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Abstract 

Background. Investigation of aberrant large-scale brain networks offers novel insight 

into the role these networks play in diverse psychiatric disorders, such as 

schizophrenia. While there are studies reporting altered functional brain connectivity 

in participants at ultra-high risk (UHR) for psychosis, it is unclear whether these 

alterations extend to structural brain networks. 

Methods. Whole-brain structural covariance patterns of 133 participants at UHR for 

psychosis (51 of whom subsequently developed psychosis) and 65 healthy controls 

(HC) were studied. Following data pre-processing (using VBM8), the mean signal in 

seed regions relating to specific networks (visual, auditory, motor, speech, semantic, 

executive, salience and default-mode) were extracted and voxel-wise analyses of 

covariance were conducted to compare the association between whole brain signal 

and each seed region for UHR and HC individuals. UHR participants who transitioned 

were compared to those who did not.  

Results. Significantly reduced structural covariance was observed in the UHR 

sample compared to HC for the default-mode network, and increased covariance for 

the motor and executive control networks. When those who transitioned to psychosis 

were compared with those who did not, aberrant structural covariance was observed 

in the salience, executive-control, auditory and motor networks.  
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Conclusions. Whole-brain structural covariance analyses revealed subtle changes 

of connectivity of the default-mode, executive control, salience, motor and auditory 

networks in UHR individuals for psychosis. Although we found significant differences, 

these are small changes, and tend to reflect largely intact structural networks. 

 

 

Schizophrenia is associated with substantial brain changes, most prominently in 

frontal and temporal areas [1]. The period preceding the onset of schizophrenia and 

other psychotic disorders is characterised by non-specific symptoms such as anxiety 

and depressed mood, attenuated psychotic symptoms (e.g. delusions or 

hallucinations) and a decline in social and role functioning. To detect young people in 

the prodromal phase of psychotic illness, these characteristics have been 

operationalized and are known as the at-risk mental state (or ultra-high or clinical 

high risk for psychosis) [2]. According to a recent meta-analysis, rates of transition to 

frank psychosis in individuals presenting with these features are estimated to be 

approximately 22% over twelve months, increasing to 29% after two years and 36% 

after three years [3]. Neurobiological abnormalities in such individuals appear to be 

qualitatively similar but less severe than in schizophrenia [4]. This relative sparing in 

individuals at ultra-high risk (UHR) for psychosis highlights the importance of early 

intervention [5] to reduce the risk of pronounced and possibly non-reversible 

structural brain alterations associated with progression to a first episode of psychosis 

[6]. 
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Previous work has concentrated on neurobiological correlates and predictors of 

psychotic illness with a region-of-interest (ROI) perspective [7, 8] or voxel-based 

morphometry (VBM) [9] – that is, investigation has focused on how gray matter 

volume alterations may be associated with schizophrenia or predict its onset in high 

risk samples. Such ROI studies have identified smaller frontal [10], insular [11], 

parahippocampal [10, 12] and superior temporal gyri [13] volumes, characterising the 

UHR individuals and/or predating the onset of psychosis, which has generally been 

replicated by VBM studies [9]. Such changes, which are also associated with 

schizophrenia, are assumed to be distributed, involving inter-connected brain 

networks rather than focal regions [14]. An alternative approach is therefore to 

presume that it is dysfunction at the network level that is associated with the disorder. 

Large-scale brain networks offer a striking paradigm to look at the cognitive and 

affective dysfunction in psychiatric disorders. Network abnormalities may develop 

before the onset of frank psychotic illness: it has, for example, been found that UHR 

individuals with higher levels of symptoms demonstrate a significantly decreased 

contribution of the anterior cingulate cortex (ACC) to task-relevant network 

organisation compared to less symptomatic participants and healthy controls (HC) 

[15].  

 

The large-scale networks of most interest in schizophrenia are the so-called 

“salience” (SN), “default-mode” (DMN) and “executive control” networks (ECN). The 

SN is anchored in the dorsal anterior cingulate and fronto-insular cortices; the DMN 

consists of the posterior cingulate (PCC) and medial prefrontal cortices (mPFC), 



Heinze et al  

 

5 

 

medial temporal lobe, and angular gyrus; and the ECN is a fronto-parietal system 

anchored in the parietal and dorsolateral prefrontal cortices (dlPFC) [16].  

 

The SN detects the most salient internal and environmental stimuli and switches 

between other large-scale networks, such as the DMN and ECN, in order to guide 

behavior, e.g. to enable access to attention and working memory resources when 

needed [17]. The observation of insular activation during hallucinations suggests that 

the SN is creating heightened salience during otherwise normal activity, which 

supports the notion of an insular dysfunction model of psychosis [18]. Furthermore, 

we have shown that there are progressively declining insular volumes in UHR 

patients who subsequently transitioned to psychosis, when compared to those who 

did not transition and HC [11]. This misattribution of salience to internally generated 

mental events, such as hallucinations, would in turn be expected to promote 

activation of the DMN [17] and lead to an impaired suppression of DMN activity 

during task performance [19, 20]. Individuals with a familial risk for psychosis have 

been assessed in functional magnetic resonance imaging (fMRI) studies and found to 

show altered resting-state connectivity within the DMN between the PCC, precuneus 

and prefrontal areas [21-23]. This finding was further supported by a failure to 

properly modulate the ventromedial prefrontal cortex (vmPFC) and precuneus during 

self-referential processes in individuals with a family history as compared to controls 

[21]. This notion is consistent with the model of basic self-disturbance in 

schizophrenia and may be associated with observed source monitoring deficits [24, 

25]. Resting-state fMRI studies have further shown that the typically observed anti-

correlated relationship between the SN and DMN, specifically between the medial 
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prefrontal and dlPFC, and the right insula and PCC, was absent in UHR subjects 

[26], and that UHR subjects show reduced resting-state connectivity between diverse 

frontal and subcortical regions [27]. 

 

Another way to investigate brain connectivity is by means of structural covariance 

analyses, a method that considers the correlation of gray matter volume between 

different areas of the brain. These analyses have shown that gray matter volume of 

one brain area is a good predictor of the volume of the respective contralateral area 

[28]. A substantial, but not complete, overlap between structural covariance and the 

blood oxygen level-dependent signal fluctuations (as measured by fMRI) and white 

matter connections (measured by diffusion tensor imaging, DTI) has been detected 

[29]. As differences in the structure of one brain region often co-vary with differences 

in other brain areas [29], studying structural covariance gives additional insight into 

brain structure and composition. Considering a mental disorder such as 

schizophrenia, which is hypothesized to involve dis-connectivity of frontal brain 

structures [30], structural covariance analyses (SCAs) are informative on the whole-

brain level in terms of inter-connections between diverse brain areas. SCAs in 

individuals with schizophrenia with severe auditory hallucinations showed positive 

correlations between gray matter volume and hallucination severity in the left inferior 

frontal gyrus (IFG) and patterns of structural covariance between the left IFG and left 

middle temporal gyrus, right IFG, right hippocampus and insula bilaterally [31]. A 

recent study discovered different patterns of structural covariance in first-episode, 

drug-naïve schizophrenia patients as compared to HC, involving the amygdala, insula 

and postcentral gyrus [14]. 
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The aim of this study was to investigate whole-brain structural covariance patterns of 

eight large-scale networks in young people identified as UHR for psychosis. Our 

approach was based on that of Zielinski and colleagues [32], specifically investigating 

the DMN, SN, and ECN, which were shown to play a pivotal role in the development 

of psychotic disorders. Furthermore, disturbances of the visual and auditory network 

might potentially be associated with visual and auditory hallucinations, and the 

speech network be implicated in disorganised speech [33], which is supported by 

reduced brain activation of frontal areas and the insula during a word generation task 

in schizophrenia patients [34]. Poor motors skills and a delayed motor development 

were observed in high-risk individuals [35]. These observations might lead to the 

presumption of altered structural covariance in the semantic and motor network. 

Considering the novelty of this approach, dissimilarities with the nature of other 

imaging modalities described so far, and often inconsistent findings, no strong 

directional hypotheses can be inferred. However, taking into account the important 

role of the insula in psychotic disorders and high-risk individuals, increased 

covariance of the salience network, and in turn altered covariance of the DMN and 

ECN, in UHR as compared to HC, and those UHR individuals who transition to 

psychosis as compared to those who do not, is hypothesized. Exploratory analyses 

for the other five networks are conducted as well.  
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Methods and Materials 

Participants 

UHR for psychosis participants (n=133) were recruited through the Personal 

Assessment and Crisis Evaluation (PACE) Clinic, Orygen Youth Health, Melbourne, 

Australia [36]. UHR criteria were defined using the Comprehensive Assessment of 

At-Risk Mental States (CAARMS) [37]. These are 1) Attenuated Psychotic 

Symptoms, 2) Brief Limited Intermittent Psychotic Symptoms, and/or 3) trait 

vulnerability.  

 

For the Attenuated Psychotic Symptoms criterion (“APS”) (1), symptoms must be 

present for at least once a week, with a frequency of at least several times per week 

(n=94). The Brief Limited Intermittent Psychotic Symptoms (‘‘BLIPS’’; 2) criterion 

refers to psychotic symptoms at the severity and frequency of frank psychosis but 

which spontaneously resolve within 7 days (n=30). Trait vulnerability (3) refers to 

young people with a first degree relative with psychotic illness, or schizotypal 

personality disorder in the individual, accompanied by a substantial deterioration in 

functioning, maintained for at least a month within the past year, or by chronic low 

functioning (n=49) [37]. 58 individuals displayed APS, 15 BLIPS, 23 trait vulnerability, 

11 APS and BLIPS, 22 APS and trait vulnerability, 1 BLIPS and trait vulnerability, and 

3 individuals belonged to all three groups. 

 

HC individuals (n=65) were recruited from similar socio-demographic regions to UHR 

participants via auxiliary hospital staff and advertisements. They had no personal 
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history of mental illness or a first-degree relative with a history of psychotic disorder 

(assessed using the SCID-I screen for DSM-IV [33] and personal report). All 

participants were aged between 13 and 30 at the time of scan, and had experienced 

no previous psychotic episodes or treatment with neuroleptics. 

 

Exclusion criteria for both groups were IQ<70 and a history of neurological disorder, 

seizures, or significant head injury, thyroid dysfunction, or corticosteroid use, and any 

contraindications for MRI. Participants had normal or corrected-to-normal vision and 

hearing and spoke English as their preferred language. All participants gave written 

informed consent and this study was approved by the local research and ethics 

committee. 

 

Outcomes 

UHR individuals were followed up in the medium to long-term by means of 

operationalized criteria for psychosis onset [38] over a 6 to 13 year period (Mediantime 

to follow-up: 10.6, range: 6.5-12.8 years) [39]. Transition to psychosis was defined as 

at least one fully positive symptom several times a week for more than one week. 

Transition was assessed using a combination of the Comprehensive Assessment of 

Symptoms and History (CASH; [40]) and the Brief Psychiatric Rating Scale (BPRS; 

[41]) for 15 participants in 1995 who were seen at PACE before the CAARMS was 

developed. From 1996 to 2001, psychosis status was determined using the CAARMS 

(n=118) [38, 39]. Over the follow-up period, 51 UHR participants (38.4%) transitioned 

to psychosis (UHR-P) whereas 82 did not (UHR-NP). The BPRS as well as other 

scales such as the Scale for the Assessment of Negative Symptoms (SANS) [42] 
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were administered to all participants at their baseline assessment at identification as 

UHR. 

Data acquisition and pre-processing 

Structural scans were acquired at baseline using a 1.5T MRI scanner (GE Signa; 

General Electric Medical Systems, Milwaukee, Wisconsin).  A 3-dimensional 

volumetric spoiled gradient–recalled echo in the steady state sequence generated 

124 contiguous 1.5-mm coronal sections. Imaging parameters were as follows: echo 

time, 3.3 milliseconds; repetition time, 14.3 milliseconds; flip angle, 30°; matrix size, 

256x256; field of view, 24x24-cm matrix; and voxel dimensions, 0.9375x0.9375x1.5 

mm. Head movement was minimized by using foam padding and Velcro straps 

across the forehead and chin. The images were calibrated fortnightly with the same 

proprietary phantom to ensure the stability and accuracy of measurements. 

T1-weighted images were manually reoriented and centered on the anterior 

commissure and normalised into standard space and segmented into gray matter, 

white matter and cerebro-spinal fluid using a VBM8-toolbox (http://dbm.neuro.uni-

jena.de/spm) in SPM8 (SPM8, Friston, The Welcome Department of Cognitive 

Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm). The VBM8 toolbox used a 

unified segmentation approach that integrates tissue classification, image registration 

and inhomogenous bias correction [43]. The resulting segments were then smoothed 

using a 8-mm full-width at half-maximum Gaussian kernel, to improve spatial 

resolution of the analyses. To study network structural covariance, gray matter 

intensities were derived using 4-mm-radius spherical seed ROI chosen in accordance 

with Zielinski at al. [32] and defined with a MarsBar toolbox 
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(http://marsbar.sourceforge.net) in SPM8 [44]. Seed regions were bilaterally defined 

in the visual (primary visual cortex, calcarine sulcus, (-) 9 -81 7), auditory (primary 

auditory cortex, Heschl’s gyrus, (-) 46 -18 10), sensorimotor (primary motor cortex, 

precentral gyrus, (-) 28 -16 66), speech (inferior frontal gyrus, pars opercularis, (-) 50 

18 7), semantic (temporal pole, (-) 38 10 -28), salience (frontoinsular cortex, (-) 38 26 

-10), executive control (dorsolateral prefrontal cortex, (-) 44 36 20), and default-mode 

(angular gyrus, (-) 46 -59 23) networks [45-48] (see Table S1). In order to establish 

whether the choice of seed selection mattered, we additionally included respectively 

two further seeds from the three networks that we were particularly interested in (SN, 

pre- and supragenual ACC (0 40 16/ (-) 4 28 24); ECN, inferior parietal lobule ((-) 38 -

53 45/ (-) 54 -50 50); DMN, PCC ((-) 2 -50 36) and mPFC ((-) 2 58 -8). 

Initially, we determined whole-brain patterns of seed-based structural covariance in 

both hemispheres in each group separately and used Threshold-Free Cluster 

Enhancement (TFCE). Without being reliant upon hard threshold-based clustering, 

this method optimizes areas of signal that show spatial contiguity. An algorithm runs 

though the image, with the aim to better distinguish between signal and noise [49]. 

After employing the TFCE inference algorithm, the statistical threshold for the 

resulting correlation maps was set to p<0.01, corrected for multiple comparisons 

using family-wise error (FWE)-correction to allow for qualitative comparisons. 

Analyses of covariance (ANCOVAs) were performed for each seed region in both 

hemispheres and after using TFCE considered significant at p<0.05 FWE-corrected. 

Mean gray matter volume of the seed region, and global gray matter, as well as age 

(since UHR and HC group differed significantly in terms of mean age) were included 

as covariates. Considering the relevance of auditory hallucinations in Modinos’ et al. 
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study [31] for SCAs, we included hallucinations and positive symptoms as covariates 

in the analyses comparing UHR-P and UHR-NP for the auditory and visual network.  

 

Results 

Demographics 

UHR participants and HC differed significantly in their mean age with HC (Mage± SD: 

22.1±3.9 years, range 13.9-29.1) being older than UHR participants (Mage± SD: 

20.2±3.6 years, range 16.2-30.3; t(196)=-3.38, p=0.001, see Table S2), whereas 

there was no significant difference in mean age between UHR-P compared to UHR-

NP (p=0.159, see Table 1). Both comparisons did not reveal any differences in 

gender distribution (UHR: 77 males/ 56 females, HC: 40 males/ 25 females, p=0.624; 

UHR-P: 29 males / 22 females, UHR-NP: 48 males/ 34 females, p=0.849). Median 

time to transition for the UHR-P group was 230 days (range 6-3537 days). Positive 

psychotic symptoms, indexed on the BPRS-psychotic subscale [41] (p=0.554), and 

negative psychotic symptoms, assessed with the SANS [42] (p=0.058), did not differ 

between the groups. There were no significant differences between UHR-P and 

UHR-NP on CAARMS subscales (Disorders of Thought Content, Perceptual 

Abnormalities, Conceptual Disorganisation) (see Table 1). 

 

Whole-brain patterns of structural covariance in UHR and HC participants 

As anticipated based on past studies, seed-based statistical parametric structural 

covariance mapping of the DMN, SN, ECN, visual, auditory, motor, speech and 
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semantic network both for UHR and HC participants mirrored canonical intrinsic 

connectivity [46] and structural covariance [32] networks (see Figure 1).  

 

ANCOVAs comparing UHR and HC participants 

ANCOVAs, with mean seed gray matter intensity, age and global gray matter volume 

of each seed region as covariates, revealed reduced structural covariance in the 

DMN between the right angular gyrus and the right posterior cingulate (k=1419, 6 -45 

21) and left orbitofrontal cortex (k=1224, -26 32 -5) for UHR participants compared to 

HC (see Figure S1), and increased structural covariance in the motor network 

between the left precentral gyrus and left subcallosal cortex (k=1153, -3 16 -11) and 

paracingulate gyrus (k=1090, -2 44 -6) (see Figure S3) and for the additional seed 

analysis in the ECN between the right inferior parietal lobule and the paracingulate 

gyrus (k=1537, -9 41 28 & k=1214, -10 34 4) (see Figure 2/S2 & Table S3).  

 

ANCOVAs comparing UHR-P with UHR-NP and HC 

ANCOVAs, with mean seed gray matter intensity, age and global gray matter volume 

of each seed region as covariates, revealed increased structural covariance in the 

SN between the left fronto-insular cortex and the right occipital pole and right superior  

parietal lobule (2 -96 -17, k=1422 & 4 -76 34, k=1371) (see Figure S4), auditory 

network between the seed region in the right hemisphere with the left Heschl’s gyrus 

(-26 – 25 12, k=1890) and right ACC (6 45 15, k=1539) (see Figure S6), and motor 

network between the left precentral gyrus and left superior and inferior and right 
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middle temporal gyrus (-12 30 39, k=1777; -44 38 6, k=1412 & 30 33 28, k=1609) 

(see Figure S7), and decreased structural covariance in the ECN between the right 

dlPFC and right precentral gyrus (54 -1 42, k=1656) (see Figure S5) for UHR 

participants who transitioned compared to those who did not (see Figure 2). 

Increased structural covariance was observed when comparing UHR-P with HC 

individuals only in the auditory network between the right Heschl’s gyrus and the 

superior and inferior frontal gyrus (-12 26 46, k=2146 & -42 35 10, k=1519). 

 

Influence of positive symptoms 

In order to account for the potential influence of positive symptoms and specifically 

hallucinations, additional ANCOVAs were performed for both the visual and auditory 

network with BPRS positive symptom and hallucination subscale as a fourth 

covariate, respectively, for the UHR-P vs UHR-NP comparison. The two clusters 

previously detected within the auditory network were replicated, and an additional 

cluster in the medial prefrontal cortex emerged with positive symptoms subscale 

score (see Table S3).  

 

Discussion 

This study characterised whole-brain structural covariance patterns of eight large-

scale networks in a sample of participants at clinical high risk for psychosis compared 

to healthy individuals. Seed-based statistical parametric structural covariance 

mapping for the DMN, SN, ECN, visual, auditory, motor, speech and semantic 

networks both for UHR and HC participants revealed structural covariance between 
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brain areas that represent large-scale functional networks [32]. Reduced structural 

covariance was observed in the UHR sample compared to HC for the DMN, and 

increased covariance in the motor network and ECN. Those who transitioned to 

psychosis showed increased structural covariance within the SN, auditory and motor 

network, and decreased covariance within the ECN compared to those who did not.  

One of the most replicated neuroimaging findings in schizophrenia, that of frontal 

volumetric abnormalities (found in both schizophrenia patients [1] and UHR 

participants [4, 10]), was reflected in abnormalities of structural covariance between 

the precentral and subcallosal cortex and paracingulate gyrus within the motor 

network, and between the inferior parietal lobule and frontal areas such as the 

paracingulate gyrus in the ECN in terms of increased connectivity in UHR individuals, 

and decreased connectivity with the orbitofrontal cortex within the DMN. These 

frontal abnormalities were further confirmed when comparing UHR-P and UHR-NP 

individuals in the ECN between the dlPFC and precentral gyrus and in the motor 

network between the precentral gyrus and frontal gyri.  

 

Insula alterations [11] were present on the network level in the SN between the 

fronto-insular cortex and occipital and parietal areas, with an increased connectivity 

within the SN for those who transitioned to psychosis compared to those who did not, 

confirming an involvement of the SN [18]. The subtle alterations of the SN that we 

detected, were however, not present when comparing UHR individuals with HC, 

suggesting that changes may not generally be responsible for producing 

subthreshold symptoms, but that they may play a role in distinguishing between 

those who are going to make a transition and those who are not.  
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Our findings of altered structural covariance in the DMN - specifically between 

angular gyrus and PCC and orbitofrontal cortex - are in line with altered functional 

connectivity in DMN areas in individuals with high genetic loading [21, 22]. Taken 

together with our findings, this indicates that DMN alterations are associated with risk 

for psychosis generally rather than being predictive of transition.  

 

One possible explanation for the subtle hyper-connectivity in the auditory network in 

those individuals who transitioned to psychosis in our UHR sample is the presence of 

auditory hallucinations. Strikingly, no such hyper-connectivity was discovered when 

comparing the entire UHR group with HC, however, hyper-connectivity was amplified 

when comparing those who transitioned with HC. This group difference vanished for 

the SN and ECN, and motor network when comparing UHR-P with HC, instead of 

UHR-NP. An alternative explanation against the implicit assumption that brain 

abnormalities of UHR-NP are located intermediate between UHR-P and HC is the 

notion that even though UHR-NP individuals display similar symptomatic and/or trait 

features to UHR individuals who eventually become psychotic, the former hold a 

certain resilience against transition, and may therefore be distinct to UHR-P 

individuals. This is supported by the finding of thinning in UHR-P and thickening in 

UHR-NP of the ACC relative to HC [50].   

 

Because we were primarily interested in three networks associated with psychotic 

disorders (DMN, SN & ECN), we selected additional seeds to confirm our original 
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analyses. However, alterations of the DMN could not be replicated with the additional 

seeds, and one additional seed for the ECN produced a significant difference 

between UHR individuals and HC that was not shown with the original seed. 

Although we hypothesized alterations within this network, this underlines the 

importance of caution in interpreting multiple comparisons. Whereas subtle changes 

in brain connectivity in these networks are plausible in this cohort, it might be that 

these findings become non-significant once corrected for multiple comparisons in a 

multivariate seed analysis. These findings will therefore need to be replicated in other 

datasets. 

 

There were several limitations to this study. Because of our intention to characterize 

multiple large-scale networks, we applied individually stringent thresholds to both 

within- and between-group analyses. While we considered this appropriate and 

similar to other studies of structural covariance networks, replication of our findings 

will be important, especially with regard to the aforementioned issue of multiple 

comparisons at the network level. The alterations observed, albeit discrete, appear to 

be robust findings, as we controlled for the effect of global gray matter volume, and 

age as nuisance factors. This last variable could have a significant impact, since 

brain anatomy experiences extensive changes during adolescence, e.g. decreases in 

gray matter volume or synaptic pruning [29] – however it seems unlikely that the 

detected group differences are accounted for by age.  
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Similar to other recent studies, we have interpreted structural covariance findings in 

accordance with other measures of structural and functional brain connectivity.  

Although the observed correspondence among these measures is highly 

anatomically plausible, multimodal imaging assessments that combine structural and 

functional MRI and DTI will be increasingly relevant in order to advance this line of 

enquiry [51]. Another limitation is the cross-sectional design of our study. We were 

able to determine transition to psychosis status with some confidence, because we 

followed our sample for an extended period of 13 years. However, future research 

should focus on longitudinal outcome evaluation by relating network level structural 

covariance to each other over time, in order to see if symptom progression and actual 

transition to psychosis directly relate to further and/or more pronounced network 

alterations. Lastly, images were acquired using a 1.5 T MRI scanner, as opposed to 

3T, or developments of even higher field strengths, which have been used in more 

recent research studies. As a result, spatial resolution of the structural data reported 

may be compromised; however, the scans of this study were collected almost two 

decades ago, which allowed for the extended follow-up period. 

 

In conclusion, our findings indicate that network levels of structural covariance are 

predominantly intact in individuals at ultra-high risk for psychosis. Observed subtle 

temporal, frontal and parietal alterations are consistent with previous structural and 

functional connectivity findings in UHR participants and the notion that individuals at 

clinical risk for psychosis exhibit qualitatively similar but less severe changes than 

those that have been observed in frank psychosis. Future studies should involve 
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longitudinal, multimodal imaging assessments to specify structural covariance 

predictors for transition to psychosis and how these may relate to findings of other 

brain connectivity techniques. 
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Table 1 

Demographic information, time to transition and self-report scores at baseline 
according to transition status 

 Transition (n=51)  Non-Transition 

(n=82) 

Test statistic p-value 

Mean age ± SD (in years) 

Range  

19.6±3.6 

13.9-29.1 

20.5±3.6 

14.3-28.6 

t(131)=-1.416 0.159 

Gender (m/f)  

 

29/22 

 

48/34 

 

χ2(1)=0.036 

 

0.849 

Mean time to transition ± SD (in days) 

Range  

519.3±666.4 

(6-3537) 

 

NA NA NA 

BPRS total score 

 

BPRS Positive Symptoms Score 

 (n = 51 vs 81)  

x ̃=42 

 

x ̃=8 

 

x ̃=43 

 

x ̃=8 

 

U=1939 

Z=-0.592 

U=1822 

Z=-1.546 

0.554 

 

0.252 
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BPRS Hallucination score 

(n = 51 vs 81) 

 

 

x ̃=2 

 

 

x ̃=2 

 

 

U=2050.5 

Z=-0.075 

 

0.94 

SANS total score 

 

CAARMS DTC 

(n = 50 vs 81) 

 

CAARMS PA 

(n = 50 vs 81) 

 

CAARMS CD 

(n = 50 vs 81) 

x ̃=19 

 

x ̃=2 

 

 

x ̃=2 

 

 

x ̃=2 

 

x ̃=16 

 

x ̃=2 

 

 

x ̃=2 

 

 

x ̃=2 

 

U=1682 

Z=-1.894 

U=1668.5 

Z=-1.772 

 

U=1838.5 

Z=-0.915 

 

U=1863 

Z=-0.823 

0.058 

 

0.076 

 

 

0.360 

 

 

0.41 

Notes. n=sample size, SD=standard deviation, m=male, f=female, NA=not applicable, BPRS=Brief 
Psychiatric Rating Scale, SANS=Scale for the Assessment of Negative Symptoms, 
CAARMS=Comprehensive Assessment of At-Risk Mental States, DTC=Disorders of Thought Content, 
PA=Perceptual Abnormalities, CD=Conceptual Disorganisation. 

 

Figure 1. Patterns of structural covariance in ultra-high risk compared to healthy 

control participants for the visual, auditory, motor, speech, semantic, default-mode, 

salience and executive-control network. 

 

Figure 2. Axial slices of (A) reduced structural covariance (SC) in the default-mode 

network between the right angular gyrus and right posterior cingulate and left 

orbitofrontal cortex in ultra-high risk (UHR) participants compared to healthy controls 

(HC), (B) increased SC in the executive control network (ECN)  between the right 

inferior parietal lobule and  the left paracingulate cortex in UHR individuals compared 

to HC, (C) increased SC in the motor network between the left precentral gyrus and 

left subcallosal cortex and paracingulate gyrus in UHR individuals compared to HC, 
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(D) increased SC in the salience network between the left fronto-insular cortex and 

right occipital pole and superior parietal lobule for those who transitioned (UHR-P) 

compared to those who did not (UHR-NP), (E) decreased SC in the ECN between 

the right dorsolateral prefrontal cortex and right precentral gyrus for UHR-P 

compared to UHR-NP (F) increased SC in the auditory network between the right and 

left Heschl's gyrus and right anterior cingulate cortex for UHR-P compared to UHR-

NP, (G) increased SC in the motor network between the left precentral gyrus and left 

superior and inferior and right middle frontal gyrus for UHR-P compared to UHR-NP. 
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Fig. 1 
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Fig. 2 

 




