), and Anderson and Levoy (2002) suggested the use of 3D visualization  92 

and scanning techniques in the analysis of complete cuneiform tablets. Anderson and Levoy 93 

also provide useful technical information about minimum resolution requirements for the 94 

accurate reproduction of cuneiform tablets with legible text, and although the paper deals 95 

primarily with tablets that have already been reconstructed, the arguments in favour of 3D 96 

representation are still valid for cuneiform fragments. Cohen et al. (2004) and Hahn et al. 97 

(2007) made use of 3D scanning and visualization technology in the digital Hammurabi 98 

project, which produced high resolution textured scans of tablets, while Levoy's advocacy of 99 

3D scanning and visualization techniques continued in the 2006 paper “Fragments of the 100 

City: Stanford's Digital Forma Urbis Romae Project”. In this paper, Levoy explains how 101 

fragments of the Forma Urbis Romae (an 18 meter long map of Rome produced circa 206 102 

CE) were laser scanned and reconstructed using inscribed surface topology and fragment 103 

edges. Their paper also discusses the value of manual tagging of topographic features as a 104 

key for future reconstructions. 105 

There is evidence that 3D scanning can provide appropriate virtual representations and open 106 

the field of virtual reconstruction to the automated techniques of computer assisted 107 

reconstruction seen with skull fragments in the fields of bioarcheology, palaeoanthropology, 108 

and skeletal biology (Gunz et al. 2009; Kuzminsky & Gardiner 2012), and also with pot and 109 

plasterwork in the fields of pot and fresco reconstruction (Brown et al. 2010; Karasik et al. 110 

2008; Papaioannou et al. 2002). The wider academic community provides many examples 111 

where an increased understanding of a subject has resulted from the analysis of 3D data. The 112 

in situ analysis of engravings in archaeological sites (Güth 2012), the analysis and 113 

reconstruction of coins and coin fragments in numismatics (Zambanini et al. 2009; 114 

Zambanini et al. 2008), and the capture of graffiti on Roman pottery (Montani 2012) are 115 

representative cases. More generally, the application of techniques for the automatic 116 
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recording and illustration of artifacts (Gilboa et al. 2013) could be applied to 3D cuneiform 117 

models, and used to streamline the process of documentation while removing one potential 118 

source of recording error. More specific techniques for the reconstruction of cuneiform 119 

tablets have been made in Ch'ng et al. 2013 and  Lewis & Ch'ng 2012, which include the 120 

analysis of the complete tablet size as a template for fragment reconstruction, and the use of 121 

stigmergy as a model for interaction between users.  122 

Furthermore, it is possible that many generalized algorithms could be adapted to select or 123 

orient particular fragments for reconstruction (Kleber & Sablatnig 2009). For example, the 124 

popularity of Optical Character Recognition (OCR) software has ensured that a number of 125 

language independent methods exist for recognizing the orientation of written data (Hochberg 126 

et al. 1995; Lu & Tan 2006), and it is probable that these can be adapted to suit the cuneiform 127 

text found on the tablets. Analysis of the fractal dimension (Wong et al. 2005) of an edge 128 

might also provide a useful index for sorting potentially matching edges. 129 

The capture and visualization of fragments represents only one part of the virtual cuneiform 130 

reconstruction problem. Manipulation of fragments in virtual space is an issue that must be 131 

considered, and it is likely that initial tests with a virtual environment will give mixed results 132 

when users with variable experience engage with a 3D interface for the first time. Keehner 133 

(2006) and Vora et al. (2002) indicate that participation in virtual tasks has a positive learning 134 

effect, and dexterity will improve as interaction continues. Other issues, such as the lack of 135 

depth perception and haptic feedback are less easy to address. 3D visualization presents one 136 

possible avenue for investigation, as for example, stereo 3D has been shown to increase 137 

attention and offer a more natural interactive experience (Schild et al.2012), but caution must 138 

be exercised because increased visual fatigue and even nausea may occur after prolonged use 139 

(Yu & Lee 2012). Newer gestural interfaces like the LeapMotionTM or Microsoft KinectTM 140 

may also be considered as novel methods for interaction, but at this time they lack sufficient 141 

resolution for stable manipulation of fragments. Electromechanical polymer screens (Kim et 142 

al. 2013) and holographic haptic devices (Iwamoto et al. 2008) may in the future be able to 143 

provide tactile surface feedback to users. The detail of the matching surfaces of an artefact 144 

are usually so complex that anything less than a high resolution physical reproduction of the 145 

fragments such as those produced, for example, by the Creative Machines laboratory at 146 

Cornell University (Knapp et al. 2008) would be of limited value in the haptic sense. 147 

The advances in related fields such as fresco reconstruction and pottery reconstruction 148 

suggest that the problems caused by virtual abstraction are not insurmountable, but in order to 149 

overcome them we must first investigate the interaction issues specific to cuneiform fragment 150 

reassembly.  151 

2. Materials and Methods  152 

With the exception of Ch’ng et al. (2013) which suggests that a solution to the problems 153 

associated with cuneiform reconstruction may exist in the field of complexity science, there is 154 

currently no published research specific to cuneiform reconstruction strategy. The first goal 155 

of the research presented here was to determine some of the basic techniques employed by 156 
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participants to match together and to discard clay fragments in both the real and virtual world. 157 

To achieve this, five sets of clay tablet fragments were scanned using a NextEngine HD 3D 158 

scanner. Each set contained between 6-8 fragments which were scanned in at medium 159 

resolution (at 2.5k sample points per inch), with each model containing approximately 1.5 160 

million vertices. The resulting models were decimated to reduce the vertex count to 161 

approximately 30 thousand vertices and were then imported into a custom made virtual 3D 162 

environment (Vizard based) configured to accept mouse and keyboard input to control the 163 

position and rotation of the fragments in virtual space. The application also supported 164 

stereoscopic 3D visualization using an interlaced field pattern and polarized glasses. A 165 

computer with an AMD Phenom II x4 955 processor, 8Gb of RAM, and an Nvidia GTX 560i 166 

graphics card was used for each test. A generic 105 key QWERTY keyboard and a 3 button 167 

optical mouse with scroll wheel were connected as input devices, and an LG Cinema 3D 168 

Monitor (D2342P) was used for both 2D and 3D output. 169 

Pilot studies were carried out to determine appropriate time limits for reconstruction tasks in 170 

the virtual and physical environments during each experiment. From these pilot studies it was 171 

determined that a time limit of 12 minutes was appropriate for virtual tasks. After 172 

consideration from multiple sources (Bertaux 1981; Guest et al. 2006; Mason 2010; Martin 173 

1996; Neilsen & Landauer1996; Schmettow 2012), it was decided that as the current study 174 

represented a precursor to a larger investigation and involved both qualitative and 175 

quantitative aspects, sufficient information to determine the direction of future work could be 176 

obtained with a relatively small number of participants. In total, 15 participants performed the 177 

experiments, 8 of which were male and 7 were female. The mean age of participants was 32 178 

years, with the youngest participant being aged 24 and the oldest age was 41. Each 179 

participant was isolated for the duration of the test in the Chowen Prototyping Hall at the 180 

University of Birmingham, and presented with a series of tasks involving three methods of 181 

interaction:  182 

1.  Physical reconstruction task 183 

The participant was asked to reconstruct physical tablets from a collection or 184 

collections of fragments. Participants were informed at the beginning of each task that 185 

the collection of fragments they were presented with may be pieces from one tablet, 186 

more than one tablet, or may not fit together at all. The collections were sorted so that 187 

they contained the fragments of a complete tablet and either zero or more superfluous 188 

fragments. The purpose of this task was to provide baseline values for current 189 

reconstruction methods, and explore the effect of superfluous fragments on the 190 

manual reconstruction process. 191 

2. Virtual reconstruction task 192 

Participants were presented with the equivalent reconstruction tasks of physical 193 

participants, but were given virtual 3D fragments rather than their real-world 194 

counterparts.  195 
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3. Stereoscopic virtual reconstruction task 196 

Participants were shown virtual fragments on a 3D monitor, and asked to perform the 197 

same reconstruction tasks as described above. This test restores a sense of depth 198 

perception to the participant, but still requires manipulation of 3D objects using 199 

standard input devices. This separates the effects of the lost depth perception from the 200 

effects of remote object manipulation using a keyboard and mouse.   201 

Participants were also asked to reconstruct sets that contained either 2 superfluous fragments, 202 

or a number of superfluous fragments equal to the number of valid fragments (N) in the set. 203 

These tasks were referred to as N+2 and 2N respectively. In all cases, the time taken to 204 

complete the task and the accuracy of the completed tablet were recorded, as was the time to 205 

make the 1st and 2nd join. For virtual tasks, the physical operations (rotate, move) used to 206 

achieve the end result were recorded in a log of participant interactions during each test. At 207 

the completion of each task, the participant was asked a series of questions to elicit 208 

qualitative feedback. The environment used in the experiments was consistent, with physical 209 

surfaces coloured black to match the background colour of the screen used in the virtual 210 

tasks. Identical input and output devices were used for all virtual tasks, and instructions were 211 

provided in a script. Information about the controls for the virtual system were provided on a 212 

printed sheet next to the computer, which the participant was instructed to read before the test 213 

began. The sheet remained in place next to the computer for the duration of the experiment. 214 

3. Experimental Results  215 

All participants in the first test group were able to reconstruct the physical fragments into 216 

complete tablets well within the allotted time. The fastest join (i.e. the time to join the first 217 

two fragments together) was made within 5 seconds with the average time to the first join 218 

being 34.6 seconds. The average time between the first and second match was 33.8 seconds. 219 

The fastest participant completed the entire process within 65 seconds. No participant took 220 

more than 5 minutes and 49 seconds to reconstruct the tablet from the set of fragments that 221 

they were given.  222 

The interaction methods employed by participants fell into two broad categories: Methodical 223 

and Selective. Methodical interactions involved a “brute-force” approach to the 224 

reconstruction process, comparing fragments systematically and then retaining those pieces 225 

that join together. Selective interactions were more discriminating, involving careful 226 

observation of the fragments before choosing those that were likely to form a cogent pair. It 227 

was observed that participants favoured a particular method of interaction, and did not tend to 228 

change their method. It was also observed that the manual manipulation of fragments was 229 

very free, with multiple simultaneous operations. It was not unusual for rotation and 230 

movement operations to be carried out in both hands at the same time. The initial freedom of 231 

motion became compromised as the number of fragments being held increased, so that 232 

participants were forced to discard the collections that they were holding in order to 233 

manipulate only relevant pieces. This became problematic as the reconstructed tablets neared 234 

completion. Several participants commented that glue or tape would have been helpful during 235 
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the reconstruction process. Contrarily, the deliberate exclusion of simulated gravity from the 236 

virtual environment means that holding fragments in position is not an issue, although some 237 

participants noted that a method of grouping individual fragments into a single object would 238 

have made manipulation easier. Unfortunately, the restrictions of a virtual interface using 239 

standard equipment currently prevent the fluid ambidextrous manipulation of multiple 240 

fragments. When using a keyboard and mouse, the participant is restricted to sequential 241 

actions on a single fragment, which in turn increases the time required to manipulate 242 

fragments into the desired position. 243 

Performance in the virtual tasks was significantly lower than in the physical, with only one of 244 

the participants managing to reconstruct a complete tablet before the end of the 12 minute 245 

session. However, 11 of the 15 of participants were able to make at least one successful join, 246 

with the fastest participant taking 27 seconds to make a connection. Another participant had 247 

the shortest inter-match time (the time between a participant making the first and second 248 

join), taking just 33 seconds to find the second join.  249 

With the sequential nature of virtual manipulation (where users are restricted by the interface 250 

into performing actions on only one fragment at a time), almost 75% of the actions carried 251 

out by the participant are rotations, which typically occur before a participant moves 252 

fragments together.  253 

The participant interactions were classified so that participants who were able to make at least 254 

two matches in the virtual system were deemed to be successful, while those who made fewer 255 

than two joins were classed as unsuccessful. Successful participants typically rotated 256 

fragments less, with an average of approximately 72%, ranging between 56% and 83%` 257 

rotations. In contrast, 77% of the interactions made by unsuccessful participants were 258 

rotations, ranging between 70% and 92%  259 

Figure 3 shows the rotation and translation events for a particular participant over the course 260 

of the experiment. The numerical identifier  of the fragment being manipulated is expressed 261 

on the Y axis, with the time in seconds progressing along the X axis. The participant's actions 262 

shown in Figure 3 illustrate a heavy bias towards fragment rotation. These participants were 263 

unable to find any matches between the fragments, and ultimately stopped without making a 264 

single match. In comparison, Figure 4 shows the activity of more successful participants who 265 

made at least two joins from the provided set. These participants manoeuvred the fragments 266 

into close proximity after an initial inspection, and then continued to manipulate them until 267 

they were either matched or discarded.  268 

If a participant aligns one fragment so that the edge appears to join with another fragment, the 269 

participant will move the fragments together and attempt a close fit. Pieces that do not match 270 

will typically be moved away from the target piece and discarded. This method of virtual 271 

reconstruction is reminiscent of the selective strategy employed by some participants in the 272 

manual reconstruction experiments. It is possible that the speed reduction encountered when 273 

using the virtual interface makes a brute-force, methodical approach to the joining process 274 

too laborious for users to focus on. 275 
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In common with physical strategy, 14 of the 15 participants began their digital reconstruction 276 

tasks by manipulating one of the larger fragments in the set, with 6 participants choosing the 277 

largest available fragment regardless of its position on screen. This mirrors observational 278 

evidence from the physical tests and also the feedback from several users on their individual 279 

reconstruction strategies.  280 

The size of the first fragment chosen by the user did not directly affect the speed at which the 281 

participants made matches, although it may be useful to consider this preference for starting 282 

when designing a virtual system that can automatically suggest fragments to users. In the 283 

majority of these cases, the users will be looking for a smaller fragment than the one they 284 

currently hold. 285 

Graphing the points of interaction within the virtual space reveals that unsuccessful 286 

participants (those who made fewer than two joins in the virtual system) were more likely to 287 

pull fragments towards the camera to enlarge them, while successful participants (those who 288 

made two or more joins in the virtual system) spent more time interacting with fragments at 289 

their original location. These interaction maps in Figures 5 and 6 show a front (XY) and side 290 

(ZY) view of the virtual space, with the areas of most activity being shaded darker.  If we 291 

examine these graphs, we can see that the most noticeable clusters of activity are at depth 1 in 292 

the Z axis, which is the default starting position that fragments are placed on the screen.  293 

This activity is present for both successful and unsuccessful participants. The graph of the 294 

unsuccessful participants also shows clusters of activity at depth 0 and at -0.5 which indicates 295 

that the fragments have been moved towards the camera. The disparity between the 296 

interactions of the successful and unsuccessful participants is more pronounced when viewed 297 

in 3D. 298 

Figure 7 is a 3D representation of this spatial interaction information and shows the sparse 299 

interaction patterns of the unsuccessful participants, with isolated areas of activity towards 300 

the default fragment depth of 1 and the zero point of the graph. In contrast, the successful 301 

participants whose activities are illustrated in Figure 8 show a greater level of activity at the 302 

default fragment depth, whilst very little activity occurs in other areas of the virtual space.  303 

As would be expected, the introduction of superfluous fragments appears to increase the time 304 

that participants need to make a match, with the minimum completion time increasing as the 305 

number of spurious fragments increases. This is reflected in the results from the physical 306 

tasks as shown in Figure 9. 307 

5. Discussion 308 

Participants revealed several key features that could be used to improve the virtual 309 

reconstruction process. Recurrent attributes identified by participants include the surface 310 

markings and colour of a fragment. The smoothness of fragment surface was also identified 311 

as allowing participants to distinguish sign areas and blank surface areas from obviously 312 

broken edges. Participants commented that the size of the fragments was important, with 313 

larger fragments being used as anchor points for testing smaller fragments against. This was 314 
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also shown in the analysis of the logs of initial interaction with fragment sizes from the 315 

virtual environment. Virtually pre-sorting larger collections of fragments by these features 316 

may improve efficiency of reconstruction. This technique has seen some success in the field 317 

of fresco reconstruction, and a virtual system to suggest fragments based on these features is 318 

the next logical step.  319 

Many subjects stated that the lack of haptic (tactile) feedback was an issue during the virtual 320 

reconstruction process, and the lack of depth perception (leading to problems with object 321 

scaling) was also mentioned by multiple users. While the effect of depth perception was 322 

investigated during this study, the effect of haptic feedback and touch were less easy to test at 323 

this stage. A larger study has been planned to investigate the effectiveness of touch screen 324 

technology and explore several alternative techniques for interaction and visualization on 325 

static and mobile platforms.  326 

It was assumed that the early performance of the participants in the virtual tasks would 327 

depend in part on their previous exposure to 3D software, and those participants with 328 

previous experience of 3D modelling and GIS software would be more comfortable 329 

manipulating objects in 3D space from the beginning. This proved not to be the case, which 330 

tallies with the results of other experiments and suggests that a longer exposure to the virtual 331 

interface over a course of multiple sessions would improve the performance of participants in 332 

the reconstruction tasks. 333 

The 3D heatmaps reveal that the interactions of successful participants in perpendicular 334 

planes (i. e. in our experiments in planes parallel to the XYplane, see fig. 7) occur over a 335 

wider area than those of unsuccessful participants, while motion at different points on the Z-336 

axis is less frequent. The interactions of unsuccessful participants exhibit a greater range of 337 

motion along the Z axis, with less overall motion in planes parallel to the X-Y plane. We see 338 

from this that successful participants make more use of the available X-Y screen space, with 339 

more activity occurring in the spaces between hotspots. In contrast, the unsuccessful 340 

participants have a much less energetic profile, with more separation in the Z axis. It is 341 

possible that the effect of perspective scaling is a contributing factor in the performance of 342 

these participants, with distant fragments being misinterpreted as smaller than they actually 343 

are. 344 

Multiple participants commented that virtual reconstruction was more difficult because the 345 

depth of the fragments was indeterminate, and pieces that appeared to fit together were 346 

actually positioned at different depths, although this was not apparent on the 2D screen. 347 

While the use of binocular 3D subjectively increased the effectiveness of the virtual 348 

reconstruction environment, it produced no measurable positive effect to the reconstruction 349 

process, and had negative associations with the availability of the technology and the 350 

increased eye fatigue caused by convergence/fixed-focus. One participant was unable to work 351 

with the 3D screen despite having no binocular vision defects. Several participants claimed to 352 

feel more able to perform the task when working with stereoscopic 3D models, but ultimately 353 

performed no better than those working with normal screens. In measured terms, fewer 354 
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participants were able to make a second join when using stereoscopic 3D within the allotted 355 

time, but overall their performance was on par with participants working without stereoscopic 356 

glasses. 357 

 358 

Participants also stated that the lack of tactile feedback was a significant drawback for virtual 359 

reconstruction. While it may currently be impossible to implement accurate tactile feedback 360 

within the virtual system, it is possible that additive manufacturing techniques could be used 361 

to provide a physical copy of fragments that appear to join in the virtual system. These 362 

printed fragments could then be used to make a definitive decision on the validity of a 363 

proposed join. More extensive use of additive printing technology could also be considered 364 

so that staff with limited training can carry out multiple fitting operations concurrently. 365 

Replica parts are low value and replaceable, having no special handling requirements or 366 

storage considerations.  367 

6. Concluding Remarks 368 

In the course of our experiments, we observed several behaviours that could improve the 369 

virtual reconstruction process for cuneiform fragments. Firstly, we observed that more 370 

successful participants kept fragments close to each other in the Z axis, and as such a visual 371 

representation of Z depth within the workspace may help to help participants to perform 372 

better. However, we observed that restoring depth perception by stereographic representation 373 

does not improve participant performance. We have also observed that participants tend to 374 

begin with a larger fragment, with which they then try to match with smaller fragments. In a 375 

virtual system that automatically suggests possible matches, a bias toward suggesting smaller 376 

fragments than the one currently held may also improve the participant's performance. The 377 

absence of tactile feedback was noted by several users, and while no technology currently 378 

exists to completely restore the sense of tactility, it may be possible to provide an audio or 379 

visual feedback system that provides feedback on the closeness of fit between multiple 380 

fragments. One example of such a system might be a border around the visible fragment that 381 

becomes more opaque as the closeness of fit between the fragments increases. Other features 382 

that could improve the experience for participants working within a virtual system include the 383 

ability to glue multiple fragments together so that they can be manipulated as a single object, 384 

and the ability to magnify fragments so that close inspection of edges can be carried out 385 

quickly. The results of our experiments indicate that the manual reconstruction of fragments 386 

is faster than virtual reconstruction, but the physical world does not allow for easy parallel 387 

processing of fragment sets, nor does it permit casual accessibility. Despite the limitations of 388 

a virtual system, the potential for task parallelization and human computation makes virtual 389 

reconstruction an attractive choice for fragment joining. 390 

Crowdsourcing projects like the Galaxy Zoo (http://www.galaxyzoo.org/) which use human 391 

volunteers to classify new images of galaxies, and Cellslider 392 

(https://www.zooniverse.org/project/cellslider) which uses a similar framework to identify 393 

potentially cancerous cells, provide a platform for the classification of scientific images that 394 
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computers are currently unable to match. These projects show how crowdsourcing can be 395 

used successfully for human computation, with existing tools being able to connect potential 396 

participants with researchers for free (http://www.zooniverse.org, 397 

http://www.crowdcurio.com). Other services like Amazon's Mechanical Turk 398 

(http://www.mturk.com/mturk/) provide a framework for participants to bid and work on a 399 

variety of projects in exchange for money. The success of these projects suggests another 400 

potential method for the reconstruction of artefacts, with a virtual environment providing an 401 

interface for paid or voluntary human workers. If the ethical considerations of wages 402 

estimated in the range of US$ 1.25 per hour for Mechanical Turk (Ross et al. 2010), the lack 403 

of worker's rights (Fort et al. 2011), and potential security concerns can be avoided, the 404 

potential power of crowdsourcing is difficult to dismiss.  405 

A distributed system designed to maximize the advantages of the virtual environment whilst 406 

minimizing the inherent limitations could open up the field of cuneiform reconstruction to 407 

new audiences, and free scholars from the drudgery of manual reconstruction. It is also likely 408 

that the research behind such a system would be applicable to a number of other fields within 409 

the archaeological community. 410 
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 538 

 539 

Illustration 1: Screenshot showing virtual reconstruction task on the left, in contrast to a 
physical reconstruction task on the right. 

Figure 2: Graph showing percentage of participants unable to reach experimental milestones for each task. 

Figure 1: Graph showing the mean 1st match, 2nd match and completion time for each task. 
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 540 

 

Figure 3: Graph showing the rotation and movement actions of unsuccessful participants when using the virtual 
reconstruction system. 

Figure 4: Graph showing the rotation and movement actions of successful participants when using the virtual 
reconstruction system. 
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 541 

Figure 5: Interaction map showing the average frequency of fragment interaction in 3D space for successful 
participants. The left hand graph represents a "screen view", whilst the right hand graph shows the depth of 
fragments within the space. Crosses indicate the starting position of fragments.   

Figure 6: Interaction map showing the average frequency of fragment interaction in 3D space for unsuccessful 
participants. The left hand graph represents a "screen view", whilst the right hand graph shows the depth of 
fragments within the space. Crosses indicate the starting position of fragments. 
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 543 

 

Figure 7: Graph showing the interaction patterns of 
unsuccessful participants in the virtual space.  

 

Figure 8: Graph showing the interaction patterns of 
successful participants in the virtual space.  

Figure 9: The effect of additional fragments on reconstruction time for participants in task 1. 


