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Abstract  

The reaction of lithium amide and imide with lithium halides to form new amide halide or imide 

halide phases has led to improved hydrogen desorption and absorption properties and, for the amides, 

lithium ion conductivities. Here we investigate the effect of bromide incorporation on the ionic 

conductivity and hydrogen absorption properties of lithium nitride. For the first time we show that it is 

possible for a lithium halide nitride, the cubic bromide nitride Li6NBr3, to take up hydrogen—a 

necessary condition for potential use as a reversible solid-state hydrogen storage material. Powder X-

ray diffraction showed the formation of Li2Br(NH2) and LiBr, and Raman spectroscopy confirmed 

that only amide anions were present and that the hydrogen uptake reaction had gone to completion. 

The lithium ion conductivity of Li6NBr3 at the hydrogenation temperature was found to be less than 

that of Li3N, which may be a significant factor in the kinetics of the hydrogenation process.  

Keywords: hydrogen storage materials, lithium nitride, lithium bromide, lithium ion conductivity, 

powder X-ray diffraction, A.C. impedance spectroscopy 

1. Introduction 

The ability of many metals and alloys to absorb and store hydrogen has been known for many years 

[1], but the gravimetric hydrogen densities achieved are too low for many commercial applications. 

This has resulted in increased research into complex metal hydrides [2, 3]; however, even when these 

systems exhibit favourable thermodynamic properties for reversible hydrogen desorption, the kinetics 

of hydrogen desorption and/or absorption remain problematic. 

Thermal decomposition of lithium amide (LiNH2) produces ammonia (NH3) rather than H2, but the 

addition of lithium hydride (LiH) creates a pathway that can produce up to 10.3 wt% of hydrogen in 

two stages (Equation 1) [4, 5], though only the first stage (~6.5 wt%) has been regarded as useful for 

the reversible storage of hydrogen under practical conditions. Replacing LiNH2 with magnesium 



  

amide (Mg(NH2)2), which decomposes at a lower temperature than LiNH2, results in a lower 

temperature of H2 release [6].  

LiNH2   + 2LiH ↔ Li2NH   + H2  +  LiH ↔ Li3N   +    2H2  (1) 

More recent work has seen the incorporation of halides into LiNH2 and lithium imide (Li2NH), which 

also resulted in the release of H2 at lower temperature than LiNH2. Moreover, the resulting lithium 

imide halides required a lower temperature for hydrogen uptake compared to Li2NH [7]. Interestingly, 

the most conducting of these, with room temperature ionic conductivities approaching 10
−3

 S cm
−1

, 

were the quickest to release hydrogen on heating and to hydrogenate, and unwanted release of NH3 

was suppressed; it was suggested that improved lithium ion conductivity in the amide halide phases 

could be the reason for these improved hydrogenation properties [1]. The key role of NH3 as an 

intermediate in the reaction between LiNH2 and LiH was identified early on [8], but Borgschulte et al. 

[9] later showed that below 250°C the emission rate of NH3 is sufficiently small that reversible 

dehydrogenation via a solid-state reaction may occur [10], controlled by the diffusion of ionic species 

such as Li
+
 to or from LiH. 

In comparison, the second stage of the dehydrogenation reaction has attracted comparatively little 

attention [11–13] as the relatively large reaction enthalpy results in a high temperature of desorption 

and the kinetics of the reverse reaction are slow. As part of our programme investigating the effect of 

halides on the ionic conductivity and hydrogen storage properties of lithium nitride (Li3N), in this 

work we report results for the lithium bromide nitride phase Li6NBr3. 

Li6NBr3 was first synthesized by Sattlegger and Hahn [14] in 1971, who reported an fcc structure with 

Li atoms being ordered in octahedra around the N atoms. This material was examined as a potential 

lithium ion conductor by Hartwig et al. [15]. Over 25 years after the original structural 

characterization by Sattlegger, Marx and Ibberson [16] used powder neutron diffraction to determine 

the Li distribution more accurately, but were unable to distinguish between two different possibilities: 

the first where the Li are disordered over distorted tetrahedral, and the second where they are 

disordered around the N atom in an octahedral configuration. Marx [17] , and Marx and Ibberson [16], 



  

also studied phase changes that occurred at elevated and cryogenic temperatures. Here we report for 

the first time the hydrogenation of a lithium nitride halide and compare its hydrogen uptake properties 

to those of Li3N. 

2. Experimental  

Lithium bromide nitride (Li6NBr3) was synthesized through direct solid state reaction of 

stoichiometric amounts of Li3N (Sigma–Aldrich, 99.5% purity) and LiBr (Sigma–Aldrich, 99.999% 

purity), which were ground together in an agate pestle and mortar to achieve a homogeneous mixture. 

The ground powder was then transferred into a quartz tube lined with a metal (vanadium or nickel) 

sleeve. These manipulations were performed in an argon-filled glovebox to avoid contact with the 

atmosphere. The tube was evacuated under high vacuum, and sealed using an oxygen gas torch. The 

sealed tube was then heated at 430°C for 24 h followed by cooling down to ambient temperature, with 

heating and cooling rates of 50°C/h. Hydrogenations were performed for 24 hours in a high pressure 

hydrogenator under 90 bar H2 at temperatures between 150–250°C. As a comparison Li3N was 

hydrogenated under similar conditions.  

For phase characterization, all powders were reground and packed into polyimide capillary tubes, 

which were sealed with an airtight adhesive. Powder X-ray diffraction (XRD) data were collected in 

the 2θ range 10–90° in capillary transmission geometry on a Siemens D5000 diffractometer with a 

CuKα1 radiation source and position sensitive detector. The data were analysed using the TOPAS 

refinement suite [18].  

For A.C. impedance spectroscopy measurements, Li6NBr3 powder was pressed into pellets under a 

load of 1 ton.  The pressed pellets were sintered at 400°C for 3 h in evacuated quartz tubes, and the 

sintered pellets were then coated with silver to ensure good electrical contact at the surfaces and silver 

foil electrodes affixed. Typical sintered pellets were 6.9 mm in diameter, 1.0 mm thick with density 

~83% of theoretical. A.C. impedance measurements were carried out under an argon atmosphere on a 

N4L PSM1735 phase-sensitive multimeter with impedance analysis interface. Equivalent circuits 

were used to calculate the resistance from the Nyquist plots. The impedance data showed a single 



  

semicircle at the lowest temperature, with an additional spike seen at higher temperatures associated 

with the electrode response. For the semicircle, a single parallel circuit of RǀǀCPE was used as a 

model, indicating that it was not possible to resolve bulk and grain boundary components, and so the 

conductivities reported represent total conductivities. 

Raman spectra were collected on a Renishaw inVia Raman microscope operating with a 633nm 

excitation laser. Samples were sealed inside airtight containers under an argon atmosphere. 

3. Results and discussion  

3.1 Synthesis of Li6NBr3 

Li6NBr3 was synthesized as described above. A limited Rietveld refinement, where only unit cell 

parameters were refined, was carried out against powder XRD data obtained from the product using 

the structural model reported by Marx and Ibberson [16] (space group      ); experimental, 

calculated and difference profiles are shown in Figure 1. The lattice parameter refined to a = 

8.9334(1) Å, comparable to that previously reported of a = 8.93896(4) Å. 

3.2 Hydrogenation of Li6NBr3 and Li3N 

Hydrogenation of Li6NBr3 was attempted for 24 hours at temperatures between 150–250°C under 90 

bar H2. It was found that no hydrogenation occurred at temperatures lower than 250°C. At 250°C, the 

compound was found to hydrogenate to give Li2NH2Br and LiBr. It is expected that LiH was also 

produced in the hydrogenation reaction (see Equation 2), but this compound is often difficult to 

observe in powder XRD patterns owing to the low scattering factors of Li and H. Rietveld refinement 

of the unit cell parameters using the structural model of Li2NH2Br as reported by Barlage and Jacobs 

[19] (space group Pnma), and the rock salt structure for LiBr, resulted in values of a = 12.4882(4) Å, 

b = 8.0090(2) Å, c = 6.3710(2) Å, which are comparable to those previously reported [19] for 

Li2NH2Br, a = 12.484(2) Å, b = 7.959(1) Å, c = 6.385(1) Å. Experimental, calculated and difference 

profiles are shown in Figure 2a.  

Li6NBr3 + 2H2 → Li2NH2Br + 2LiBr + 2LiH     (2) 



  

As it is possible that not all the products of hydrogenation were crystalline, Raman spectroscopy was 

used to examine if the hydrogenation reaction was complete. The Raman spectrum of the 

hydrogenated products (Figure 2b) shows at least three peaks at ~3220, 3245 and 3280 cm
−1

. All of 

these are higher in frequency than imide stretching vibrations we have observed in lithium imide and 

a range of lithium imide halides (<2200 cm
−1

) and are consistent with NH2
−
 stretching modes and the 

observation of the amide Li2NH2Br as the main hydrogenation product in the powder XRD pattern. 

The broadness of the peaks observed between 3200–3250 cm
−1

 may be indicative of some disorder 

within the Li2NH2Br structure or possibly the presence of a secondary amorphous phase.  

As a comparison Li3N was hydrogenated under the same conditions; it was found that the nitride 

hydrogenated at lower temperature (150°C) than Li6NBr3.  

3.3 A.C. impedance spectroscopy 

The conductivity of Li6NBr3 was measured from 65–310°C. The Nyquist plot showed a single 

semicircle at high frequency (Figure 3a) assigned to total conductivity. The conductivity was 

calculated to be σ(65°C) = 1.86 × 10
−7 

S cm
−1

, which is comparable to previous reports [15]. A 

temperature-dependent plot of the conductivity of Li6NBr3 is shown in Figure 3b; the activation 

energy was calculated from the line of best fit for data below 197°C to be 0.69(2) eV.  Li3N ionic 

conductivity was also measured as a comparison: at 250°C it was found to be σ(250°C) = 2.0 × 10
−2  

S 

cm
−1

,
 
which is more than 10 times higher than Li6NBr3 (σ(250°C) ≈ 10

−3
 S cm

−1
). 

It is interesting that Li6NBr3 was harder to hydrogenate under the conditions of our experiments than 

Li3N. Thermodynamic data are not yet available for the bromide-containing phases, so a 

thermodynamic explanation for this cannot be discounted, but as the hydrogenated product is 

thermodynamically favoured at low temperatures in reversible systems, hydrogenation is in practice 

often kinetically limited. Hydrogen adsorption by Li3N is strongly exothermic, so the observation that 

the absorption is thermally activated can only be explained by slow kinetics. It follows that these 

observations are consistent with the lower ionic conductivity of Li6NBr3 and the proposal that this is 

an important parameter in the kinetics of rehydrogenation [7, 9, 10].  



  

The Li3N structure consists of planar hexagonal layers of lithium cations each centred by a nitride 

anion. Each Li6N hexagon is capped above and below the ab plane by further Li
+
 ions to form a linear 

Li2N coordination [20]. The structure of Li6NBr3 can be understood as a ccp arrangement of the Br
−
 

ions at the 4a site, with the N
3−

 ions at 4b filling all of the octahedral holes and further Br
−
 ions at 8c 

filling all the tetrahedral holes, which clearly limits the amount of available space in the structure. Six 

lithium ions are located around N
3−

 to form an octahedron. For bulk lithium transport Li cations have 

to move from one nitride ion to a neighbouring one and must pass through a coordination 

environment, in which it would be coordinated to 4 Br
−
 ions only. This is likely to increase the energy 

of diffusion, thus explaining why the conductivity is lower in the Li6NBr3 system compared to Li3N. A 

comparison of the structures of Li6NBr3, indicating the proposed diffusion pathway, and Li3N is given 

in Figure 4. 

4. Conclusion 

Li6NBr3 was successfully synthesized through direct solid state reaction of Li3N and LiBr. Powder 

XRD showed a diffraction pattern that matched previous reports with comparable lattice parameter 

and space group      . 

Powder XRD studies showed that Li6NBr3 can be hydrogenated at 250°C under 90 bar H2 to give 

Li2Br(NH2) and LiBr; Raman spectroscopy confirmed that only amide anions were present and that 

the hydrogenation had gone to completion. Under similar conditions it was found that hydrogenation 

of Li3N occurred at significantly lower temperature than that of Li6NBr3. This observation is 

consistent with the lower ionic conductivity of Li6NBr3, as determined by A.C. impedance 

spectroscopy, and the proposal that this is an important parameter in the kinetics of rehydrogenation. 
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Figure List 

Figure 1. Observed, calculated and difference Rietveld powder XRD profiles for Li6NBr3. 

Figure 2. a) Observed, calculated and difference Rietveld powder XRD profiles for hydrogenated 

Li6NBr3 at 250°C under 90 bar H2 (upper tick marks LiBr, lower tick marks Li2BrNH2) ; b) Raman 

spectrum of hydrogenated Li6NBr3. 

Figure 3. a) Experimental (circles) and calculated (dashed line) Nyquist plot for Li6NBr3 at 197°C; b) 

Arrhenius plot for Li6NBr3 from 65–310°C. 

Figure 4. Structures of a) Li3NBr3, with proposed pathway for lithium ion diffusion indicated by an 

arrow, and b) Li3N. 
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Highlights 

 Li6NBr3 was synthesized via solid state methods and hydrogenation attempted. 

 Hydrogenation of a lithium nitride halide was demonstrated for the first time. 

 Powder XRD and Raman spectroscopy showed that hydrogenation had gone to 

completion. 

 The ionic conductivities of Li6NBr3 and Li3N were compared through A. C. 

impedance spectroscopy. 

 The lower conductivity of Li6NBr3 is consistent with its higher hydrogenation 

temperature. 

 


