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In this paper we investigate the extremal relationship between 
two well-studied graph parameters: the order of the largest 
homogeneous set in a graph G and the maximal number 
of distinct degrees appearing in an induced subgraph of G, 
denoted respectively by hom(G) and f(G).
Our main theorem improves estimates due to several earlier 
researchers and shows that if G is an n-vertex graph with 
hom(G) ≥ n1/2 then f(G) ≥

(
n/hom(G)

)1−o(1). The bound 
here is sharp up to the o(1)-term, and asymptotically solves 
a conjecture of Narayanan and Tomon. In particular, this 
implies that max{hom(G), f(G)} ≥ n1/2−o(1) for any n-vertex 
graph G, which is also sharp.
The above relationship between hom(G) and f(G) breaks 
down in the regime where hom(G) < n1/2. Our second result 
provides a sharp bound for distinct degrees in biased random 
graphs, i.e. on f

(
G(n, p)

)
. We believe that the behaviour here 

determines the extremal relationship between hom(G) and 
f(G) in this second regime.
Our approach to lower bounding f(G) proceeds via a 
translation into an (almost) equivalent probabilistic problem, 
and it can be shown to be effective for arbitrary graphs. It 
may be of independent interest.
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1. Introduction

The focus of this paper is on the extremal relationship between the order of the largest 
homogeneous set in a graph G and the maximal number of distinct degrees which appear 
in some induced subgraph of G. More precisely, let hom(G) denote the homogeneous 
number of a graph G, given by:

hom(G) := max
{
|U | : U ⊂ V (G) with G[U ] a complete or empty graph

}
.

We also let f(G) denote the distinct degree number of G, given by:

f(G) := max
{
k ∈ N : G[S] has k distinct degrees for some S ⊂ V (G)

}
.

These quantities have been well-studied in the literature. Indeed, hom(G) arises as a 
key parameter in a variety of settings, including extremal graph theory, graph Ramsey 
theory and perfect graph theory (see for example [7], [18], [11], [29]). On the other hand, 
a wide range of results aims to study the possible degree distributions of (induced) 
subgraphs of a graph, for example [24], [1], [28], [31], [17], [20], and f(G) arises very 
naturally in this context.

Erdős, Faudree and Sós were the first to investigate the relationship between hom(G)
and f(G), focusing in particular on the Ramsey setting, where hom(G) is (essentially) 
minimal. Recall that Ramsey’s theorem [30], [15] guarantees that every n-vertex graph 
G satisfies the relation hom(G) = Ω(log n). Erdős [14] showed, in what is one of the 
earliest instances of the probabilistic method [4], that there are n-vertex graphs G with 
hom(G) = Θ(logn) and so the logarithmic order is sharp here. However, the existence 
of all such graphs G has only been demonstrated indirectly via some random process 
and it is a major open problem to give explicit examples of such graphs (see [5], [23]). 
Motivated by this, a large body of research has developed concerning the structure of 
Ramsey graphs [2], [16], [27], [32], [22], [21], [25], aiming to show that they must behave 
similarly to appropriate random graphs.

In this context, Erdős, Faudree and Sós [13] noticed that the random graph G(n, 1/2)
has f(G(n, 1/2)) = Ω(n1/2) with high probability. They conjectured this property must 
be shared by Ramsey graphs: if G is an n-vertex graph with hom(G) = O(logn) then 
f(G) = Ω(n1/2). Bukh and Sudakov confirmed this conjecture in [9] with an elegant 
and influential argument. Furthermore, they noted that there still appeared to be some 
flexibility here:

(a) Although f(G(n, 1/2)) = Ω(n1/2) forms a natural lower bound, they observed that 
it did not have a matching upper bound, as they proved that f(G(n, 1/2)) = O(n2/3)
whp.

(b) They conjectured that hom(G) = no(1) already implies that f(G) ≥ n1/2−o(1).
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It was later shown by Conlon, Morris, Samotij and Saxton [10], thus matching the 
upper bound given in (a), that in fact f(G(n, 1/2)) = Ω(n2/3) whp. Recently, Jenssen, 
Keevash, Long and Yepremyan [19] proved that the same lower bound applies in the 
Ramsey context, giving a tight bound for the original Ramsey question of Erdős, Faudree 
and Sós.

In [26], Narayanan and Tomon solved the conjecture from (b) above, proving that 
actually f(G) = Ω

(
(n/ hom(G))1/2

)
for all n-vertex graphs G. They also provided an 

interesting construction, which suggested a tight bound between the following parame-
ters: if k ≤ n1/2 then the n-vertex k-partite Turán graph T (see e.g. [7]) satisfies both 
hom(T ) = n/k and f(T ) = k. Narayanan and Tomon conjectured that a similar de-
pendence must hold in general: if G is an n-vertex graph satisfying hom(G) ≥ n1/2

then f(G) = Ω(n/ hom(G)). Supporting their conjecture, the authors proved that in-
deed f(G) = Ω(n/ hom(G)) when hom(G) = Ω(n/ logn). Jenssen et al. [19] improved 
this bound to hom(G) ≥ n9/10, noting that there were significant obstacles to obtaining 
hom(G) ≥ n1/2.

Our main result here confirms the Narayanan−Tomon conjecture up to a logarithmic 
loss.

Theorem 1.1. Let m ≥ n1/2. Then every n-vertex graph G with hom(G) ≤ m satisfies:

f(G) = Ω
(

n/m

log7/2(n/m)

)
.

As an immediate corollary of Theorem 1.1 we obtain the following result, which 
strengthens the bounds of Bukh and Sudakov [9] and of Narayanan and Tomon [26].

Corollary 1.2. Every n-vertex graph G satisfies max
{

hom(G), f(G)
}
≥ n1/2−o(1).

Again, note that the n1/2-partite Turán graph on n vertices shows that this bound is 
essentially sharp. However, as discussed below, there is a large and varied collection of 
graphs which are close to extremal value here.

Our second result focuses on the regime where hom(G) < n1/2. The Turán con-
struction given above begins to break down here, and in fact the above relationship 
between the parameters no longer holds; e.g. by our discussion above hom(G(n, 1/2)) ·
f(G(n, 1/2)) = Θ(n2/3 logn) � n whp. Motivated by this, we prove sharp bounds on 
f(G(n, p)) for general values of p, extending the results of Bukh and Sudakov [9] and of 
Conlon, Morris, Samotij and Saxton [10].

Theorem 1.3. Let n ∈ N and let p := p(n) ∈ [0, 1/2]. Then whp the random graph G(n, p)
satisfies the following:

(i) f
(
G(n, p)

)
= Θ 

(
3
√

pn2
)

for p ∈ [n−1/2, 1/2];
(ii) f

(
G(n, p)

)
= Θ

(
Δ(G(n, p))

)
for p ≤ n−1/2.
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Remark. As f(G) = f(G) for any graph G, we see that f(G(n, p)) and f(G(n, 1 − p))
follow identical distributions, so Theorem 1.3 determines the behaviour of f(G(n, p)) for 
all p ∈ [0, 1].

Together with the known estimates on the homogeneous number of sparse random 
graphs, Theorem 1.3 suggests a natural extremal relationship between hom(G) and f(G)
when the hypothesis of Theorem 1.1 fails, i.e. when hom(G) < n1/2. We further examine 
this relationship in the concluding remarks in Section 7.

Our proofs to both Theorem 1.1 and Theorem 1.3 build upon earlier approaches from 
[9] and [19], but there are many extra challenges in this regime, which require several key 
new ingredients and ideas. For instance, although Turán graphs represent an example 
of n-vertex graphs G with hom(G) = n1/2 and f(G) = Θ(n1/2), there are several very 
different looking graphs which exhibit (essentially) the same behaviour, including the 
random graph G(n, n−1/2).

One interesting class of examples was given by Narayanan and Tomon, which we call 
‘iterated Turán graphs’: take b < n1/2 vertex disjoint sets V1, . . . , Vb of size n/b, and on 
each set Vi put a copy of the complement of the n1/2-partite n/b-vertex Turán graph, 
and join all pairs lying in distinct Vi and Vj by an edge. It can be checked that such a 
graph G has n-vertices, that hom(G) = n1/2 and that f(G) = n1/2 (any set Vi contains 
at most n1/2/b vertices with distinct degrees). Noting that the degree in each such graph 
is n −n/b +n1/2/b, we see these graphs are non-isomorphic for different values of b, and 
so there are many distinct extremal situations.

Standing back from this, consider (1) starting with many vertex disjoint copies of the 
same graph, (2) complementing the edges of each, and (3) joining all vertices between 
different classes by an edge. One can observe that, starting with the graph on a single 
point and running these steps we can obtain a Turán graph (applying the process once), 
and the iterated Turán graph (applying it twice). One could furthermore iterate more 
times, and this leads to graphs with very limited neighbourhood diversity (see the defi-
nition before Lemma 4.3 below), which was a key parameter in many earlier approaches. 
One of our results below (see Theorem 3.2) allows us to prove lower bounds on f(G)
by instead lower bounding auxiliary parameters (see Theorem 3.2) and this connection 
crucially works without diversity assumptions, unlike in earlier approaches.

The above process also highlights a more significant challenge, which arises naturally 
for this problem. To find a large set U of vertices with distinct degrees in general, these 
iterated graphs show that sometimes we must first find sets Ui of distinct degrees locally 
in smaller graphs and then combine the results into a larger set U = ∪Ui. Combining 
such sets together can work very well for iterated graphs, but even small changes to the 
structure here can break the condition − at an extreme, it could be that the sets Ui

have distinct degrees in G[Vi] for i = 1, 2 with V1 and V2 disjoint, but that all vertices 
of U1 ∪ U2 have the same degree when combined in G[V1 ∪ V2]. We avoid this kind 
of difficulty by moving to a more general probabilistic setting, where we instead find 
probability distributions with certain well-controlled small ball probabilities.
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Lastly, our approach in Sections 3 and 4 is quite applicable to the general problem of 
lower bounding f(G) in an arbitrary graph − see Theorem 3.2 and Lemma 3.4 below.

The paper is organised as follows. In the next section we present a number of tools 
which will be required in our proof. In Section 3 we present a probabilistic analogue of the 
problem of finding many distinct degrees in a graph. In Section 4 we extend this approach 
to a more robust variant and develop a variety of tools and estimates for studying the 
distinct degree problem. In Section 5 we prove Theorem 1.1 as follows: we first deal with 
a slightly weaker version in Section 5.1, which applies when hom(G) ≥ n3/5+o(1), and 
then build upon this in subsection 5.2 to prove Theorem 1.1. In Section 6 we present 
the proof of Theorem 1.3. Finally, in Section 7 we conclude with a discussion of the case 
when f(G) < n1/2.

Notation. Given a graph G and u, v ∈ V (G), we write u ∼ v if u and v are adjacent 
vertices in G and u � v if they are not. The neighbourhood of u is given by the set 
NG(u) = {v ∈ V (G) : u ∼ v} and given S ⊂ V (G) we let NS

G(u) := NG(u) ∩ S; we will 
omit the subscript G when the graph is clear from the context. We write dSG(u) = |NS

G(u)|.

Given a vertex u ∈ V (G), we will also represent the neighbourhood of u by a vector 
u ∈ {0, 1}V (G) defined such that uv = 1 if and only if u ∼ v. Given a set U ⊂ V and a 
vector u ∈ RV , we will denote the projection of u onto the coordinate set S by projS(u), 
i.e. for any v ∈ S we have projS(u)v = uv. Given u, v ∈ V (G) we write divG(u, v) for 
the symmetric difference N(u)
N(v). Thus |divG(u, v)| is simply the Hamming distance 
between u and v.

We will write G for the complement of the graph G. It is easy to note that for any 
graph G we have hom(G) = hom(G) and f(G) = f(G) since divG(u, v) = divG(u, v) for 
any u, v ∈ V (G).

Given n ∈ N and p ∈ (0, 1), the Erdős−Rényi random graph G(n, p) is the n-vertex 
graph in which each edge is included in the graph with probability p independently of 
every other edge. We say that an event that depends on n occurs with high probability
(whp) if its probability tends to 1 as n → ∞.

Throughout this paper we will omit floor and ceiling signs when they are not crucial, 
for the sake of clarity of presentation.

2. Tools

In this short section we introduce some tools required for the rest of the paper. We 
will use the following version of Turán’s theorem (see for example Chapter 6 in [7]).

Theorem 2.1. Let G be a n-vertex graph with average degree d. Then G has an indepen-
dent set of size at least n/(d + 1).

Secondly, we require the following ‘anticoncentration’ theorem for the well-known 
Littlewood−Offord problem, which is due to Erdős [12]:
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Theorem 2.2 (Erdős–Littlewood–Offord). Let S be a set of n real numbers of absolute 
value at least 1. Then, for each α ∈ R, there are at most 

(
n

�n/2�
)

= Θ(2nn−1/2) subsets 
of S whose sum of elements lie in the interval [α, α + 1).

We now give a probabilistic interpretation of the previous theorem, which can also be 
found in [19]. For the sake of completeness, we include a proof of this result.

Theorem 2.3. Fix non-zero parameters a1, a2, . . . , an ∈ R and p1, p2, . . . , pn ∈ [0.1, 0.9]. 
Suppose X1, X2, . . . , Xn are independent Bernoulli random variables with Xi ∼ Be(pi). 
Then:

max
x∈R

P

( n∑
i=1

aiXi = x

)
= O(n−1/2).

Proof. For each i ∈ [n] choose wi, zi ∈ [0, 1] such that pi = wi/2 +(1 −wi)zi. Then write 
Xi as Xi = WiYi + (1 −Wi)Zi, where Wi ∼ Be(wi), Zi ∼ Be(zi) and Yi ∼ Be(0.5) are 
independent random variables. We want to make this choice so that each wi ≥ 0.2 and 
we can do this by letting zi = 0, wi = 2pi if pi ≤ 1/2 and by letting zi = 1, wi = 2(1 −pi)
if pi > 1/2.

We now condition on any choice C of the Wi’s and Zi’s. Let I = {i ∈ [n] : Wi = 1}
and suppose that we have Zi = zi after the conditioning. On one hand, if |I| ≥ n/10 then 
P
(∑n

i=1 aiXi = x | C
)

= P
(∑

i∈I aiYi+
∑

i/∈I aizi = x | C
)

becomes P
(∑

i∈I aiYi = xC
)

where xC = x −
∑

i/∈I zi is a constant, which by Theorem 2.2 (eventually with a scaling 
argument) is at most O(n−1/2). On the other hand, let W = (W1 + W2 + · · · + Wn)/n
and observe that |I| = nW . Moreover, we have E[W ] ≥ 0.2 since wi ≥ 0.2 for each i. 
Therefore, we can deduce that P (|I| ≤ n/10) = P (W ≤ 0.1) ≤ P (W − E[W ] ≤ −0.1) ≤
P (|W − E[W ]| ≤ −0.1). So by Chebyshev’s Inequality we get P (|I| ≤ n/10) = O(n−1).

The conclusion follows by combining these results in the Law of Total Probability. �
The following optimization results will be very useful along the way.

Lemma 2.4. Let b ≥ a > 0 and let 0 < α < 1. Then the function f : [0, a) → R given by 
f(x) := (b +x)α +(a −x)α is strictly decreasing. In particular, for all t ∈ (0, a) we have:

bα + aα > (b + a− t)α + tα.

Proof. Note that f ′(x) = α(b + x)α−1 − α(a − x)α−1 < 0 on the interval [0, a) since 
α− 1 < 0 and b + x ≥ a − x > 0. This gives us the first part, whereas the second one is 
just f(0) > f(a − t). �
Lemma 2.5. Let a, b > 0. Then a log2 a + b log2 b + 2 min{a, b} ≤ (a + b) log2(a + b).

Proof. We may assume that a ≤ b. Let us now define x := a + b and a := tx with 
0 < t ≤ 1/2. Upon dividing by x, the inequality we need to prove can be rewritten as 
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2t + t log2(tx) + (1 − t) log2((1 − t)x) ≤ log2 x, where 0 < t ≤ 1/2, which is equivalent to 
2t + t log2 t + (1 − t) log2(1 − t) ≤ 0.

The map f : (0, ∞) → R given by f(y) = y log2 y is convex and can be continuously 
extended to f(0) = 0. Therefore the LHS in our last inequality above is convex, so we 
only need to check that the inequality holds for t = 0 and t = 1/2, which can be easily 
seen. �

Finally, we require some classic concentration inequalities. See e.g. appendix A in [4].

Theorem 2.6 (Chernoff inequality). Let X be a random variable with binomial distribu-
tion and let μ = E[X]. Then, for 0 ≤ δ ≤ 1, the following inequalities hold:

P
(
X ≤ (1 − δ)μ

)
≤ exp

(
−δ2μ

2

)
.

P
(
X ≥ (1 + δ)μ

)
≤ exp

(
−δ2μ

4

)
.

The following bound will be useful for larger deviations.

Theorem 2.7. Let n ∈ N, p ∈ [0, 1], L > 0 an let X ∼ Bin(n, p) be a random variable. 
Then:

P (X ≥ L) ≤
(
n

L

)
pL ≤

(enp
L

)L

.

Lastly, we will also require Hoeffding’s inequality.

Theorem 2.8 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be independent random vari-
ables such that ai ≤ Xi ≤ bi for each i ∈ [n], where ai, bi ∈ R. Then given t > 0, the 
random variable Sn = X1 + · · · + Xn satisfies:

P (|Sn − E[Sn]| ≥ t) ≤ 2exp
(

−2t2∑
i∈[n](bi − ai)2

)
.

3. Degrees and distributions on the continuous cube

3.1. Recasting the problem

Given a graph G and a probability vector p = (pv)v∈V (G) ∈ [0.1, 0.9]V (G) we will 
write G(p) to denote the probability space on the set of induced subgraphs of G, 
determined by including each vertex v ∈ V (G) independently with probability pv. 
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Equivalently, given S ⊂ V (G), the induced subgraph G[S] is selected with probabil-
ity 

∏
v∈S pv

∏
v∈V (G)\S(1 − pv). Abusing notation slightly,2 we will usually write G(p)

to denote a random graph G[S] ∼ G(p).
Throughout the paper, given a vertex u ∈ V (G), we will we write u ∈ {0, 1}V (G) to 

denote the neighbourhood vector of u, which is given by:

(u)v =
{

1 if uv ∈ E(G);
0 otherwise.

Note that, considering the standard inner product on the space RV (G), which is given 
by x · y =

∑
v∈V (G) xvyv, this notation leads us to the useful representation:

E
[
dG(p)(u)

]
= u · p. (1)

Our first lemma comes to show that two vertices whose expected degrees (under the 
distribution G(p)) are separated are unlikely to have the same degree in an induced 
subgraph selected according to G(p).

Lemma 3.1. Let G be a graph and let u, v be distinct vertices in G. Suppose that there is 
a probability vector p ∈ [0.1, 0.9]V such that 

∣∣E[dG(p)(u)] − E[dG(p)(v)]
∣∣ ≥ D ≥ 2. Then:

P
(
dG(p)(u) = dG(p)(v)

)
= O

(√
logD
D

)
.

Proof. Set W := div(u, v) and T = |W |; by hypothesis we deduce that T ≥ 2. Letting 
X := dG(p)(u) − dG(p)(v), this random variable can be written as X =

∑
w∈W ±Xw

where Xw ∼ Be(pw) are independent Bernoulli random variables. We seek to upper 
bound P

(
dG(p)(u) = dG(p)(v)

)
= P (X = 0).

As 
∣∣E[X]

∣∣ ≥ D by our hypothesis, one gets by Hoeffding’s Inequality that:

P (X = 0) ≤ P
(
|X − E[X]| ≥ D

)
≤ 2exp(−D2/4T ),

since X is a sum of T independent random variables taking values in the interval [−1, 1]. 
On the other hand, by Theorem 2.3 we get P (X = 0) = O

(
T−1/2). Thus:

P
(
X = 0

)
≤ min

{
O(T−1/2), 2 exp(−D2/4T )

}
. (2)

The map x �→ 1/
√
x is decreasing on (0, ∞), whereas x �→ exp(−D2/4x) is increasing, 

and their intersection point satisfies the equation 
√
x = exp(D2/4x), i.e. D2 = 2x log x. 

This gives x = Θ(D2/ log(D)) and we get the conclusion by substituting this into (2). �
2 As with the Erdős–Renyi random graph G(n, p).
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Given a graph G, a probability vector p ∈ [0, 1]V (G) and D > 0, a set U ⊂ V (G) is 
said to be D-separated in G(p) if |E[dG(p)(u)] −E[dG(p)(v)]| ≥ D for all distinct u, v ∈ U .

In analogy with f(G), define:

fp(G) := max
{
|U | : U ⊂ V (G) such that U is 1-separated in G(p)

}
.

The next result shows a lower bound for f(G) follows from a lower bound for fp(G).

Theorem 3.2. Given a graph G and a probability vector p ∈ [0.1, 0.9]V (G) with fp(G) ≥ 2, 
the following relation holds:

f(G) = Ω
(

fp(G)
log3/2 (fp(G)

)).
Proof. First note that f(G) ≥ 1 for every non-empty graph G, therefore we may assume 
that L := fp(G) ≥ C for some absolute constant C. As above, we will write G[S] to 
denote a random induced subgraph G[S] ∼ G(p). Let U ⊂ V (G) be a 1-separated set in 
G(p) with U = {u1, u2 . . . , uL}, so that the vertices are ordered with increasing expected 
degree in G(p). It follows that if j − i ≥ 2 then Di,j := E[dG(p)(uj)] − E[dG(p)(ui)] ≥
j − i ≥ 2 and so we can apply Lemma 3.1 to obtain that:

P
(
dG(p)(uj) = dG(p)(ui)

)
≤ c

√
log(Di,j)
Di,j

≤ c
√

log(j − i)
j − i

,

where here c > 0 is an absolute constant. Here we used that 
√

log x/x is decreasing for 
x ≥ 2.

Now let us consider a random graph H on U1 = {u3, u6, . . . , u3�L/3�}, where we build 
an edge between two vertices if they have the same degree in G[S] ∼ G(p). The expected 
number of edges in H is given by:

E[e(H)] =
∑

{u3i,u3j}⊂U1

P
(
dG(p)(u3j) = dG(p)(u3i)

)
≤

∑
{u3i,u3j}⊂U1

c
√

log(3j − 3i)
3(j − i)

≤ cL

9
√

log(L) ·
( L/3∑

d=1

1
d

)

≤ cL

9 log3/2(L).

It follows by Markov that P
(
e(H) ≤ cL log3/2(L)/3

)
≥ 2/3.

On the other hand, we have E[|S ∩ U1|] ≥ |U1|/10 ≥ L/32 and so by Chernoff’s 
inequality, using that L ≥ C, we have P (|S ∩ U1| ≥ L/64) ≥ 2/3.

Combining these two bounds guarantees that there exists an induced subgraph G[S]
with the property that the set U2 := S ∩ U1 satisfies the relations |U2| ≥ L/64 and 
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e(H[U2]) ≤ e(H) ≤ cL log3/2(L)/3. By Turán’s theorem the subgraph H[U2] contains 
an independent set of order Ω(3|U2|2/cL log3/2(L)

)
= Ω

(
L/ log3/2(L)

)
. By definition of 

H such a set necessarily has distinct degrees in G[S], thus completing the proof. �
3.2. Moving to distributions

The message we get from Theorem 3.2 is that a lower bound on f(G) for any graph 
G (up to logarithmic factors) follows from a lower bound on:

f̃(G) := max
p∈[0.1,0.9]V (G)

fp(G).

This second quantity can be perceived as a continuous relaxation of f(G) − which 
trivially corresponds to maximizing over {0, 1}V (G). However, from our point of view 
the second solution space is considerably richer, and in particular will allow different 
behaviours to be blended in a way that is not possible with vectors from the discrete 
cube; for example, one can take convex combinations of vectors in [0, 1]V (G).

Although we would like to lower bound f̃(G), this quantity turns out to be just too 
rigid for certain inductive steps which we want to carry out later.3 Instead, we introduce 
a generalised parameter, defined in terms of probability distributions on [0.1, 0.9]V (G), 
which turns out to be more robust in this respect.

Let G be a graph and let D be a probability distribution on [0.1, 0.9]V (G). Given 
distinct vertices u, v ∈ V (G) and a set S ⊂ V (G), we define:

badS
D(u, v) := max

c∈R
P

p∼D

(
|E[dSG(p)(u)] − E[dSG(p)(v)] − c| ≤ 1

)
. (3)

This quantity can be viewed as a small ball probability − a measurement for two 
vertices u, v ∈ V (G) of how likely the expected degrees to S in G(p) are to differ by an 
(almost) fixed amount. Given sets U, S ⊂ V (G), we also set:

badS
D(U) :=

∑
{u,v}⊂U

badS
D(u, v).

Given another set V ⊂ V (G) we can also write:

badS
D(U, V ) :=

∑
(u,v)∈U×V

badS
D(u, v).

We will sometimes suppress the superscript, e.g. write badD(U) = badV (G)
D (U) when 

S = V (G). Lastly, let us remark that in (3) we do not need D to be defined on all vertex 

3 See comment before Lemma 4.1 below.
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coordinates of the set [0.1, 0.9]V (G); any vertex set T with S ⊆ T ⊆ V (G) is enough so 
that we can define D on [0.1, 0.9]T , as we can see by looking at the RHS of (3).

The following lemma shows that a lower bound on fp(G) (and consequently on f(G)
by Theorem 3.2) follows by finding a large subset U ⊂ V (G) such that badD(U) is 
bounded in terms of |U |.

Lemma 3.3. Let G be a graph, let D be a probability distribution on [0.1, 0.9]V (G) and 
let U ⊂ V (G) with badD(U) = α · |U |. Then there is a vector p ∈ [0.1, 0.9]V (G) which 
satisfies fp(G) ≥ |U |/(1 + α).

Proof. To see this, select p ∼ D and let Y denote the random set:

Y (p) :=
{
{u, v} ⊂ U :

∣∣E[dG(p)(u)] − E[dG(p)(v)]
∣∣ ≤ 1

}
.

Note that:

E
p∼D

[
|Y (p)|

]
=

∑
{u,v}⊂U

P
(∣∣E[dG(p)(u)] − E[dG(p)(v)]

∣∣ ≤ 1
)

≤
∑

{u,v}⊂U

badD(u, v) = badD(U) = α|U |.

It follows that there is a choice of p ∈ [0.1, 0.9]V (G) such that |Y (p)| ≤ α|U |. Viewing 
the pairs in Y (p) as the edges of a graph J on the vertex set U , again by Turán’s theorem 
we can find an independent set in this graph which has order |U |/(1 + α). By definition 
of J , this gives a lower bound on fp(G), as required. �

From Theorem 3.2, the quantity f(G) is (essentially) lower bounded by fp(G). To 
close this subsection, and complete the circle, we show that this also holds in the reverse 
direction. In particular, up to logarithms the quantities f(G) and f̃(G) are of the same 
order of magnitude.

Lemma 3.4. Let G be a graph and let U ⊂ S ⊂ V (G) be vertex subsets such that all 
vertices of U have distinct degrees in G[S]. Then there is a distribution D on [0.1, 0.9]V (G)

such that badD(U) = O
(
|U | log |U |

)
. In particular, there is p ∈ [0.1, 0.9]V (G) such that:

fp(G) = Ω
(

f(G)
log f(G)

)
.

Proof. To see this, let s ∈ {0, 1}V (G) denote the indicator vector of the set S and let 1
denote the constant 1 vector. Let U := {u1, u2, . . . , u|U |} and assume that dG[S](ui) is 
increasing with i, which by (1) gives (uj − ui) · s ≥ j − i for all 1 ≤ i < j ≤ |U |.
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Select α uniformly at random in [−0.4, 0.4] and consider the random vector:

p := 1
2 · 1 + α · s ∈ [0.1, 0.9]V (G).

Write D for the resulting probability distribution on [0.1, 0.9]V (G). Given p chosen 
from D, by (1) we get:

E[dG(p)(uj)] − E[dG(p)(ui)] = (uj − ui) · p = α ·
(
uj − ui

)
· s + c′,

for some fixed constant c′. As 
(
uj − ui

)
· s ≥ j − i and α is uniformly chosen from 

[−0.4, 0.4], it follows that E[dG(p)(uj)] − E[dG(p)(ui)] is uniformly distributed over an 
interval of length at least 0.8(j − i). By definition (3), this then gives:

badD(ui, uj) ≤
2

0.8(j − i) ≤ 3
j − i

.

It follows that badD(U) =
∑

1≤i<j≤|U |
badD(ui, uj) ≤

|U |∑
d=1

3|U |
d

≤ 6|U | log |U |, giving us 

the first bound. The second then follows immediately from Lemma 3.3. �
4. Building distributions for distinct degrees

From the previous section, via Theorem 3.2 and Lemma 3.3, we know that in order 
to find many distinct degrees in a graph G it suffices to find a large set U ⊂ V (G)
and a probability distribution D such that badD(U) is small. In this section we will 
collect a number of results together, which will be used in combination to exhibit such 
distributions D.

From the ‘iterated’ graph examples discussed in Section 1 we saw that occasionally 
we must first find distinct degree sets Ui in graphs G[Si] where {Si}i are disjoint, and 
then combine these sets together so that 

⋃
i Ui will have distinct degrees in G[

⋃
i Si]. 

Unfortunately, it is also not hard to see that vertices within Ui can easily agree in degree 
in the resulting union graph, even if we move from sets Ui to vectors p

i
as in Section 3.

While working with fixed sets or vectors can cause difficulties, our first lemma shows 
that the setting of distributions allows more flexibility here: we can combine distributions 
while maintaining ‘bad’ control. This flexibility was the key motivation for working in 
this more generalised setting (indicated in subsection 3.2).

Lemma 4.1. Let G be a graph with a vertex partition V (G) = �L
i=1 Vi and for each 

i ∈ [L] let Di be a probability distribution on [0, 1]Vi . Then taking D to denote the 
product distribution Πi∈[L]Di on [0, 1]V (G), for any distinct vertices u, v ∈ V (G) and any 
set S ⊂ V (G), one has:

badS
D(u, v) ≤ min badS∩Vi

Di
(u, v).
i∈[L]
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Proof. To see this, take c ∈ R and define X to be the random variable:

X(p) := E[dSG(p)(u)] − E[dSG(p)(v)] − c.

It suffices to prove that P
p∼D

(
|X| ≤ 1

)
≤ badS∩Vi

Di
(u, v) for all i ∈ [L] as the result will 

follow from our definition of badD(u, v). Let Wi := V (G) \ Vi for each i ∈ [L]. Given 
p ∈ [0, 1]V (G), we denote by p

i
and q

i
its projections on Vi and Wi, respectively, which 

are mutually independent.
It is easy to see that:

X(p) = E[dS∩Vi

G(p) (u)] − E[dS∩Vi

G(p) (v)] + E[dS∩Wi

G(p) (u)] − E[dS∩Wi

G(p) (v)] − c.

Conditioned on any choice for q
i
, we see that E[dS∩Wi

G(p) (u)] − E[dS∩Wi

G(p) (v)] becomes a 
constant, therefore we obtain that:

P
p∼D

(
|X| ≤ 1| q

i

)
= P

pi∼Di

(
|E[dS∩Vi

G(p
i
)(u)] − E[dS∩Vi

G(p
i
)(v)] − c′| ≤ 1

)
≤ badS∩Vi

Di
(u, v),

as p
i
and q

i
are independent. It follows that P

p∼D

(
|X| ≤ 1

)
≤ badS

Di
(u, v), as desired. �

Our second lemma gives a simple situation in which we can obtain ‘bad’ control. Let 
G be a graph and let S ⊂ V (G). Let US denote the uniformly constant distribution on 
[0.1, 0.9]S , given by selecting α ∈ [0.1, 0.9] uniformly at random and then simply setting 
p = α1S ∈ [0.1, 0.9]S .

Lemma 4.2. Let G be a graph, S ⊂ V (G) and u, v ∈ V (G) such that dS(u) ≥ dS(v) + D

for some D > 0. Suppose that US denotes the uniform constant distribution on [0.1, 0.9]S, 
that D′ denotes a distribution on [0.1, 0.9]V (G)\S and that D denotes the product distri-
bution US ×D′ on [0.1, 0.9]V (G). Then badD(u, v) ≤ 3D−1.

Proof. First note that by Lemma 4.1 we have badD(u, v) ≤ badS
US

(u, v) and so it suffices 
to upper bound this second quantity.

Taking c ∈ R, we seek to upper bound, when p ∼ US , the probability of the event 
that |E[dSG(p)(u)] − E[dSG(p)(v)] − c| ≤ 1. To analyse this, note that:

E[dSG(p)(u)] − E[dSG(p)(v)] = (projS(u) − projS(v)) · p.

Since p = α1S where α is selected uniformly at random from [0.1, 0.9], this gives:

E[dSG(p)(u)] − E[dSG(p)(v)] = (projS(u) − projS(v)) · α1S = α
(
dS(u) − dS(v)

)
.

As α varies uniformly over [0.1, 0.9] and dS(u) −dS(v) ≥ D by hypothesis, the quantity 
E[dSG(p)(u)] −E[dSG(p)(v)] varies uniformly over an interval of length at least 0.8D, hence 

the probability that |E[dS (u)] −E[dS (v)] − c| ≤ 1 is at most 2/(0.8D) ≤ 3D−1. �
G(p) G(p)
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We next seek to provide ‘bad’ control for a set by blending neighbourhood structures 
together − the idea here has some similarities to that of [19]. Let G be a graph, let 
U, S ⊂ V (G), where U := {u1, . . . , uk}, and let β ∈ [0, 0.4]. We now let Bβ(U, S) denote 
the blended probability distribution on [0.1, 0.9]S , which is defined as follows. First 
independently select αi ∈ [−β, β] uniformly at random for each i ∈ [k] and set:

p′ := 1
2 · 1 +

∑
i∈[k]

αi · projS(ui) ∈ RS . (4)

Having made these choices, the distribution then returns p, a truncated version of p′, 
where:

p
v

=

⎧⎪⎪⎨⎪⎪⎩
p′
v

if p′
v
∈ [0.1, 0.9];

0.9 if p′
v
> 0.9;

0.1 if p′
v
< 0.1.

Our final lemma in this section provides ‘bad’ control for blended distributions under 
certain well-behaved situations. Given D > 0, γ ∈ [0, 1] and sets U and S as above we 
say that:

• U is D-diverse to S if for all distinct u, v ∈ U we have |NS
G(u)
NS

G(v)| ≥ D.
• U is γ-balanced to S if for all v ∈ S we have dUG(v) ≤ γ|U |.

Let us quickly remark that U is always 1-balanced to S.

Lemma 4.3. Let G be a graph, D > 0, β ∈ (0, 0.1), γ ∈ (0, 1] and U, S ⊂ V (G) such 
that U is both D-diverse and γ-balanced to S. Suppose that D′ denotes a distribution 
on [0.1, 0.9]V (G)\S, that Bβ(U, S) is the blended probability distribution on [0.1, 0.9]S and 
that D is the product distribution Bβ(U, S) ×D′ on [0.1, 0.9]V (G). Then for all u, v ∈ U

one has:

badD(u, v) ≤ 2
βD

+ D exp
(
−0.045
γβ2|U |

)
. (5)

Proof. Suppose U = {u1, u2, . . . , uk+1} and that for each i ∈ [k + 1], given the vector p′

on RS from (4), we define the random vector qi on RS by qi := p′ − αi · projS(ui). The 
key observation is that qi is independent of αi. We will slightly abuse notation by writing 
p for both a vector in [0.1, 0.9]V (G) and its projection projS(p) onto the coordinate set S. 
We can do this without much of a worry since D is the product distribution Bβ(U, S) ×D′.

From now on, fix a constant c ∈ R and i, j ∈ [k + 1], then let Ei,j(c) denote the event 
that 

∣∣E[dG(p)(ui)] − E[dG(p)(uj)] − c
∣∣ ≤ 1. According to (3), to prove the lemma it will 

suffice to show that:
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P (Ei,j(c)) ≤
2
βD

+ D exp
(
−0.045
γβ2|U |

)
.

To upper bound P (Ei,j(c)), we assume that |NS(ui) \NS(uj)| ≥ |NS(uj) \NS(ui)|, 
so that |NS(ui) \NS(uj)| ≥ D/2. Pick a subset Yi,j ⊂ NS(ui) \NS(uj) of size D/2. We 
call a vertex v ∈ Yi,j naughty if qi

v
/∈ [0.2, 0.8]. We say the set Yi,j is naughty if it contains 

a naughty vertex and we let Fi,j denote this event. By the law of total probability we 
get that:

P
(
Ei,j(c)

)
= P

(
Ei,j(c)|Fi,j

)
·P (Fi,j)+P

(
Ei,j(c)|Fi,j

)
·P (Fi,j) ≤ P (Fi,j)+P

(
Ei,j(c)|Fi,j

)
.

Let v ∈ S. Note that qi
v

is a sum of dU\{ui}
G (v) uniform independent random variables, 

as the coordinates uiv are non-zero when v ∼ ui. Thus by Hoeffding Inequality we get:

P
(
qi
v
/∈ [0.2, 0.8]

)
= P

(
|qi

v
−1/2| > 0.3

)
≤ 2 exp

(
−2 · 0.09

4β2d
U\{ui}
G (v)

)
≤ 2 exp

(
−2 · 0.09
4β2γ|U |

)
,

where we have used that dU\{ui}
G (v) ≤ dUG(v) ≤ γ|U | as U is γ-balanced to S. By the 

union bound we get that P (Fi,j) ≤ |Yi,j |P
(
qi
v
/∈ [0.2, 0.8]

)
≤ D exp

(
−0.045(γβ2|U |)−1).

To compute P
(
Ei,j(c)|Fi,j

)
we condition on any choice of α := (αl)l 
=i such that Fi,j

does not hold. Given such a choice, let us first see that p′
v

= qi
v

+ αiuiv ∈ [0.1, 0.9] for 
all v ∈ Yi,j since |αi| < 0.1. So none of the Yi,j-coordinates of p′ will get truncated and 
recall that αi is independent of Fi,j . Given a choice of α, consider now the following 
expression as a map of αi:

fc(αi) := E[dG(p)(ui)] − E[dG(p)(uj)] − c = (ui − uj) · p − c. (6)

Having conditioned on α above, note that the event Ei,j(c) holds only if f(αi) lies in 
an interval of length 2. However, as αi increases, the contribution from each coordinate of 
p to the inner product on the right hand side of (6) is non-decreasing. Furthermore, the 
contribution of all of the Yi,j-coordinates is exactly αi, since none of these coordinates 
were truncated from p′ as we have conditioned on Fi,j . It follows that for ε > 0:

f(αi + ε) − f(αi) =
∑

v∈V (G)

(
(ui)v − (uj)v

)
(ui)v · gε,v ≥ ε|Yi,j | = εD/2,

where gε,v ≥ 0 for all v ∈ V (G) and gε,v = ε for v ∈ Yi,j . Therefore, conditioned on α
as above, if Ei,j(c) occurs then αi lies in an interval of length 4/D. This happens with 
probability at most 2β−1D−1 and the result in (5) quickly follows from the law of total 
probability. �

Before we end this section, we define a simple but convenient distribution. Given a 
graph G and a set S ⊂ V (G), let TS denote the trivial S-induced probability distribution, 
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which is simply the distribution on [0.1, 0.9]S which selects the vector p0 = 1
2 · 1S with 

probability 1.

5. The Narayanan–Tomon conjecture

In this section we will prove Theorem 1.1, our approximate version of the Narayanan–
Tomon conjecture. From Theorem 3.2 and Lemma 3.3 it will suffice to prove the following 
theorem.

Theorem 5.1. Let n ∈ N and k ≥ 1 with n ≥ 20000k2 and suppose that G be an n-vertex 
graph with hom(G) ≤ n/25k. Then there is a set U ⊂ V (G) and a probability distribution 
D on [0.1, 0.9]V (G) such that:

|U | = Ω
(

k

log2
2(k + 1)

)
and badD(U) = O

(
|U | log |U |

)
.

The proof will split into two regimes. The first deals with the case where n = Ω(k5/2)
and the more difficult second case focuses on the regime k2 ≤ n = O(k5/2).

To begin, we first present a quick application of Lemma 4.3 that guarantees ‘bad’ 
control for a set which is Ω(k3/2)-diverse.

Lemma 5.2. Let G be a n-vertex graph and suppose that U = {v1, v2, . . . , vk+1} is a set 
of vertices of G such that |N(vi)
N(vj)| ≥ k3/2 + k for all i �= j in [k + 1]. Then there 
is a probability distribution D on [0.1, 0.9]V (G) such that badD(U) ≤ 8|U | log2 |U |.

Proof. Let S := V (G) so that |NS(vi)
NS(vj)| = |div(vi, vj)| ≥ k3/2 +k for all i �= j in 
[k+1]. Therefore U is both (k3/2+k)-diverse and 1-balanced to S. We let D := Bβ(U, S), 
where β−1 :=

√
56(k + 1) log(k + 1), and apply Lemma 4.3 to obtain for all i �= j that:

badD(vi, vj) ≤ 4
√

14 · log1/2(k + 1)
k

+ (k3/2 + k) · exp
(
− 2.52 log(k + 1)

)
≤ k−1(4√14 log1/2(k + 1) + 1

)
.

As the map f : [1, ∞) → R given by f(x) := 16 log2(x + 1) − 4
√

14 log1/2(x + 1) − 1
is increasing and positive at 1, we can now easily deduce that for all i �= j one has:

badD(vi, vj) ≤ k−1(4√14 log1/2(k + 1) + 1
)
≤ 16k−1 log2(k + 1).

By summing over all i �= j in [k + 1] we finally deduce that:

badD(U) ≤ 16 log2(k + 1)
k

·
(
k + 1

2

)
= 8|U | log2 |U |,

as required. �
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5.1. The case when n = Ω(k5/2)

The next result controls ‘bad’ under the assumption that G has bounded maximum 
degree.

Lemma 5.3. Let n ∈ N, x ∈ [1, ∞) and suppose G is an n-vertex graph with n ≥ 25x ·Δ(G)
and hom(G) ≤ n/5x. Then there is a probability distribution D on [0.1, 0.9]V (G) and a 
vertex set U ⊂ V (G) with |U | = �x� + 1 such that badD(U) ≤ |U |.

Proof. Set k = �x�, noting that x ≤ k < 2x. We will first select U = {u1, . . . , uk+1}
step by step over a series of rounds. To do so, we are going to select a ‘control’ set Yi

for each ui ∈ U , so that ui is strongly joined to Yi, but any uj �= ui in U with j > i is 
quite weakly joined to Yi. This property will allow us to separate the expected degrees 
of vertices in U and build the distribution D.

We inductively build vertex sets Ui = {u1, u2, . . . , ui}, Vi and Yi for i ∈ [k] so that:

(i) the sets Ui, {Yj}j≤i and Vi are all pairwise disjoint;
(ii) ui ∈ Vi−1 for all i ∈ [2, k];
(iii) dYi(ui) = |Yi| = 2k;
(iv) dYi(v) ≤ k/2 for all vertices v ∈ Vi;
(v) |Vi| ≥ n − 5iΔ(G).

To begin, we set U0 = Y0 = ∅ and V0 := V (G). Suppose now i ∈ [k] and that we 
have found Ui−1, Vi−1 and {Yj}j<i as above and wish to find these sets for i. We look 
at Gi := G[Vi−1] and see that it must have a vertex ui with dGi

(ui) ≥ 2k; in particular 
Δ(G) = Δ(G1) ≥ 2k. If not, then Δ(Gi) ≤ 2k− 1 and so by Turán’s Theorem we obtain 
an independent set in Gi which has size at least |Vi−1|/2k ≥ (n − 5(i − 1)Δ(G))/(2k) >
(n − 5xΔ(G))/(4x) ≥ n/5x, contradicting the hom(G) condition from our hypothesis. 
We now let Ui := Ui−1 ∪ {ui} and we pick a subset Yi ⊂ NGi

(ui) of size 2k. We then 
define the set Zi := {v ∈ Vi−1 : dYi

Gi
(v) ≥ k/2} and note that ui ∈ Zi. We now let 

Vi := Vi−1 \ (Yi ∪ Zi). Observe that by construction (i)-(iv) hold above, and it just 
remains to show (v).

As |Vi| = |Vi−1| − |Yi ∪Zi|, by induction it is enough to show that |Yj ∪Zj | ≤ 5Δ(G). 
Clearly |Yi| ≤ 2k. We bound |Zi| by double counting the number of edges between Zi and 
Yi. From each z ∈ Zi there are at least k/2 edges going to Yi, hence e(Yi, Zi) ≥ k|Zi|/2. 
However, dZi

Gi
(y) ≤ Δ(G) for each y ∈ Yi, thus e(Yi, Zi) ≤ 2kΔ(G). It follows that 

|Zi| ≤ 4Δ(G) and so |Zj ∪ Yj | ≤ |Zj | + 2k ≤ 4Δ(G) + 2k ≤ 5Δ(G), as required.
To complete the proof, we set i := k and take uk+1 ∈ Vk �= ∅. By using (i)-(iv) above 

we get disjoint sets U = Uk ∪ {uk+1} = {u1, . . . , uk+1} and {Yj}j∈[k] such that:

dYi
(ui) ≥ dYi

(uj) + 3k/2 for all i < j. (7)
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For each i ∈ [k] we let Di denote the uniformly constant distribution on the set Yi, 
i.e. Di := UYi

. Taking Y0 := V (G) \ (∪iYi), we also let D0 := TY0 denote the trivial 
distribution induced by the set Y0 := V (G) \ (∪iYi) (as defined at the end of Section 4). 
Lastly, we take D to be the product distribution D :=

∏
i∈[0,k] Di on [0.1, 0.9]V (G). Note 

that from Lemma 4.1, equation (7) and Lemma 4.2, for all i < j we obtain that:

badD(ui, uj) ≤ badYi

Di
(ui, uj) ≤

3
(3k/2) = 2

k
.

It follows that badD(U) ≤
(
k+1
2
)( 2

k

)
= |U |, as desired. �

We are now in a position to prove Theorem 5.1 for n = Ω(k5/2).

Theorem 5.4. Let n ∈ N and x ≥ 1 with n ≥ 1000x5/2. Suppose that G is an n-vertex 
graph with hom(G) ≤ n/20x. Then there is a probability distribution D on [0.1, 0.9]V (G)

and a vertex set U ⊂ V (G) with |U | ≥ x + 1 such that badD(U) ≤ 8|U | log2 |U |.

Proof. Let k := �x�. We will prove the theorem by induction on |V (G)|. To start with, 
observe that there is nothing to prove when k ≤ 4 as we can set D to be any distribution 
on [0.1, 0.9]V (G) and the requirements are trivially satisfied by any (k + 1)-vertex set U , 
since badD(u, v) ≤ 1 for any pair u, v of vertices; such a set U exists as k+1 ≤ 1000x3/2. 
In particular, this proves that the theorem holds for the smallest possible case, when 
n = 1000 (where x must equal 1). We will proceed with the induction step and assume 
that k > 4.

Let V0 be a largest vertex set of G such that | div(u, v)| ≥ 2k3/2 for all u, v ∈ V0. If 
|V0| ≥ k+1 then we are done by Lemma 5.2, otherwise assume that V0 = {v1, v2, . . . , vL}
for some L ≤ k and for each i ∈ [L] define the set Vi := {v ∈ V (G) : | div(v, vi)| < 2k3/2}. 
Due to the maximality of S0 we get V (G) =

⋃L
i=1 Vi. The proof splits into two cases:

Case I: Every j ∈ [L] with dG(vj) ∈ [10k3/2, n − 1 − 10k3/2] satisfies |Vj | ≤ 3k.

It is easy to see that at most 3k2 vertices of G do not lie in a set Vj of size at least 3k. 
Moreover, dG(vi) − 2k3/2 < dG(v) < dG(vi) + 2k3/2 for all i ∈ [L] and v ∈ Vi. Thus, at 
least n −3k2 vertices v ∈ V (G) have their degree satisfy dG(v) /∈ [12k3/2, n −1 −12k3/2]. 
Therefore, for all such vertices we have dG(v) ≤ 12k3/2 or dG(v) ≥ n −1 −12k3/2. We will 
assume that at least half of these vertices fulfil the first condition, as otherwise we can 
follow an identical argument by working with the complement G instead. Consequently, 
we find a set V ⊂ V (G) of size |V | ≥ (n − 3k2)/2 ≥ 450x5/2 with Δ(G[V ]) ≤ 12k3/2. 
Thus |V | ≥ 25xΔ(G[V ]) and hom(G[V ]) ≤ hom(G) ≤ (n −6k2)/10x ≤ |V |/5x, hence we 
can apply Lemma 5.3 to G[V ] to obtain a distribution D1 on [0.1, 0.9]V and a vertex set 
U ⊂ V of size �x� + 1 = k + 1 with badD1

(U) ≤ |U |. We also take D0 := TV (G)\V to be 
the trivial distribution induced by V (G) \ V , and let D := D0 ×D1 denote the product 
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Fig. 1. The clustering behaviour of vertices according to their degree in V .

distribution on [0.1, 0.9]V (G). By Lemma 4.1 we obtain badD(U) ≤ badV
D1

(U) ≤ |U |, as 
required.

Case II: There is j ∈ [L] such that dG(vj) ∈ [10k3/2, n − 1 − 10k3/2] and |Vj | ≥ 3k.

We pick a subset V of Vj of size 3k such that vj ∈ V . Next, we set X1 := N(vj) \V and 
X2 =: V (G) \ (V ∪N(vj)). By the choice of vj note that both |X1|, |X2| ≥ 10k3/2 − 3k. 
Our aim is to show that most vertices in X1 have big degree in V , whereas most vertices 
in X2 have small degree in V . This will allow us to separate the distinct degrees we get 
in G[X1] from those we get in G[X2]. This clustering behaviour is illustrated in Fig. 1.

To show that this split occurs, we double count the edges in G between X1 and V . 
Recall that X1 ⊂ N(vj) and for each v ∈ V we have | div(v, vj)| ≤ 2k3/2, so each v ∈ V

gives at most 2k3/2 edges from itself to X1. Hence eG(X1, V ) ≤ (3k)(2k3/2) = 6k5/2. It 
follows that there are at most 6k3/2 vertices of X1 that are connected to less than 2k
vertices in V . Thus, if we let Y1 := {u ∈ X1 : dVG(u) ≥ 2k} we can easily observe that 
t1 := |Y1| ≥ |X1| − 6k3/2 ≥ 4k3/2 − 3k > 10.

Similarly, we double count the edges in G between X2 and V to see that there are 
at most 6k5/2 of them. It follows that at most 6k3/2 vertices of X2 that are connected 
to more than k vertices in V . Therefore, if we let Y2 := {u ∈ X2 : dVG(u) ≤ k}, then 
we can also see that t2 := |Y2| ≥ |X2| − 6k3/2 > 4k3/2 − 3k > 10. Recalling that 
V (G) = V ∪ X1 ∪ X2 is a partition, this shows that Z := V (G) \ (Y1 ∪ Y2) satisfies 
|Z| ≤ 2 · 6k3/2 + 3k ≤ 15k3/2.

To complete the proof, we apply the induction hypothesis to both Y1 and Y2. For 
i ∈ {1, 2} let xi := x(ti/n) ≤ x. This gives hom(G[Yi]) ≤ hom(G) ≤ n/20x = ti/20xi. 
Furthermore:

ti

x
5/2
i

= 1
x

3/2
i

· ti
xi

= 1
x

3/2
i

· n
x
≥ n

x5/2 ≥ 1000.

Thus, for i ∈ {1, 2}, provided xi ≥ 1 holds, we can apply the induction hypothesis 
to G[Yi] to find a probability distribution Di on [0.1, 0.9]Yi and a set Ui ⊂ Yi satisfying 
|Ui| ≥ xi + 1 and:
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badDi
(Ui) ≤ |Ui| · f(|Ui|), where f(y) := 8 log2 y. (8)

Note that if instead xi < 1 above, then as |Yi| = ti ≥ 10, we can take any set Ui ⊂ Yi

of order �xi� + 1 = 2 and any distribution Di on [0.1, 0.9]Yi , so (8) holds in all cases.
We can also assume that max{|U1|, |U2|} < k+ 1, as otherwise taking U to simply be 

one of these sets proves the theorem.
Next, let D0 := UV denote the uniformly constant distribution on [0.1, 0.9]V and pick 

D3 := TZ , the trivial Z-induced distribution. Setting U := U1 ∪ U2, we let D denote the 
product distribution 

∏3
i=0 Di on [0.1, 0.9]V ×

∏
i∈[2][0.1, 0.9]Yi×[0.1, 0.9]Z = [0.1, 0.9]V (G).

Note that dVG(u) ≥ 2k ≥ dVG(v) + k for all u ∈ Y1 and v ∈ Y2, by the definition of Y1
and Y2. It then follows from Lemma 4.2 that for all such vertices we have:

badV
D0

(u, v) ≤ 3
k
. (9)

As n ≥ 1000x5/2 and |Z| ≤ 15k3/2, we can now lower bound the size of U :

|U | = |U1| + |U2| ≥ (x1 + 1) + (x2 + 1) ≥ x

(
t1
n

)
+ x

(
t2
n

)
+ 2

≥ (n− |Z|)x
n

+ 2 ≥ x− 15x · k3/2

n
+ 2 ≥ x + 1,

which gives |U | ≥ x + 1. Finally, we are able to estimate badD(U) as follows:

badD(U) =
∑

{u,v}⊂U1

badD(u, v) +
∑

{u,v}⊂U2

badD(u, v) +
∑

(u,v)∈U1×U2

badD(u, v)

= badD(U1) + badD(U2) + |U1||U2| · max
(u,v)∈U1×U2

{
badD(u, v)

}
≤ badD1

(U1) + badD2
(U2) + |U1||U2| · max

(u,v)∈U1×U2

{
badV

D0
(u, v)

}
≤ |U1| · f(|U1|) + |U2| · f(|U2|) + 3

k
· |U1||U2| ≤ |U | · f(|U |).

The final three inequalities here respectively follow from Lemma 4.1, then from (8)
and (9), and lastly from max{|U1|, |U2|} < k + 1 and Lemma 2.5. This completes the 
proof. �
5.2. The case when n = O(k5/2)

Before we move to the case when n = O(k5/2), we present two results which will allow 
us to move to a large induced subgraph, which is reasonably regular. Comparable results, 
with a different range of parameters, were proved by Alon, Krivelevich and Sudakov in 
[3] (Section 2). The next lemmas follow their approach. We first introduce the following 
notion.
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Definition 5.5. For every n-vertex graph G, its average degree, denoted by d(G), is given 
by the formula d(G) := n−1 ∑

v∈V (G) dG(v).

Lemma 5.6. Every n-vertex graph G contains an induced subgraph H of order at least 
n/3 such that Δ(H) ≤ 2 log2 n · d(H).

Proof. We set G0 := G and for i = 0 to i = log2 n we repeat the following algorithm: 
first set ni := |V (Gi)|, Δi := Δ(Gi) and di := d(Gi). Then, if Δi ≤ 2di log2 n we simply 
stop the process. Otherwise we repeatedly delete from Gi all vertices of degree at least 
di log2 n to create a new graph Gi+1. Let H be the graph we obtain after we complete 
the algorithm.

Observe that at the ith iteration we delete at most e(Gi)/(di log2 n) = ni/(2 log2 n)
vertices, therefore ni+1 ≥ ni(1 − (2 log2 n)−1). It follows that the subgraph H has at 
least n · (1 − (2 log2 n)−1)log2 n vertices. As 1 −x ≥ e−2x for 0 < x ≤ 1/2, we deduce that 
|V (H)| ≥ n/e > n/3.

If H was created because at some point Δi ≤ 2di log2 n then we are done. Otherwise 
H was obtained after log2 n iterations and at each step i we have Δi+1 ≤ di log2 n and 
2di log2 n ≤ Δi. Therefore we can see that Δi+1 ≤ Δi/2. It follows inductively that 
Δ(H) ≤ Δ(G) · 2− log2 n < n · n−1 = 1. We then get that Δ(H) = d(H) = 0, which also 
ends the solution. �
Lemma 5.7. Every n-vertex graph G contains an induced subgraph H that is of order at 
least n/30 log2 n with Δ(H) ≤ 5 log2 n · δ(H).

Proof. By the previous lemma we can find an induced subgraph G0 of G of order m ≥ n/3
such that Δ(G0) ≤ 2 log2 n · d(G0). We now perform the following algorithm: starting 
with i = 0, let di := d(Gi) and delete a vertex v of Gi if 5dGi

(v) < 2di. Let now Gi+1 be 
the resulting graph and increment i. Note that at each step we remove from Gi at most 
2di/5 edges, which implies that di+1|Gi+1| ≥ di|Gi| − 4di/5 > di(|Gi| − 1), thus (di)i≥0

is an increasing sequence. Therefore we stop before deleting all the vertices and we let 
H be the resulting graph.

We can now observe that Δ(H) ≤ Δ(G0) and δ(H) ≥ 2d0/5, which immediately 
implies that Δ(H) ≤ Δ(G0) ≤ 2d0 log2 n ≤ 5 log2 n · δ(H). We finally have to lower 
bound the number t of vertices that are left in H. When we created H from G0 we deleted 
less than 2(m − t)d0/5 edges, hence 2td0 log2 n ≥ tΔ(H) ≥ td(H) ≥ md0−4(m − t)d0/5. 
By rearranging the last inequality we obtain t ≥ m/(10 log2 n) ≥ n/(30 log2 n) and so H
is the required induced subgraph. �

We are interested in finding sets that have many diverse pairs of vertices as they will 
give us the freedom required to select vertices with distinct degrees. We thus make the 
following:
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Definition 5.8. Given a graph G and ε > 0, its diversity graph Jε(G) is the graph on V (G)
with an edge between vertices u and v if |NG(u)
NG(v)| ≤ ε min{|NG(u)|, |NG(v)|}.

The following theorem is the main component of our proof in this case. We note that 
our earlier results from Subsection 5.1 will be crucial here.

Theorem 5.9. Let G be a n-vertex graph and let k ∈ N with 1000k5/2 ≥ n ≥ 8000k2, 
hom(G) ≤ n/12k and Δ(G) ≤ 4nk−1/3. Then there exists a probability distribution D on 
[0.1, 0.9]V (G) and a vertex set U ⊂ V (G) of order |U | = Ω

(
k log−2

2 (k+1)
)

which satisfies 
badD(U) ≤ 8|U | log2 |U |.

Proof. We first note that if k is small then there is nothing to prove, so we can assume 
k > 240. Moreover, together with the hypothesis this gives:

20 + 4 log2 k ≤ 2 log2 n ≤ 20 + 5 log2 k ≤ (5.5) log2 k ≤ k/100. (10)

Next, by Lemma 5.7 we find an induced subgraph H of G of order m ≥ n log−1
2 n/30

with Δ(H) ≤ 5 log2 n · δ(H). From now on we will only work with this subgraph H. 
Notice that Δ(H) ≥ k log−1

2 n/10, as otherwise by Turán’s Theorem, combined with 
(10), we find an independent set in H (and so in G) of order at least m/(Δ(H) + 1) ≥
n(3k + 30 log2 n)−1 > n/4k, contradicting the hypothesis.

Take J to denote the diversity graph J := Jε(H), where ε = 1/48. We then set:

S1 :=
{
v ∈ V (H) : dJ(v) ≤ m

600k

}
and S2 := V (H) \ S1.

Our proof will split according to the sizes of S1 and S2.

CASE 1: |S1| ≥ m/2.

We will show that in this scenario we can take the desired set U ⊂ S1. We select a set 
W ⊂ S1 by including every element of S1 independently with probability p := 8k/|S1|.

We now claim that each of the following events holds with probability at least 3/4:

(i) |W | ≥ 4k;
(ii) e(J [W ]) ≤ k;
(iii) dWH (v) ≤ 2 log2 n ·mΔ for all v ∈ V (H), where mΔ := max{1, 240 · Δ(H) · k/n}.

To prove the claim for (i)−(iii) above, let us first denote by Ai, Aii and Aiii the events 
that |W | ≤ 4k, e(J [W ]) ≤ 2k and dWH (v) ≥ 2 logn ·mΔ, respectively.

Starting with (i), recall |W | ∼ Bin(|S1|, p) with E[|W |] = p|S1| = 8k, therefore by 
Chernoff’s Inequality we get P (Ai) = P

(
|W | ≤ 4k

)
≤ exp(−k) < 1/4, proving it for (i).

For (ii) note that E[e(J [U ])] ≤ p2e(J [S1]) ≤ p2|S1|(m/600k) ≤ 64km/600|S1| ≤ k/4. 
From Markov’s inequality we get P (Aii) = P (eJ [U ] ≥ k) ≤ 1/4, which gives us (ii).
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Lastly, to prove it for (iii) take any v ∈ V (H) and let nv := dS1(v). Then observe that 
dWH (v) ∼ Bin(nv, p). Now Theorem 2.7 gives P

(
dWH (v) ≥ 2mv log2 n

)
≤ 2−2 log2 n = n−2, 

where mv := max{1, 240nvk/n}. As mΔ ≥ mv for all v ∈ V (H), the union bound implies 
that P (Aiii) ≤ n−1 < 1/4.

Combining the above bounds gives us P (Ai) +P (Aii) +P (Aiii) ≤ 3/4. Therefore, by 
the union bound we can choose a set W ⊂ S1 that satisfies all the conditions in (i)−(iii).

To continue the proof in this case, note that by (i) and (ii) we can apply Turán’s 
theorem to J [W ] to find an independent set U0 ⊂ W with |U0| = 2k + 1. However, this 
means that U0 is 

(
δ(H)/48

)
-diverse to V (H). By (iii) the set U0 is γ-balanced to V (H), 

where γ := log2 n · mΔ/k. Letting D := Bβ(U0, V (H)) denote the blended probability 
distribution on [0.1, 0.9]V (H), by applying Lemma 4.3 with β−1 := 10 log2 n

√
mΔ we 

obtain that for all distinct u, v ∈ U0:

badD(u, v) ≤ 960 log2 n
√
mΔ

δ(H) + δ(H)
48 exp

(
−4.5 ·mΔ log2

2 n

2mΔ log2 n

)
.

By noting that Δ := Δ(H) ≤ 5 log2 n · δ(H), this can be further reduced to:

badD(u, v) ≤ 12 · (20 log2 n)2 · √mΔ

Δ + δ(H)
48n2 .

Our next claim is that Δ−1√mΔ < 28kn−1 log2 k. Indeed, on the one hand, when 
mΔ = 1 then Δ−1√mΔ ≤ Δ−1 ≤ 10kn−1 log2 n < 28kn−1 log2 k by (10), as required. 
On the other hand, mΔ ≥ 1 implies Δ−1 ≤ 240kn−1 and so Δ−1√mΔ ≤

√
240k/(nΔ) ≤

240kn−1 < 28kn−1 log2 k, which proves the claim.
Recall that log2 n ≤ 3 log2 k by (10) and that n ≥ 8000k2 and δ(H) < n. Therefore, 

we can deduce that for all distinct u, v ∈ U0 we have:

badD(u, v) ≤ 12 · (60 log2 k)2 · 28k log2 k

n
+ 1

105k2 ≤ 103(log2 k)3

k
.

To finish the proof in this case, choose a subset U ⊂ U0 of size 10−3k log−2
2 k ≥ k1/4. 

It follows that badD(u, v) ≤ 16|U |−1 log2 |U | for all u, v ∈ U .
By summing over all pairs of distinct vertices in U , it immediately follows, as required, 

that:

badD(U) ≤ 16 log2 |U |
|U | ·

(
|U |
2

)
= 8|U | log2 |U |.

CASE 2: |S2| ≥ m/2.

Our first step here is to find a set W ⊂ S2 and for each vertex w ∈ W two sets 
Sw, Tw ⊂ V (H) with the following properties:

(i) |W | ≥ |S2|/16Δ(H);
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Fig. 2. The clusters formed around each w ∈ W .

(ii) Sw ⊂ NH(w) and |Sw| ≥ |NH(w)|/2 for each w ∈ W ;
(iii) Sw ∩NH(w′) = ∅ for all distinct w, w′ ∈ W ;
(iv) Tw ⊂ NJ (w) with |Tw| = t := 2−19 · 9k log−2

2 k for all w ∈ W .

With these sets in hand, our set U will (roughly) be of the form U =
⋃

w∈W Uw, where 
each Uw is a set produced by applying Theorem 5.4 to Sw ⊂ NH(w), while the sets Tw

will be used to establish ‘bad’ control between vertices in distinct Uw.
As the diagram in Fig. 2 suggests, our partition is guided by the neighbourhoods of 

vertices in the set W = {wi}i. The high ‘J-degree’ of vertices in S2 guarantees a strong 
clustering behaviour, so that each vertex wi has a large set Twi

of vertices which behave 
similarly. These sets can be used to obtain ‘bad’ control between vertices in distinct Swi

.
We now proceed with the details. To begin, select a set W0 ⊂ S2 by including each 

element independently with probability p := 1/8Δ, where Δ := Δ(H). Next, for each 
w ∈ W0 we define the set:

Sw :=
{
v ∈ V (H) : NH(v) ∩W0 = {w}

}
.

We then let W ⊂ W0 be the set W := {w ∈ W0 : |Sw| ≥ |NH(w)|/2}. Lastly, each 
w ∈ W is also an element of S2, by definition, so we have dJ(w) ≥ m/600k > t. We take 
Tw to be an arbitrary subset of size t from NJ(w).

Having specified the sets, it remains to show that with positive probability properties 
(i)−(iv) hold for our choices. To see this, note that (ii) holds by definition of Sw and W . 
Property (iii) also always holds as if v ∈ Sw ∩ NH(w′) then v ∈ NH(w) ∩ NH(w′) and 
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{w, w′} ⊂ NH(v) ∩W0, which by definition of Sw implies w = w′. Lastly (iv) immediately 
holds by construction.

It only remains to prove that (i) holds with positive probability. To see this, note that 
given w ∈ S2 and v ∈ N(w) we have:

P
(
v ∈ Sw

∣∣w ∈ W0
)

= (1 − p)d
S2
H (v)−1 > (1 − p)Δ ≥ e−2pΔ = e−1/4.

Therefore P (v /∈ Sw|w ∈ W0) ≤ 1 − e−1/4 ≤ 1/4 and this inequailty quickly implies 
that E

[
|N(w) \ Sw|

∣∣w ∈ W0
]
≤ |N(w)|/4. By Markov’s inequality we obtain:

P (w /∈ W |w ∈ W0) = P
(
|N(w) \ Sw| ≥ |N(w)|/2

∣∣w ∈ W0
)
≤ 1/2.

We can now further deduce that:

E
[
|W0 \W |

]
=

∑
w∈S2

P (w /∈ W |w ∈ W0) · P (w ∈ W0) ≤ E
[
|W0|

]
/2 = |S2|p/2,

since E[|W0|] = |S2|p, as we recall that |W0| ∼ Bin(|S2|, p). From here, it follows next 
that E[|W |] = E[|W0| − |W0 \W |] ≥ |S2|p/2 = |S2|/16Δ. Thus we can fix a choice of W
so that (i), and hence (i)−(iv), are satisfied.

Our current aim is to find distinct expected degrees in each subgraph G[Sw] with 
w ∈ W by appealing to Theorem 5.4 and to use the control sets {Tw}w∈W that ensure 
we can control the degrees between the different sets, so that we can find our required 
set U in 

⋃
w∈W Sw.

To proceed with this, first observe that the sets {Sw}w∈W are pairwise disjoint, since 
for distinct w, w′ ∈ W we have Sw ∩ Sw′ ⊂ Sw ∩NH(w′) = ∅ by (ii) and (iii).

Next, notice that the sets {Tw}w∈W are also pairwise disjoint. Indeed, suppose there 
is some v ∈ Tw1 ∩ Tw2 for some distinct w1, w2 ∈ W and assume |N(w1)| ≤ |N(w2)|. 
Let Sv := Sw2 ∩ N(v) and Sv := Sw2 \ N(v). As v ∼ w1 in J , NH(w1) ∩ Sw2 = ∅ and 
Sw2 ⊂ NH(w2), we deduce that |Sv| ≤ ε|N(w1)| ≤ ε|N(w2)|. However v ∼ w2 in J , thus 
|Sv| ≤ ε|N(w2)|. Therefore |N(w2)|/2 ≤ |Sw2 | = |Sv| + |Sv| ≤ 2ε|N(w2)| = |N(w2)|/24, 
which is a contradiction. It follows that Tw1 ∩ Tw2 = ∅ for any w1 �= w2 in W .

We want to ensure that vertices of Sw have high degree in Tw, whereas their degree 
in Tw′ with w′ �= w is low. Given w ∈ W we define:

Rw :=
{
v ∈

⋃
w′ 
=w

Sw′ : dTw

H (v) ≥ t/3
}
, and Lw :=

{
v ∈ Sw : dTw

H (v) ≤ 2t/3
}
.

If we count the non-edges between Sw and Tw we see there are at least (t/3)|Lw| of 
them, whereas their number is at most t(ε|N(w)|) since each vertex of Tw is connected 
to w in J . It follows that |Lw| ≤ 3ε|N(w)| ≤ 3ε(2|Sw|) ≤ |Sw|/8, using (ii) above and 
that ε = 1/48. Similarly, by double counting the edges between 

⋃
w′ 
=w Sw′ and Tw we 

obtain |Rw| ≤ |Sw|/8.
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We now set S′
w := Sw \

⋃
v∈W (Lv ∪ Rv ∪ Tv) ⊂ Sw for each w ∈ W . Discarding 

elements if necessary, we may assume that |S′
w| > 1 for all w ∈ W . As the sets {Sw}w∈W

are pairwise disjoint, this also holds for {S′
w}w∈W . From our bounds above we find that:∣∣ �

w∈W

S′
w

∣∣ ≥ ∣∣ �
w∈W

Sw

∣∣− ∣∣ ⋃
v∈W

(Lv ∪Rv ∪ Tv)
∣∣− ∣∣W ∣∣

≥
∑
w∈W

(
|Sw| − |Lw| − |Rw| − |Tw| − 1

)
≥

∑
w∈W

(
|Sw| − |Sw|/4 − t− 1

)
≥

∑
w∈W

|Sw|
2 ≥ |W |δ(G)

4 .

The second inequality here comes from |Lw|, |Rw| ≤ |Sw|/8, whereas the third one 
uses that:

1 + t := 1 + 9k
219 log2

2 k

(10)
≤ k

400 log2
2 n

≤ Δ(H)
40 log2 n

≤ δ(H)
8 ≤ |Sw|

4 .

The final inequality above comes from (ii). Continuing with the previous expression, 
using that δ(H) ≥ Δ/(5 log2 n) and that, by property (i), |W | ≥ |S2|/16Δ ≥ m/32Δ, 
we obtain:

∑
w∈W

∣∣S′
w

∣∣ ≥ |W |δ(G)
4 ≥

(
|S2|
16Δ

)(
Δ

20 log2 n

)
= m

640 log2 n
≥ n

215 log2
2 n

. (11)

We are now in good position to find the desired set U . To do this, we want to apply 
Theorem 5.4 to each graph G[S′

w]. With this in mind, for each w ∈ W let kw := |S′
w|k/n, 

and note that |S′
w|/kw = n/k. Also recall that |S′

w| ≤ |NH(w)| ≤ Δ ≤ 4nk−1/3, hence:

|S′
w|

k
5/2
w

= |S′
w|

(|S′
w|k/n)5/2

= n5/2

k5/2|S′
w|3/2

≥ n5/2

k5/2 · Δ3/2 ≥ n5/2

k5/2(4nk−1/3)3/2
= n

8k2 ≥ 1000.

We also have hom(G[S′
w]) ≤ hom(G) ≤ n/12k = |S′

w|/12kw. Thus for each w ∈ W , 
provided kw ≥ 1, we can apply Theorem 5.4 to G[S′

w] to obtain a set Uw ⊂ S′
w with 

|Uw| ≥ kw + 1 and a probability distribution Dw on [0.1, 0.9]S′
w such that:

badS′
w

Dw
(Uw) ≤ |Uw| · f(|Uw|), where f(x) := 8 log2 x. (12)

As in the proof of Theorem 5.4, if kw ≤ 1 then any set Uw ⊂ S′
w of size 2 ≥ ki + 1

trivially satisfies (12), thus the above computations all make sense.
We now set U :=

⋃
w∈W Uw and S′ :=

⋃
w∈W S′

w. Our distribution D will again be 
a product distribution, with Dw the forming factors. For each w ∈ W we also take 
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Ew to denote the uniformly constant distribution on Tw given by Ew := UTw
and set 

T := ∪w∈WTw. We note that given distinct w, w′ ∈ W and u ∈ Uw, u′ ∈ Uw′ we have 
dTw

H (u) ≥ 2t/3 ≥ dTw

H (u′) + t/3. Therefore, by the choice of Ew and from Lemma 4.2 we 
find that:

badTw

Ew
(u, u′) ≤ 9/t. (13)

We also let TR denote the trivial R-induced distribution, where R := V (G) \ (S′ ∪T ). 
Let D be the product distribution on [0.1, 0.9]S′ × [0.1, 0.9]T × [0.1, 0.9]R = [0.1, 0.9]V (G)

below:

D :=
( ∏
w∈W

Dw

)
×

( ∏
w∈W

Ew
)
× TR.

To complete the proof, we are only left to lower bound |U | and upper bound badD(U). 
For the lower bound, using (11) and that log2 n ≤ 2

√
2 log2 k from (10), we obtain:

|U | =
∑
w∈W

∣∣Uw

∣∣ ≥ ∑
w∈W

kw ≥
∑
w∈W

|S′
w| ·

k

n
= k

n

(∣∣ ⋃
w∈W

S′
w

∣∣) ≥ k

219 log2 k
= t

9 .

For the upper bound on badD(U), we have:

badD(U) =
∑
w∈W

badD(Uw) +
∑

{w,w′}⊂W

badD(Uw, Uw′)

≤
∑
w∈W

badS′
w

Dw
(Uw) +

∑
{w,w′}⊂W

badTw

Ew
(Uw, Uw′)

≤
∑
w∈W

badS′
w

Dw
(Uw) +

∑
{w,w′}⊂W

|Uw| · |Uw′ | · max
(u,u′)∈Uw×Uw′

badTw

Ew
(uw, uw′)

≤
∑
w∈W

|Uw| · f(|Uw|) +
∑

{w,w′}⊂W

|Uw| · |Uw′ | ·
(

9
t

)
.

The first inequality here follows Lemma 4.1, the second is immediate from the defini-
tion of badS

D(U, V ), whereas the third one holds by (12) and (13).
Choose a smallest subset W ′ := {w1, . . . , wM} of W so that | �w∈W ′ Uw| ≥ t/9. 

If W ′ = {w′} for some w′ ∈ W then we are done by simply taking U = Uw′ since 
badD(Uw′) ≤ |Uw′ |f(|Uw′ |). Otherwise we can assume that the sequence Ui := Uwi

is 
non-increasing in size with i, i.e. that |U1| ≥ |U2| ≥ ... ≥ |UM |. Setting U<i :=

⋃
j<i Ui, 

we immediately see from our choice of W ′ that |U<i| ≤ t/9. Our bound on badD(U)
from above thus gives:

badD(U) ≤
∑
i∈[M ]

|Ui| · f
(
|Ui|

)
+

∑
i∈[M ]

(
9|U<i|

t

)
|Ui| ≤

∑
i∈[M ]

|Ui| · f
(
|Ui|

)
+

∑
i∈[2,M ]

|Ui|.
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For each i ≥ 2 we have |Ui| ≤ |U<i| from the ordering and so by applying Lemma 2.5
we get |U<i| ·f(|U<i|) +|Ui| ≤ |U<i+1| ·f(|U<i+1|). Repeatedly applying this as i increases 
gives us badD(U) ≤ |U | · f(|U |), noting that U<m+1 = U . This completes the proof. �

Let us remark that combining the two cases in the proof above yealds the lower bound 
|U | ≥ 2−25k log−2

2 (k + 1) for our desired set U .
We are finally able to prove Theorem 5.1. The proof proceeds in a very similar way to 

that of Theorem 5.4 but, as the details are involved, for completeness we will go through 
it with care.

Proof of Theorem 5.1. We will prove a slightly more convenient statement, namely that 
given the hypothesis there is a set U ⊂ V (G) and a distribution D on [0.1, 0.9]V (G) such 
that |U | ≥ 2−26(k + k3/4) log−2

2 (k + 1) and badD(U) ≤ 8|U | log2 |U |. We will prove this 
by induction on |V (G)|. Note that the theorem trivially holds in the first case where the 
hypothesis applies, when n = 20000 and k = 1 (taking U to be any sets of size 1 and 
D the trivial distribution). Also, as in Theorem 5.9, when k is small there is nothing to 
prove, so we can assume k ≥ 225.

Let V0 be a largest vertex set of G such that | div(u, v)| ≥ 2k3/2 for all u, v ∈ V0. If 
|V0| ≥ k+1 then we are done by Lemma 5.2, otherwise assume that V0 = {v1, v2, . . . , vL}
for some L ≤ k and for each i ∈ [L] define the set Vi := {v ∈ V (G) : | div(v, vi)| < 2k3/2}. 
Due to the maximality of S0 we get V (G) =

⋃L
i=1 Vi. The proof splits into the two already 

familiar cases:

Case I: Every j ∈ [L] with dG(vj) ∈ [nk−1/3, n − 1 − nk−1/3] satisfies |Vj | ≤ 3k.

We have seen that at most 3k2 vertices of G do not lie in a set Vj of size at least 
3k. Moreover, dG(vi) − 2k3/2 < dG(v) < dG(vi) + 2k3/2 for all i ∈ [L] and v ∈ Vi. 
Hence dG(v) /∈ [nk−1/3 + 2k3/2, n − 1 − nk−1/3 − 2k3/2] for at least n − 3k2 of the 
vertices v ∈ V (G). Therefore for all such vertices we have dG(v) ≤ nk−1/3 + 2k3/2 or 
dG(v) ≥ n −1 −nk−1/3−2k3/2. We will assume that at least half of these vertices satisfy 
the first condition, as otherwise we can follow an identical argument working with G
instead. Consequently we find a set V ⊂ V (G) with |V | ≥ (n − 3k2)/2 ≥ 12n/25 and 
Δ(G[V ]) ≤ nk−1/3 + 2k3/2 < 4|V |k−1/3. Moreover, |V | ≥ 8000k2 and hom(G[V ]) ≤
hom(G) ≤ n/25k ≤ |V |/12k, hence we can apply Theorem 5.9 to G[V ] to obtain a 
distribution D1 on [0.1, 0.9]V and a vertex set U ⊂ V with badD(U) ≤ 8|U | log2 |U | and 
|U | ≥ 2−25k log−2

2 (k + 1) > 2−26(k + k3/4) log−2
2 (k + 1). We also set D0 := TV (G)\V , i.e. 

the trivial distribution induced by V (G) \ V , and let D := D0 ×D1 denote the product 
distribution on [0.1, 0.9]V (G). By making use of Lemma 4.1 we can, once again, obtain 
badD(U) ≤ badV

D1
(U) ≤ 8|U | log2 |U |, as required.

Case II: There is j ∈ [L] such that dG(vj) ∈ [nk−1/3, n − 1 − nk−1/3] and |Vj | ≥ 3k.

As we did in Theorem 5.4, pick a subset V of Vj of size 3k such that vj ∈ V and set 
X1 := N(vj) \ V and X2 =: V (G) \ (V ∪ N(vj)). Then both |X1|, |X2| ≥ nk−1/3 − 3k. 
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The same double counting argument from Theorem 5.4 works here to give us the sets 
Y1 = {u ∈ X1 : dVG(u) ≥ 2k} and Y2 = {u ∈ X2 : dVG(u) ≤ k}, both of size at least 
nk−1/3 − 3k − 6k3/2 > 4096k3/2 > 248, such that |Xi \ Yi| ≤ 6k3/2 for each i ∈ {1, 2}. 
Since V (G) = V ∪X1 ∪X2 is a partition, this shows that Z := V (G) \ (Y1 ∪ Y2) satisfies 
|Z| ≤ 2 · 6k3/2 + 3k ≤ 15k3/2.

To complete the proof we will apply the induction hypothesis to both Y1 and Y2. 
Let ti := |Yi| for i ∈ {1, 2} and set ki := k(ti/n) ≤ k. This gives us hom(G[Yi]) ≤
hom(G) ≤ n/25k = ti/25ki. We also have tik

−2
i ≥ k−1

i (ti/ki) = k−1
i (n/k) ≥ nk−2 ≥

20000. Therefore, for each i = 1, 2 we can apply the induction hypothesis to G[Yi]
to find a probability distribution Di on [0.1, 0.9]Yi and a set Ui ⊂ Yi which satisfies 
|Ui| ≥ 2−26(ki + k

3/4
i ) log−2

2 (ki + 1) and:

badDi
(Ui) ≤ |Ui| · f(|Ui|), where f(x) := 8 log2 x. (14)

Let us remark that if ki < 233 then any set Ui ⊂ Yi of size 2 ≥ 2−25ki log−2
2 (ki + 1)

trivially satisfies (14), as already noted many times before, thus the above computations 
all make sense.

We can also assume that max{|U1|, |U2|} ≤ k, as otherwise the theorem follows im-
mediately by just taking U to equal one of these sets.

Next, let D0 := UV denote the uniformly constant distribution on [0.1, 0.9]V and pick 
D3 := TZ , the trivial Z-induced distribution. Setting U := U1∪U2, let D denote the prod-
uct distribution 

∏
i∈[0,3] Di on [0.1, 0.9]V ×

∏
i∈[2][0.1, 0.9]Yi × [0.1, 0.9]Z = [0.1, 0.9]V (G).

Note that dVG(u) ≥ 2k ≥ dVG(v) + k for all u ∈ Y1 and v ∈ Y2, by definition of Y1 and 
Y2. It then follows from Lemma 4.2 that for all such vertices we have:

badV
D0

(u, v) ≤ 3
k
. (15)

As V (G) = Y1 ∪ Y2 ∪ Z is a partition and |Z| ≤ 15k3/2, we get t1 + t2 ≥ n − 15k3/2, 
therefore we obtain k1 + k2 ≥ k − 15n−1k5/2 ≥ k −

√
k/300. Moreover, by recalling 

that ti ≥ nk−1/3 − 3k − 6k3/2 > nk−1/3/2, we deduce that ki = k(ti/n) ≥ k2/3/2 for 
i ∈ {1, 2}. By Lemma 2.4 we get that:

k
3/4
1 + k

3/4
2 ≥

√
k

4
√

8
+
(
k −

√
k

300 −
3
√
k2

2

)3/4

>

√
k

2 + k3/4 ·
(

1 − 2k−1/3

3

)3/4

.

Using the inequalities 1 − t ≥ exp(−2t) and exp(−t) ≥ 1 − t, which hold for any 
t ∈ [0, 0.5] and in particular for t = Θ(k−1/3), we can further deduce that:

k
3/4
1 + k

3/4
2 ≥

√
k

2 + k3/4 · exp
(
−k−1/3

)
>

√
k

2 + k3/4 − k−5/12 > k3/4 +
√
k

300 . (16)
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We are now in a position to lower bound the size of U :

|U | = |U1| + |U2| ≥
1

226 ·
(

k1 + k
3/4
1

log2
2(k1 + 1)

+ k2 + k
3/4
2

log2
2(k2 + 1)

)
≥

≥ 1
226 log2

2(k + 1)
·
(
k1 + k

3/4
1 + k2 + k

3/4
2

) (16)
≥

≥ 1
226 log2

2(k + 1)
·
(
k1 + k2 +

√
k

300 + k3/4

)
≥ k + k3/4

226 log2
2(k + 1)

.

Finally, we are able to estimate badD(U) as follows:

badD(U) =
∑

{u,v}⊂U1

badD(u, v) +
∑

{u,v}⊂U2

badD(u, v) +
∑

(u,v)∈U1×U2

badD(u, v)

= badD(U1) + badD(U2) + |U1||U2| · max
(u,v)∈U1×U2

{
badD(u, v)

}
≤ badD1

(U1) + badD2
(U2) + |U1||U2| · max

(u,v)∈U1×U2

{
badV

D0
(u, v)

}
≤ |U1| · f(|U1|) + |U2| · f(|U2|) + 3

k
· |U1||U2| ≤ |U | · f(|U |).

The final three inequalities here respectively follow from Lemma 4.1, then from (14)
and (15), and lastly using that max{|U1|, |U2|} ≤ k and Lemma 2.5. This completes the 
proof. �
6. Distinct degrees in random graphs

In this section we will study f(G(n, p)), the number of distinct degrees which can 
be found in an induced subgraph of the Erdős−Rényi random graph G(n, p). Our re-
sults extend the estimates for the case of constant p due to Bukh and Sudakov [9] and 
to Conlon, Morris, Samotij and Saxton [10]. We restate Theorem 1.3 for the reader’s 
convenience.

Theorem 1.3. Let n ∈ N and let p := p(n) ∈ [0, 1/2]. Then whp the random graph G(n, p)
satisfies the following:

(i) f
(
G(n, p)

)
= Θ 

(
3
√

pn2
)

for p ∈ [n−1/2, 1/2];
(ii) f

(
G(n, p)

)
= Θ

(
Δ(G(n, p))

)
for p ≤ n−1/2.

Although the estimation of f(G(n, p)) is quite natural in itself, we believe, as discussed 
in the concluding remarks, that the behaviour for p ∈ [n−1/2, 1/2] essentially determines 
the extremal relationship between hom(G) and f(G) beyond the range of the Narayanan–
Tomon conjecture, when hom(G) < n1/2. As a result, our calculations will focus on 
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the case (i) of Theorem 1.3. The next subsection contains the proof the upper bound 
on f(G(n, p)) in this case, whereas the second subsection contains the more difficult 
lower bound. In the final subsection we briefly indicate how to approach the case when 
p ≤ n−1/2.

6.1. Upper bound on f(G(n, p))

In this subsection we prove the upper bound on f(G(n, p)). Our approach closely 
follows that of Bukh and Sudakov (see Proposition 2.4 in [9]), but we include the complete 
details, as the estimates are more involved in the sparse case.

Proposition 6.1. When n ∈ N and p ∈ [n−1/2, 1/2], then f
(
G(n, p)

)
= O

(
3
√
pn2

)
whp.

Proof. Suppose G ∼ G(n, p) has a subset A ⊂ V (G) of size a such that G[A] has 8b
distinct degrees, where b = 16 3

√
pn2. As at most 6b − 1 of our distinct degrees can lie in 

the interval (pa − 3b, pa + 3b), either there are at least b vertices of A that have degree 
at least pa + 3b or at least b vertices that have degree at most pa − 3b.

We will assume first that we are in the former case, as this is the more intricate 
one. Let B ⊂ A be a set of b vertices which all have degree at least pa + 3b. Let us 
now look at the number e(A, B) of edges with one endpoint in A and one in B (those 
with both their endpoints in B will be counted twice since B ⊂ A). We then have 
pab + 3b2 ≤ e(A, B) = 2e(B) + e(A \B, B). As |B| = b implies e(B) < b2, we find that:

e(A \B,B) ≥ pab + b2 ≥ p(a− b)b + b2. (17)

Letting F denote the event that there are sets A and B which satisfy (17), it suffices to 
show that P (F ) = o(1). To see this, first suppose that 16p(a −b) ≥ b. As E[e(A \B, B)] =
p(a − b)b, by using Chernoff’s Inequality with δ = b/16p(a− b) ≤ 1 we get that:

P
(
e(A \B,B) ≥ pb(a− b) + b2

)
≤ P

(
e(A \B,B) ≥ pb(a− b) + 2−4b2

)
≤ exp

(
−b3

210p(a− b)

)
≤ exp

(
−b3

210pn

)
,

where the final inequality uses that a − b ≤ a ≤ n. Therefore, the union bound implies 
that event F can happen with probability at most:

P (F ) ≤ 2n ·
(
n

b

)
· exp

(
−b3

4 · pn

)
≤ 22n · exp

(
−b3

210 · pn

)
.

This tends to zero as n → ∞, as b ≥ 16 3
√
pn2.

Now suppose instead that 16p(a − b) < b. As e(A \ B, B) has binomial distribution, 
we have:
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P
(
e(A \B,B) ≥ pb(a− b) + b2

)
≤

(
b(a− b)

b2

)
· pb2 ≤

(
2ep(a− b)

b

)b2

≤ 2−b2 .

Recalling that p ≥ n−1/2 and that b ≥ 16 3
√
pn2 ≥ 16 3

√
n−1/2n2 ≥ 16

√
n, using the 

union bound we find that the event F occurs with probability at most:

P (F ) ≤ 2n
(
n

b

)
2−b2 ≤ 22n · 2−(16

√
n)2 .

Hence, it follows again that P (F ) = o(1) in this second case.
Finally, if there is a set B ⊂ A of b vertices that all have degree at most pa − 3b in 

G[A], then e(A \B, B) ≤ e(A, B) ≤ b(pa − 3b) ≤ pb(a − b) − b2. If p(a − b) < b then it is 
clear that such a set B exists with 0 probability since we cannot have a negative number 
of edges. Otherwise we just apply Chernoff’s Inequality for δ = b

p(a− b) ≤ 1 to get:

P

(
e(A \B,B) ≤ pb(a− b) − b2

)
≤ exp

(
− b3

2p(a− b)

)
≤ exp

(
− b3

2pn

)
,

where the last inequality follows as a − b ≤ a ≤ n. We have seen before that the union 
bound gives us probability of at most 2n ·

(
n
b

)
· exp

(
−b3/2pn

)
for such a set B to exist 

and we have shown in the previous case that this probability tends to 0 as n → ∞. �
6.2. Lower bound on f(G(n, p))

We now focus on proving our sharp lower bound for f(G(n, p)). Before we start, we 
will present a few results that will help us along the way.

Given D > 0 and a graph G, we call a set U ⊂ V (G) D-diverse if it is D-diverse to 
V (G). We say that the graph G is D-diverse if V (G) is D-diverse (see Section 4 before 
Lemma 4.3).

Proposition 6.2. If p � log n/n then all vertices of G(n, p) have degree asymptotic to np
whp. In particular, whp they all have degrees less than 2np.

Proof. Let u be a vertex of G(n, p). Then dG(n,p)(u) ∼ Bin(n − 1, p), so we can apply 

Chernoff’s Inequality for δ = 3
√

log n
np

to get P
(
|d(u) − np| ≥ 3

√
np log n

)
≤ 2n−9/2. 

The result now follows by the union bound. The last part is a consequence of the fact 
that δ ≤ 1. �
Lemma 6.3. If p � log n/n and p ≤ 1/2 then whp G(n, p) is p(n − 1)-diverse.

Proof. Let us first notice that |div(u, v)| ∼ Bin(n − 2, q) for all distinct u, v ∈ V (G), 
where q := 2p(1 − p). This holds as every vertex of div(u, v) has to be in N(u) \ N(v)
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or in N(v) \N(u) and these two possibilities represent disjoint events that happen with 
probability p(1 − p).

Note that q ≥ p � logn/n and so we can apply Chernoff’s Inequality for δ = 3
√

log n
nq

to obtain P
(
|div(u, v)| ≤ nq − 3

√
nq log n

)
≤ n−9/2. By the union bound, we therefore 

deduce that |div(u, v)| > nq(1 − δ) for any u, v ∈ V (G) whp. Since q ≥ p and δ → 0, we 
get that G(n, p) is p(n − 1)-diverse whp in this case. �
Lemma 6.4. Given n ∈ N and p ∈ [n−1/2, 1/2], let G ∼ G(n, p) and let V (G) := U � S

be a vertex partition such that 
√
n ≤ 4|U | ≤ pn. Then, with high probability, there is a 

subset W ⊂ S such that U is pn/3-diverse to W and dUG(w) ≤ 10p|U | for all w ∈ W .

Proof. Define the set SB := {v ∈ V : dUG(v) ≥ 10p|U |}. For any v ∈ S the random 
variable dUG(v) has distribution Bin(|U |, p), hence, as p|U | ≥ 2.5, we deduce that:

p̃ := P (v ∈ SB) ≤ (e/10)10p|U | < 3−2.5 < 1/10.

Now for each subset W ⊂ S we see that |W ∩ SB | has distribution Bin(|W |, p̃). 
Therefore, for any u1, u2 ∈ U we can deduce by using Theorem 2.7 and Lemma 6.3 that:

P

(
|div(u1, u2) ∩ SB | >

|div(u1, u2)|
3

)
≤ (3ep̃)|div(u1,u2)|/3 ≤

(
9
10

)√
n/4

.

Call a pair {u1, u2} ⊂ U of vertices big if |div(u1, u2) ∩ SB | > |div(u1, u2)|/3. By 
using the union bound we immediately deduce that U contains a bad pair of vertices 
with probability at most p2n2/8 · (9/10)

√
n/4 → 0 as n → ∞. Set now W := S \ SB and 

note that whp we have |div(u1, u2) \SB| > 2|div(u1, u2)|/3 ≥ 2p(n − 1)/3 for all distinct 
vertices u1, u2 ∈ U . We then get:

∣∣NW
G (u1)
NW

G (u2)
∣∣ ≥ ∣∣div(u1, u2) \ SB

∣∣− |U | ≥ 2p(n− 1)
3 −

√
n

4 >
pn

3 .

The second property follows directly from the definition of W , proving our result. �
Definition 6.5. Let G be a n-vertex graph and let 0 < p ≤ 1/2. We call a set U of vertices 
of G p-convenient if dG(u) ≤ 2pn for all u ∈ U and there is a set W ⊂ V (G) \ U such 
that U is pn/3-diverse to W and dUG(w) ≤ 10p|U | for all w ∈ W .

We now expose the randomness in G(n, p) and obtain a fixed graph G. According to 
Proposition 6.2 and Lemma 6.4, we may assume that G contains a p-convenient set U
of size 3

√
pn2/4.

At this point, the reader might have already noticed that the p-convenient conditions 
fit in very well with those from Lemma 4.3. Indeed, the set U is pn/3-diverse to W and 
10p-balanced, so the hypothesis of the lemma is satisfied. The most natural thing to do 
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would now be to apply the lemma with the blended distribution Bβ(U, W ). However, in 
order to obtain a set of Θ(|U |) degrees, we would like the first term in the RHS of (5)
to be of order |U |−1, which forces β := Θ (|U |/pn). This would then make the second 
term in the RHS of (5) to be a constant, so it seems that we cannot get the desired ‘bad’ 
control. One can obtain weaker bounds on f(G(n, p)) by altering the parameters here, 
but there is an unavoidable loss as things stand.

There is though a way around this issue. In Lemma 4.3 we solve the problem of 
coordinates lying outside [0.1, 0.9] by dealing with each pair of vertices {u1, u2} ⊂ U

individually. However, in certain situations it is possible to show that many vertices 
u1 ∈ U are simultaneously good for all pairs {u1, u2} ⊂ U . The crucial twist here is that 
the diversity term D := pn/3 satisfies D = Ω(Δ(G)). This allows us to guarantee that a 
fixed vertex u1 ∈ U whp is likely to have no neighbours in div(u1, u2) whose coordinates 
are ‘outliers’, and this happens for all u2 ∈ U . The approach here builds upon that of 
Jenssen, Keevash, Long and Yepremyan [19].

A slight change in our notation will be convenient below. Given a graph G with 
vertex partition V (G) = U � W and a probability vector p = (pw)w∈W ∈ [0, 1]W , we 
write G(p) to denote the probability space on the set of induced subgraphs of G that 
contain U , where for each vertex set S ⊂ W , the induced subgraph G[U ∪ S] is selected 
with probability 

∏
v∈S pv

∏
v∈W\S(1 − pv).

Proposition 6.6. Given n ∈ N and p ∈ [n−1/2, 1/2], let G be an n-vertex graph with a 
p-convenient set U ⊂ V (G) of size 3

√
pn2/4. Then there is a vector p ∈ [0.1, 0.9]V (G)\U

and a set U ′ ⊂ U with |U ′| ≥ |U |/500 so that 
∣∣E[dG(p)(u1)] − E[dG(p)(u2)]

∣∣ ≥ 1 for all 
distinct vertices u1, u2 ∈ U ′.

Proof. We may assume that n is large enough so that all asymptotic bounds hold. First 
set β := |U |/5pn < 0.1 and let S ⊂ V (G) \ U be such that U is pn/3-diverse to S and 
dUG(v) ≤ 10p|U | for all v ∈ S. As in the proof of Lemma 4.3, for each u ∈ U define the 
random vector qu on RS by qu := p′ − αu · projS(u), where p′ is the vector from before 
the truncation in the definition of the blended distribution Bβ(U, S). Recall we do this 
so that qu is independent of αu.

We call a vertex u ∈ U good if there are at most dSG(u)/25 coordinates v ∈ S ∩N(u)
so that qu

v
/∈ [0.2, 0.8]. Let Ug ⊂ U denote the set of good vertices.

We claim that P (|Ug| ≥ |U |/2) > 1/2. To prove this, take u ∈ U and note that qu
v

is a sum of at most 10p|U | uniform independent random variables, thus by applying 
Hoeffding’s inequality we obtain:

P
(
qu
v
/∈ [0.2, 0.8]

)
= P

(
|qu

v
− 1/2| > 0.3

)
≤ 2 exp

(
−50 · 0.09 · p2n2

10p|U |3
)

= 2e−7.2 <
1

100 .

We deduce that the expected number of coordinates v ∈ V ∩N(u) with qu
v
/∈ [0.2, 0.8]

is at most dVG(u)/100. By Markov we get that the vertex u is not good with probability 
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less than 1/4. Therefore, the expected number of vertices u ∈ U that are not good is at 
most |U |/4 and the claim follows from a simple application of Markov’s Inequality.

We now set T := V (G) \ (S ∪U) and let TT denote the trivial T -induced distribution. 
Define D to be the product distribution Bβ(U, S) × TT on [0.1, 0.9]S∪T and for distinct 
vertices u1, u2 ∈ U let Eu1,u2 denote the event that 

∣∣∣Ep∼D
[
dG(p)(u1) − dG(p)(u2)

]∣∣∣ ≤ 1. 
Moreover, since U is pn/3-diverse to S, we know that either |NS

G(u1) \NS
G(u2)| ≥ pn/6 or 

|NS
G(u2) \NS

G(u1)| ≥ pn/6. We set mS(u1, u2) := u1 in the first case and mS(u1, u2) := u2
in the second one.

Our next claim is that P
(
Eu,u′ | mS(u, u′) ∈ Ug

)
≤ 120|U |−1 for all u �= u′ in U . 

To prove it, we can assume that u = mS(u, u′). As u ∈ Ug, at most 2pn/25 vertices 
in NG(u) represent coordinates v such that qu

v
/∈ [0.2, 0.8]. Therefore, we can find a 

subset Y ⊂ NS
G(u) \ NS

G(u′) of size pn/12 such that qu
v
∈ [0.2, 0.8] for all v ∈ Y . Since 

p′
v

= qu
v

+ αuuv and |αu| < 0.1, we deduce that no Y -coordinate of p′ gets truncated 
when creating p ∼ Bβ(U, S). Condition now on any choice of α := (αw)w 
=u such that 
u ∈ Ug and note that αu is independent of it.

By looking at the following expression (when p ∼ D) as a function of αu:

E[dG(p)(u)] − E[dG(p)(u′)] = constant + E[dSG(p)(u)] − E[dSG(p)(u′)]

= constant + (projS(u) − projS(v)) · projS(p)

we observe that Eu,u′ holds provided that, conditioned on α, this difference lies in an 
interval of length 2. The same argument as in Lemma 4.3 gives us that Eu,u′ |α happens 
with probability at most 24(pnβ)−1 = 120|U |−1. The claim follows from the law of total 
probability.

To complete the proof, consider the graph J on the vertex set Ug where u1u2 ∈ E(J)
if Eu1,u2 holds. By the second claim we get E[e(J)] ≤ 120|U |−1 ·|Ug|(|Ug| −1)/2 < 60|U |, 
thus by Markov P

(
e(J) > 120|U |

)
< 1/2. It follows that P

(
e(J) ≤ 120|U |

)
> 1/2 and 

recall that P (|Ug| ≥ |U |/2) > 1/2. Therefore, with positive probability, we can choose 
p ∼ D such that |Ug| ≥ |U |/2 and e(J) ≤ 120|U |. For such a choice, the average degree 
of the resulting graph J is 4e(J)/2|Ug| ≤ 4e(J)/|U | ≤ 480. Thus, by Turán’s Theorem 
J has an independent set of size at least |U |/500. This independent set in J is precisely 
what we required. �
Proposition 6.7. Let G be a n-vertex graph and let p ∈ [n−1/2, 1/2]. Suppose that there 
is a p-convenient set U ⊂ V (G) in G, a vector p ∈ [0.1, 0.9]V (G)\U and a vertex subset 
U ′ ⊂ U so that 

∣∣E[dG(p)(u1)] − E[dG(p)(u2)]
∣∣ ≥ 1 for all distinct vertices u1, u2 ∈ U ′. 

Then f(G) = Ω(|U ′|).

Proof. We can assume n is sufficiently large. Let H be a random induced subgraph 
selected according to G(p) and define for it the following sets:

B = {u ∈ U ′ :
∣∣dH(u) − E[dG(p)]

∣∣ ≤ √
2pn},
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P = {{u, u′} ⊂ U ′ :
∣∣E[dG(p)(u)] − E[dG(p)(u′)]

∣∣ ≤ 2
√

2pn},

J = {{u, u′} ∈ P : dH(u) = dH(u′)}.

Our first claim is that P (|B| ≥ |U ′|/2) ≥ 1/2. To prove it, we start by estimating |B|. 
For any u ∈ U ′ we have Var

(
dG(p)(u)

)
=

∑
v∼u pv(1 − pv) ≤ pn/2, thus Chebyshev’s 

Inequality implies that P (u /∈ B) ≤ 1/4. Therefore E[|U ′ \B|] ≤ |U ′|/4, so by Markov’s 
inequality we get that P (|U ′ \B| ≥ |U ′|/2) ≤ 1/2, which is equivalent to our claim.

We now want to estimate |J |. First note that the separation in expected degree for 
U ′ implies that |P | ≤ 2|U ′|√2pn. Each {u, u′} belongs to J with probability equal 
to P

(
dH(u) − dH(u′) = 0

)
, which we claim is O

(
1/√pn

)
. This holds true because 

dH(u) − dH(u′) =
∑

ξvXv, where the sum is taken over all v ∈ div(u, u′) \ U , ξv ∈
{−1, 1} and Xv ∼ Be(pv) measures whether v ∈ V is being picked as a vertex of H or 
not. As U is pn/3-diverse to some subset S ⊂ V (G) \ U , we are able to deduce that 
|div(u, u′) \ U | ≥ |NS

G(u)
NS
G(u′)| ≥ pn/3, so we can apply Theorem 2.3 to prove the 

previous claim. Therefore E[|J |] ≤ |P | · max
{u,u′}∈P

P
(
dH(u) = dH(u′)

)
= O(|U ′|).

It follows that P
(
|J | = O(|U ′|)

)
> 1/2 by Markov, so together with the first claim, 

we are able to deduce that both |J | = O(|U ′|) and |B| ≥ |U ′|/2 happen with positive 
probability. The end of the proof follows the same idea as before: make a choice of H for 
which this happens and by Turán’s Theorem the graph J [B] obtained by building edges 
between the vertices of B which have equal degree in H has an independent set of size 
Ω(|U ′|). This set must consist of vertices with distinct degrees in H, as if u, u′ ∈ B and 
dH(u) = dH(u′) then {u, u′} ∈ P and so {u, u′} ∈ J , representing an edge in J [B]. �

With all these ingredients, we are finally able to prove the following:

Theorem 6.8. Given n ∈ N and p ∈ [n−1/2, 1/2], one has f
(
G(n, p)

)
= Ω

(
3
√
pn2

)
whp.

Proof. We expose the randomness in G(n, p) and thus move to a fixed graph G. According 
to Proposition 6.2 and Lemma 6.4, we can find a p-convenient set U in G of size 3

√
pn2/4. 

We then apply Proposition 6.6 to find a vector p ∈ [0.1, 0.9]V (G)\U and a subset U ′ ⊂ U

of size Ω 
(

3
√

pn2
)

so that 
∣∣E[dG(p)(u1)] − E[dG(p)(u2)]

∣∣ ≥ 1 for all distinct u1, u2 ∈ U ′. 
Lastly, Proposition 6.7 allows us to convert a constant proportion of the distinct expected 
degrees in U ′ to genuine distinct degrees, thus completing the proof. �
6.3. f(G(n, p)) when p � n−1/2

For completeness, in this subsection we briefly analyse f(G(n, p)) when p � n1/2. 
First, to see that there is a change in behaviour here over the range p ∈ [n−1/2, 1/2], note 
that if G ∼ G(n, p) with logn/n � p � n−1/2 then a simple concentration argument 
combined with the union bound shows that whp dG(u) = O(pn) for all vertices u ∈ V (G), 
implying that f(G) = O(pn) = o( 3

√
pn2) in this case.
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As indicated in Theorem 1.3 (ii), in this regime the maximum degree of G(n, p) is a 
key parameter. The following simple proposition is useful here.

Proposition 6.9. Let G be an n-vertex graph and let U ⊂ V (G) with |U | = k such that 
|NG(u) \

(
U ∪ ∪u′∈U\{u}N(u′)

)
| ≥ k for all u ∈ U . Then f(G) ≥ k.

Proof. Let U := {u1, u2 . . . , uk} such that |NG(ui) ∩U | is non-decreasing with i. For each 
i ∈ [k] take Si ⊂ NG(ui) \

(
U ∪ ∪u′∈U\{u}N(u′)

)
with |Si| = i − by the hypothesis such 

sets exist. It is now easy to see that the degrees of the vertices u1, u2, . . . , uk are strictly 
increasing in the induced subgraph G

[
U ∪ (∪i∈[k]Si)

]
, giving f(G) ≥ k, as required. �

The following observations show that f(G(n, p)) = Θ
(
Δ(G(n, p))

)
in this regime.

(i) If logn/n � p ≤ n−1/2 then whp dG(u) ∈ [pn/2, 2pn] for all u ∈ V (G), therefore 
we obtain that Δ(G(n, p)) = Θ(np);

(ii) If logn/n � p ≤ n1/2 then given any fixed set U ⊂ V (G(n, p)) with |U | = pn/8 and 
u ∈ U we have E

[
NG(u) \ (U ∪ ∪u′∈U\{u}N(u′))

]
= p(n − |U |)(1 − p)|U | ≥ pn/4. 

Chernoff’s Inequality then implies that |NG(u) \(U∪∪u′∈U\{u}N(u′))| ≥ pn/8 = |U |
for all u ∈ U whp. Then Proposition 6.9 together with observation (i), combine to 
help us deduce that f(G) ≥ |U | = Θ(Δ(G(n, p))) for logn/n � p ≤ n−1/2 whp.

(iii) If 0 ≤ p ≤ O(logn/n) then the random graph G(n, p) has Ω(Δ(G(n, p))) vertices of 
degree Ω(Δ(G(n, p))) whp (e.g. see Theorem 3.1 in [6]). It is therefore possible to 
find a set U of c ·Δ(G(n, p)) vertices with degree at least 5|U |, provided that c > 0
is sufficiently small.

(iv) It is also true that if p ≤ n−3/4 then whp |N(u) ∩ N(u′)| ≤ 3 for all pairs of 
distinct vertices u, u′ ∈ V (G(n, p)). With U chosen as in observation (iii), it follows 
that |N(u) \ (U ∪ ∪u′∈U\{u′}N(u′))| ≥ |N(u)| − |U | − 3|U | ≥ |U |. We therefore get 
f(G(n, p)) = Θ(Δ(n, p)) for p = O(logn/n).

7. Concluding remarks

Theorem 1.1 proves an essentially sharp dependence between hom(G) and f(G) for 
n-vertex graphs with hom(G) ≥ n1/2, which asymptotically resolves a conjecture of 
Narayanan and Tomon from [26]. It would be appealing to further remove the logarithmic 
terms here.

Another perhaps more compelling problem is to understand the relationship between 
these parameters when hom(G) < n1/2. Recall that Theorem 1.3 gives:

f
(
G(n, p)

)
=

⎧⎨⎩Θ
(

3
√

pn2
)

for p ∈ [n−1/2, 1/2];

Θ
(
Δ(G(n, p))

)
for p ∈ [0, n−1/2].
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It is well known that hom(G(n, p)) ∼ − logn/ log(1 −p) (see e.g. [8]) when 0 < p ≤ 1/2
is a fixed constant. For a general p := p(n) ≤ 1/2, the probability of having a set of size 
k which is homogeneous in G(n, p) is at most:

(
n

k

)(
p(

k
2) + (1 − p)(

k
2)) ≤ 2nk(1 − p)(

k
2) ≤ 2nke−p(k2) = 2

(
ne−p(k−1)/2

)k

.

In particular, hom(G(n, p)) ≤ 4p−1 log n whp. Combined with the bounds for 
f(G(n, p)) from Theorem 1.3 we find that for p ∈ [n−1/2, 1/2] we have:

f(G(n, p)) = Ω̃
(

3

√
n2

hom(G(n, p))

)
whp.

We believe that a similar bound holds for any n-vertex graph G with hom(G) < n1/2.

Conjecture 7.1. If G is an n-vertex graph then:

f(G) ≥ min
(

3

√
n2

hom(G) ,
n

hom(G)

)
n−o(1).

Observe that the minimum above changes exactly when hom(G) = n1/2, value af-
ter which the Narayanan–Tomon conjecture begins to apply. Theorem 1.1 proves it for 
hom(G) ≥ n1/2. Theorem 1.3 shows that this behaviour is essentially tight for G(n, p)
when p = n−1/2, when hom(G(n, p)) = n1/2+o(1). At the opposite extreme, n-vertex 
graphs with hom(G) as small as possible (Ramsey graphs) were proven by Jenssen et al. 
in [19] to have f(G) = Ω(n2/3), and so the conjecture is true at both ends of the interval 
hom(G) ∈ [Ω(log n), n1/2].
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