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a b s t r a c t

The high-temperature mechanical properties of precipitate-strengthened advanced alloys can be heavily
influenced by adjusting chemical composition. The widely-accepted argument within the community is
that, under certain temperature and loading conditions, plasticity occurs only in the matrix, and
dislocations have to rely on thermally-activated climb mechanisms to overcome the barriers to glide
posed by the hard precipitates. This is the case for γ0-strengthened Ni-based superalloys. The presence of
dilute amounts of slow-diffusing solute atoms, such as Re and W, in the softer matrix phase is thought to
reduce plasticity by retarding the climb of dislocations at the interface with the hard precipitate phase.
One hypothesis is that the presence of these solutes must hinder the flow of vacancies, which are
essential to the climb process. In this work, density functional theory calculations are used to inform two
analytical models to describe the effect of solute atoms on the diffusion of vacancies. Results suggest that
slow-diffusing solute atoms are not effective at reducing the diffusion of vacancies in these systems.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Many advanced alloys rely on the presence of hard precipitates
in a softer matrix phase in order to reduce creep strain rates. This
is the case for, amongst others, magnesium alloys [1], near-α
titanium alloys [2], and nickel-based superalloys [3]. At their
respective high operating temperatures, creep plasticity in these
alloys is limited to the softer matrix phase, and dislocations have
to climb around the hard precipitates in order to further con-
tribute to plasticity [1–3]. This mechanism is often referred to as
climb-assisted glide.

In Ni-based superalloys this deformation mechanism is parti-
cularly important, as it controls the minimum strain rate, which is
a metric of alloy performance [4,5]. Here, the harder precipitate
phase (γ0) remains impenetrable to dislocations during high-
temperature creep, and all plasticity is restricted to the softer
matrix phase (γ) [3]. The dislocation climb process that happens at
the γ/γ0 interfaces is diffusion-controlled and relies on vacancies
being emitted or absorbed by the dislocation cores depending on
the direction of climb [6]. These vacancies must diffuse from
emitting cores to absorbing cores in order for deformation to
continue. A prevalent hypothesis within the superalloys commu-
nity is that slow-diffusing atoms in the matrix phase must severely
reduce the flow of vacancies and, in turn, improve the high-

temperature creep properties [4,7]. This is currently the best
explanation provided for the beneficial effect of Re additions to
the superalloys (i.e. the rhenium-effect) [7], as discussed later.

Quantitative estimations of how chemistry affects the diffusion
of vacancies are also desirable since these may be used to inform
deformation models at the higher length-scales. Many implemen-
tations of Discrete Dislocation Dynamics (DDD) are becoming
mature enough to treat dislocation climb explicitly, and assume
that the flow of vacancies to and from the cores is the rate-
controlling mechanism [8,9]. Others assume a value of 10, 100 and
1000 for the ratio of the mobilities of glide and climb, expecting
this ratio to be dependent on temperature and alloy composition
[5]. Similarly, constitutive creep models commonly include an
effective diffusion factor, which is thought to be strongly influ-
enced by chemistry such as the presence of slow-diffusing atoms
[4,10]. Zhu et al. proposed a compositionally-explicit creep model
by assuming a simple model for how effective diffusivity may be
affected by the chemical composition of the alloy [4]. A reliable
estimate of how single solute atoms may affect vacancy diffusion is
needed.

This paper aims to evaluate the effect of dilute levels of Re, W
and Ta on the diffusion of vacancies in Ni, with the aim of
understanding whether slow-diffusing solute atoms can improve
high-temperature creep properties by reducing vacancy diffusion.
Rhenium is widely regarded to be the ‘magic dust’ for Ni-based
superalloys. Small additions of Re, on the order of 2–3 wt.%, have
been observed to dramatically improve the creep properties of the
superalloys. The effect of Re is thought to be amplified by the fact
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that Re strongly partitions to the γ phase, where most of the
dislocation activity is confined at the higher temperatures. Due to
the large volume fraction of the γ0 phase, adding 2–3 wt.% Re to the
bulk alloy composition of the alloy leads to a γ phase containing 8–
12 wt.% (2–4 at.%) Re [11]. Tungsten, sitting just beside Re in the
periodic table, is also regarded as a slow-diffusing solute atom in
the Ni lattice, and is thought to play a similar role to Re in the γ
phase of Ni-based superalloys. The effect of W is thought to be less
dramatic than Re since it does not partition to either of the two
phases. Finally, Ta was included in this study to test for the effect of
fast-diffusing elements on the flow of vacancies and investigate
trends across the periodic table.

2. Methodology

2.1. Calculation of effective diffusion coefficient

For vacancy diffusion, atoms in the γ matrix, which are
predominantly Ni, need to simultaneously diffuse in the reverse
direction. Thus, the effect of solute additions on an average
effective diffusion coefficient should be a first-order approxima-
tion of the vacancy diffusion coefficient. In the present case, we
can obtain the effective diffusion coefficient, Deff , by averaging the
solute diffusion coefficient in Ni (Di) and the Ni self-diffusion
coefficient (DNi), weighed by their respective atomic concentra-
tions:

Deff ¼ xiDiþxNiDNi ð1Þ
This first-order approximation is not the first attempt at

capturing the effects of chemical composition within an average
effective diffusion coefficient, but it is fundamentally different
from that used by Zhu et al. [4]. It should also be pointed out that
Deff must not be confused with ~D, the interdiffusion coefficient as
defined from Darken's equations. The interdiffusion coefficient is
approximately equivalent to the solute diffusion coefficient in
dilute binary alloys. In the present case, we are interested in the
effect of solute additions on nickel self-diffusion.

2.1.1. Calculation of solute diffusion coefficients
To get Deff from Eq. (1), we need to calculate the solute

diffusion coefficients using

Di ¼D0;i exp � Qi

kBT

� �
ð2Þ

where D0;i and Qi are the effective diffusion pre-factor and
activation energy respectively, kB is the Boltzmann constant and
T is the absolute temperature. The activation energy (Qi) and pre-
factor (D0;i) can be expressed analytically using solid-state princi-
ples [12]. The solute diffusion coefficient (Di) in dilute binary alloys
of Ni with fcc crystal structure is given by [13]

Di ¼ a2xv;iΓif i ð3Þ
where a is the equilibrium Ni lattice parameter, xv;i is the
probability of vacancy occurring beside an atom i, Γi is the solute-
vacancy exchange frequency and fi is the solute correlation factor.
For self-diffusion, the Ni atom itself is the solute.

The probability of a vacancy occurring beside an atom i is

xv;i ¼ exp
ΔSvibf

kB

 !
exp �ΔHf ;i

kBT

� �
ð4Þ

where ΔHf ;i is the enthalpy of vacancy formation adjacent to a
solute and ΔSvibf is the vibrational entropy of vacancy formation.
This has been calculated previously but results from different
theoretical approaches differ significantly [14]. We have assumed
ΔSvibf ¼ 1:4kB, computing an average of two values reported by

Seeger et al. [15] calculated by fitting the experimental Ni-self
diffusion data.

The jump frequency for a successful atom-vacancy exchange is
defined as [16]

Γi ¼ νni exp �ΔHm;i

kBT

� �
ð5Þ

where νni is the effective frequency associated with the vibration of
the atom in the direction of the vacancy [16] and ΔHm;i is the
enthalpy of migration or the difference between the energy at the
saddle point and the starting point of the transition.

Correlation effects develop in a system as the atoms do not
undergo a strict ‘random walk’. The correlation factor fi gives a
measure of this reduced efficiency of diffusion. For self-diffusion in
fcc crystals, a value of 0.78146 has been accurately determined
using computer simulations [17]. In dilute binary fcc alloys, several
different jumps are possible and fi is estimated using Lidiard's five
frequency exchange model [18]

f i ¼
2Γrotþ7Γdis

2Γrotþ2Γiþ7Γdis
ð6Þ

where Γrot and Γdis are jump frequencies for the rotation and
dissociation of the solute–vacancy pair respectively, and Γi is the
solute-vacancy exchange frequency.

Therefore, we can write

D0;i ¼ f ia
2νni exp

ΔSvibf

kB

( )
ð7Þ

Qi ¼ΔHf ;iþΔHm;i: ð8Þ

The separation into a pre-factor (D0;i) and exponential term (Qi) is
usually done to dissociate the temperature-dependent and
temperature-independent parts of diffusion, and these values
can be experimentally determined from the slope and intercept
of a graph of the logarithm of diffusivity versus the inverse of
temperature. It should be pointed out, however, that fi is not
strictly temperature independent, although variation of fi with
temperature is small in most cases.

2.2. Calculation of vacancy diffusion coefficient

The direct determination of vacancy diffusion coefficients is
less obvious using analytical formulations. Manning's random
alloy model [19] is the only available approximate method in the
literature to the best knowledge of the authors. This model applies
to alloys where the atoms and vacancies are distributed randomly
with no energetically favored sites. Using this model, the vacancy
diffusion coefficient, Dv is given by

Dv ¼ a2Γvf v ð9Þ
where Γv is the average vacancy jump frequency and f v is the
vacancy correlation factor. The jump frequency of a vacancy is the
same as the jump frequency of the atom exchanging with the
vacancy. In a binary alloy, Γv can be approximated by a simple
arithmetic average of the jump frequencies weighted by their
respective atomic concentration:

Γv ¼ xiΓiþxNiΓNi: ð10Þ
This approach assumes that the jump frequency of a given atom i,
Γi, depends only on i and not on the identity of other neighboring
atoms, and that the lattice site occupation surrounding a vacancy
is not biased relative to the average composition of the
binary alloy.

The vacancy follows a randomwalk in a pure crystal, and hence
f v is unity for the self-diffusion case. In a random alloy of Ni where
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xi is the mole-fraction of solute i, f v is given by [19]

f v ¼ 1� 2
M0

ðM0þ2ÞxNixiðDNi�DiÞ2
ðM0þ2ÞðxNiDNiþxiDiÞ2�2DNiDi

ð11Þ

where M0 is a numerical constant, and is equal to 7.15 for fcc
crystals. Note that the model breaks down for dilute levels of
solute atoms which diffuse faster than the solvent. Hence, for
these solutes, we use an alternate expression [19]:

f v ¼
xiΓif

i
vþxNiΓNif

Ni
v

xiΓiþxNiΓNi
ð12Þ

where f iv is the partial vacancy correlation factor for i and is given
as

f iv ¼
f i

0:78146
ð13Þ

where fi is the solute correlation factor (see Eq. (6)) and 0.78146 is
the correlation factor for self-diffusion [17] in pure Ni. The partial
vacancy correlation factor for Ni, f Niv is taken as unity in the present
case of dilute alloys.

2.3. Computational details

All input data was calculated from first principles, using
Density Functional Theory (DFT) [20,21] as implemented in the
Vienna Ab-initio Simulation Package (VASP) 5.3.2 [22]. The Pro-
jector Augmented Wave (PAW) method [23,24] was used to
describe the electron–ion interactions, and the Generalized Gra-
dient Approximation (GGA) parameterized by Perdew et al. [25]
was used as exchange and correlation functional. All calculations
were performed on 108-atom supercells and were spin-polarized.
The electronic self-consistent loops were stopped when the total
energy converged to within 10�6 eV and ionic positions were
relaxed until all forces fell below 10�2 eV/Å. A Methfessel–Paxton
smearing width [26] of 0.1 eV was used. Calculations were run
with an energy cutoff of 400 eV and a 5�5�5 k-point mesh
following the Monkhorst–Pack scheme [27]. The enthalpy of
migration for the different atom-vacancy exchanges was calcu-
lated using the Nudged Elastic Band method [28]. The effective
frequencies were calculated within the harmonic approximation
as supported by VASP.

3. Results

Calculations were initially done on the pure Ni system to obtain
the self-diffusion coefficient in Ni, using a value of 3.52 Å as lattice
parameter. A D0;Ni value of 10.1�10�7 m2/s was obtained, while
QNi was computed at 2.52 eV (or 243 kJ/mol). It should be noted
that the calculations presented in this work do not consider the
full effects of vibrational entropy and hence we do not expect
them to replicate the experimental results at the highest tem-
peratures. The calculated values produce a self-diffusion coeffi-
cient (see Fig. 1) which agrees with available data in the literature
in the intermediate temperature regime [29] and is within an
order of magnitude in the high temperature regime [30]. The
experimental values for D0;Ni and QNi are commonly obtained by
fitting the self-diffusion data to the Arrhenius relationship. As a
result, these values may not be necessarily expected to match the
pre-factor and activation energy values obtained from first prin-
ciples. Indeed, a large scatter is observed in the experimental
values for D0;Ni and QNi reported in the literature. We chose to
compare only to data (see Table 1) obtained from single-crystal Ni
samples tested over a range of temperatures [29,30].

Calculations were then run for Re, W and Ta as solute atoms in
108-atom supercells. All the terms in the pre-factors (D0;i) and

activation energies (Qi) have been tabulated in Table 1. It should be
emphasized that the correlation factor (fi), although featuring in
the diffusion pre-factor term, is not temperature-independent. The
correlation factor was calculated using the νni and ΔHm;i values
given in Table 1. For all jumps, except for the solute-vacancy
exchange, a νni of 2.57 THz was used. In the temperature range of
interest (1173–1573 K), the correlation factor varies only slightly
for all solute atoms. It can also be noted that the correlation factors
for Re and W are higher than the correlation factor in pure Ni,
while the correlation factor for Ta is much lower. This is expected
since the lower energy barrier for a Ta-vacancy exchange results in
a higher Ta-vacancy exchange frequency and, in turn, a higher
probability that any Ta-vacancy jump is followed by a reverse
jump. The opposite is true for Re and W.

The resulting diffusion coefficients for Re, W and Ta are shown
in Fig. 2, and agree with both experimental and simulated data
available in the literature (see Table 1) [31,32]. The diffusivity of Re
and W are respectively roughly two orders and one order of
magnitude lower than the diffusivity of the host. In contrast, Ta is
expected to diffuse an order of magnitude faster than the host. It
must be noted that the reported experimental data [31] in Table 1
was determined from the interdiffusion coefficients ~D in these
systems. However, experiments were conducted by these authors
over a range of composition in the dilute regime (o3:5 at:%), and
it was observed that ~D remained independent of composition in all
the three systems in the dilute regime. Assuming the thermo-
dynamic factor in the Darken's second equation to be equal to
unity, the interdiffusion coefficients ~D in the dilute regime should
be approximately equal to (within an order of magnitude) the
solute diffusion coefficients Di.

Using the diffusion coefficients for self-diffusion of Ni and
solute diffusion in Ni, the effective diffusion coefficient in a dilute
binary alloy, Deff , can be estimated (see Fig. 3, computed for
1373 K). Predictably, adding 5 at.% Re and W reduces Deff albeit
by a small amount (less than 5% when compared to the diffusivity
in pure Ni) and it transpires that Re is just as effective as W at
reducing effective diffusion in the γ phase of Ni-based superalloys.
This simple model for effective diffusivity is only a first-order
approximation and it does not explicitly account for how the
presence of solute atoms may affect the diffusivity of vacancies. It
is therefore necessary to apply Manning's random alloy model to
obtain the vacancy diffusion coefficient.

Before applying Manning's random alloy model, its validity for
the current system must be ensured. First, Manning's model
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Fig. 1. The self-diffusion coefficient of Ni calculated from first principles compared
to experimental values [29,30].
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assumes for the binary alloy to be random and for the solute atoms
to have negligible binding energies with vacancies (i.e. vacancy
distribution must also be random). The distribution of Re, W and
Ta in Ni has been the subject of several studies [7,33,34], all
confirming using a variety of techniques that the distribution of
dilute amounts of these solute atoms in Ni should be expected to
be random at elevated temperatures. The binding energies for
solute–vacancy pairs can also be calculated from first principles
(see Fig. 4). These values are small relative to the vacancy
formation and migration energy, and the distribution of vacancies

can be assumed to be random. Second, Manning's model assumes
that the exchange frequency of an atom–vacancy pair is only
dependent on the atom exchanging places with the vacancy, and
unbiased by the identity of neighboring atoms. In other words, the
migration barriers for solute-vacancy rotation, dissociation and
association should be similar to the migration barrier of the host.
This is the case for Re and W (see Table 1), but not the case for Ta,
which is not the primary focus of the present study. We can
therefore conclude that, at least for Re and W, Manning's model
for estimating vacancy diffusion is valid.

Using the values for diffusion obtained above, we can calculate
the vacancy correlation factor (f v) using in Eq. (11) as a function of
temperature and composition for Re and Wadditions. As discussed
in Section 2.2, Eq. (11) breaks down when the solute atoms diffuse
faster than the host. Therefore, for Ta, we use the vacancy
correlation factor calculated according to Eq. (12). The use of Eq.
(12) for Re and W does not produce substantially different results
when compared to the correlation factors obtained from Eq. (11).
The change of f v with solute concentration at 1373 K is shown in
Fig. 5. For a pure metal, the vacancy correlation factor is unity and
remains close to unity with small additions (up to 5 at.%) of Re and
W. The addition of a fast-diffusing solute atom, on the other hand,
results in a drop in f v due to the fact that reverse solute-□
exchange jumps are more likely than Ni-vacancy exchange jumps.

Finally, the vacancy diffusion coefficient in a dilute binary alloy,
Dv, can be estimated. The results for 1373 K in binary Ni alloys
with up to 5 at.% Re, W and Ta are shown in Fig. 6. Also in this case,
Re and W are seen to decrease the vacancy diffusion coefficient,

Table 1
The calculated terms for self-diffusion and solute diffusion in Ni.

Solute νni fi D0
i ΔHf ;i ΔHm;i Qi ΔHrot;i ΔHdis;i ΔHass;i

(THz) (1373 K) (�10�7m2/s) (eV) (eV) (eV) (eV) (eV) (eV)

Niself 2.57 0.781 10.1 1.44 1.08 2.52 1.08 1.08 1.08
920 [29] 2.88 [29]
1770 [30] 2.955 [30]

Re 1.67 0.996 8.37 1.48 1.48 2.96 1.10 1.05 1.06
8.2 [31] 2.64 [31]

3.50 [32]
W 2.36 0.966 11.44 1.46 1.25 2.71 1.18 1.02 1.01

80 [31] 2.74 [31]
3.05 [32]

Ta 2.56 0.338 4.35 1.36 0.755 2.11 1.35 0.985 0.88
219 [31] 2.60 [31]

2.34 [32]
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Fig. 2. The solute diffusion coefficients in Ni as a function of temperature.
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albeit the effect is small. The addition of 5 at.% Re and W results in
a reduction of vacancy diffusion coefficient of less than 10% when
compared to vacancy diffusion in the pure host. The addition of Ta,
as expected, increases the vacancy diffusion rate. The lower
vacancy correlation factor in the presence of Ta additions does
not negate the effects of the higher Ta-□ exchange frequency on
the overall vacancy diffusion rate.

4. Discussion

The analytical model for vacancy diffusion developed by
Manning [19] clearly indicates that small additions (o5 at:%) of
slow-diffusing atoms in a host fcc lattice do not reduce the
diffusion rate of vacancies substantially. In the case of slow
diffusing solute atoms, the correlation factor for vacancy diffusion
remains close to unity, and the decrease in Γv is minor. Indeed
vacancies would rarely have to exchange with the slow-diffusing
solute atom, and even in the case the solute atoms were to be
absolutely immobile due to a very high solute-vacancy exchange
migration barrier, the resulting effect would only be as big as the
percentage of solute content.

Conversely, a larger effect on vacancy diffusion can be observed
with the addition of fast-diffusing solute atoms, such as Ta. In this
case, the fact that the solute-vacancy exchange frequency is an
order of magnitude higher than the host means that the average
vacancy jump frequency markedly increases with a small addition
of solute atoms. The effect is mitigated by the correlation factor,
which accounts for the fact that a higher solute-vacancy exchange

frequency results in a reduced efficiency in vacancy diffusion. It
must be pointed out again, however, that Manning's model is not
strictly applicable in this case, as the exchange frequencies of Ni–
vacancy pairs are affected by the presence of a neighboring
Ta atom.

Having established that the addition of slow-diffusing solute
atoms does not reduce vacancy diffusion appreciably, it remains to
be discussed whether this may help explain the beneficial effects
of Re additions on the creep properties of Ni-based superalloys.
The creep life of commercial Ni-based superalloys has been
observed to increase four-fold from the 1st to the 3rd generation
superalloys above 1323 K [3]. This improvement is largely attrib-
uted to the addition of Re: 3rd generation superalloys may be
expected to contain up to 5–8 at.% Re in the γ phase. The extended
creep life at the elevated temperatures is associated with a drop in
minimum creep strain rate; these numbers are commonly
regarded to be linked by an inverse relationship under the creep
conditions examined here. Therefore, in order for a four-fold
increase in creep life to be achieved, the minimum creep strain
rate in 3rd generation superalloys must drop to 25% of the value in
1st generation superalloys. Assuming that all other factors affect-
ing the minimum creep strain rate are unchanged between 1st and
3rd generation superalloys, it must be concluded that additions of
Re brings about a 75% drop in vacancy diffusion rates.

In light of the results presented in this paper, such a drop in
vacancy diffusion rates is unrealistic, assuming no interactions
between vacancies and multiple solute atoms. Both analytical
models presented in this paper clearly indicate that small addi-
tions (o5 at:%) of slow-diffusing atoms in a host fcc lattice do not
reduce the diffusion rate of vacancies substantially. Other models
for how chemistry may affect an average effective diffusion
coefficient, such as the one presented by Zhu et al. [4], may
predict smaller or larger effects of composition on effective
diffusion. This is because their model relies on averaging the
pre-factor and activation energy terms separately. As a result, the
approach is heavily dependent on the values of pre-factor and
activation energy used, which are seen to vary greatly across
different studies.

Therefore other mechanisms, beside isolated slow-diffusing
solute atoms reducing vacancy diffusion, must be investigated in
order to understand the effect of Re additions on the creep
properties of the superalloys. First, complex arrangements of
solute atoms may act as vacancy traps. Such mechanisms may
become prevalent as the solute content is increased beyond the
dilute levels, and in turn explain how elements such as Re and W
reduce the rate of dislocation climb. It must be pointed out,
however, that a variety of solute diffusion coefficients were not
observed to change with increasing solute content [31], and that
even very dilute levels of Re produce a beneficial effect on creep
properties [35]. Consideration of more complicated local atomic
environments surrounding the vacancies will require the adoption
of kinetic Monte Carlo simulations coupled with an accurate
description of the many possible migration barriers. Second, a
number of other mechanisms, in addition to the effect of Re
additions on vacancy diffusion, may act together to further reduce
the minimum creep strain rate due to the addition of Re. These
will be the subject of further work.

5. Conclusions

1. Two analytical models describing how climb-related diffusional
processes may be affected by the presence of solute atoms were
analyzed.

2. Ab initio density functional theory was used to obtain all
necessary input parameters for the analytical models.
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3. Results indicate that small additions of slow-diffusing solute
atoms results in a reduction in vacancy diffusion coefficient and
average effective diffusion coefficient.

4. The predicted small reductions in vacancy diffusion coefficient
cannot, by itself, explain the abnormal creep strengthening
effect observed due to small additions of Re.

5. This work assumes that interactions between vacancies and
multiple solute atoms are negligible. Although single slow-
diffusing solute atoms may not reduce the diffusion of vacan-
cies appreciably, complex arrangements of solute atoms may
act as vacancy traps. This will be the focus of future work.
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