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Abstract 

This review article addresses the currently available literature on Twin Screw Granulation (TSG). TSG 

is an emerging technology rapidly gaining interest in the pharmaceutical industry as a method of 

continuous wet granulation. The control of the geometry of the granulator over the formation of 

granules and the mechanisms of granulation are discussed. Process parameters including liquid to 

solid ratio, binder viscosity, method of binder addition, screw speed and material feed rate and their 

control of granule quality are analysed. The need for further understanding of granulation 

mechanisms and the interaction between screw elements is highlighted. As well as the difficulties in 

equating process parameters between different granulators to ensure product consistency across 

sites. TSG is a process with great potential for implementation into continuous processing lines but 

process understanding must be developed to ensure predictable consistent granule quality. 

Keywords 

Twin Screw Granulation; Continuous Processes; Pharmaceutical Technology; Wet Granulation 
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1. Introduction 

Granulation is a size enlargement process where particles are brought together to form larger 

permanent agglomerates. Granulation improves the physical properties of a material making it 

easier for handling and downstream processing. In pharmacy granules are typically used as an 

intermediary before compaction into tablets, the most common type of oral solid dosage. Mixing 

can be a desirable feature of granulation processes, particularly when homogenous distribution of 

precise low fractions of active ingredient are required. 

Wet granulation is the most commonly used method of granulation. Wet granulation processes such 

as high shear granulation or fluidised bed granulation involve the addition of a solvent or binder 

solution to a powder bed to cause agglomeration. Traditionally the pharmaceutical industry has 

employed batch granulation techniques and has faced many obstacles to adopting continuous 

production. Perceived issues include cost, product quality, matching the low volume and flexibility in 

formulations required in some processes and the concerns of regulatory authorities regarding the 

inability to monitor “batch” quality. 

  

Multiple factors have led to a shift in attitude in pharmaceutical manufacturing towards continuous 

processing. With the introduction of the concepts of Quality by Design (QbD) and Process Analytical 

Technology (PAT) in the Pharmaceutical industry by the FDA [1] in 2003 there has been a re-

evaluation of current manufacturing techniques. Given the dwindling exploitable patent windows of 

modern Active Pharmaceutical Ingredients (APIs) the opportunity to improve process efficiency 

through continuous processing is now being seriously considered by the pharmaceutical 

manufacturing industry. 

With the developing interest in continuous granulation the advantages over conventional batch 

granulation methods have become apparent:  
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 Continuous granulation is more suited to high volume production of material as the 

production of a similar volume using batch-wise production requires either multiple or very 

large granulators increasing space and energy demands; 

 Similarly continuous granulation is more amenable to variation in production volume. Final 

product volumes are determined by the running time of the process and are not limited by 

batch sizes. This is particularly relevant in the production of small volumes, where under 

filled batch granulators can result in unpredictable poor quality granules; 

 Continuous processes require less product development time as they are more adaptable to 

control strategies outlined by PAT; 

 Continuous granulation processes can handle a higher throughput of material compared to 

traditional batch granulation processes while requiring a smaller equipment footprint [2]. 

  

Twin screw extrusion (TSE) is a continuous process widely used in the food, polymer and chemical 

processing industries for compounding and extruding. Over the last decade or so the use of twin 

screw extruders for granulation has attracted considerable and serious interest in the 

pharmaceutical industry. Manufacturers (Leistritz Extrusionstechnik GmbH - NANO 16 [3], Thermo 

Fisher Scientific – Pharma 16 TSG [4]) now offer extruders marketed as capable for granulation. The 

ConsiGma™ system from GEA Pharma Systems [5] incorporates the first proprietary use of twin 

screw granulation (TSG) as a continuous granulation module. ConsiGma™ is a complete continuous 

package comprising some or all of blending, TSG, drying (semi-continuous), milling and tableting. 

Granulation in a twin screw extruder was first reported by Gamlen and Eardley in 1986 [6] in the 

production of paracetamol extrudates. Followed by Lindberg et al [7] who used a similar extruder in 

the production of an effervescent granulation [7] and produced a series of papers in 1987-1988 on 

the determination of residence time [8] and the effect of process variables on granule properties 

and equilibrium conditions [7,9]. 
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A Patent for twin screw granulation was awarded to Ghebre-Sellasie et al [10] in 2002 for the use of 

a twin screw granulator in a single pass continuous pharmaceutical granulation process. Since then 

the level of interest and depth of research into TSG has greatly increased. Research work has been 

undertaken including;  

 Work into understanding the geometry of the screws and equipment; 

o Screw configuration 

o Conveying elements – pitch and length 

o Kneading elements – thickness and angle 

o Cross sectional area 

o Length to Diameter (L/D) ratio 

  Operation variables; 

o Liquid to Solid (L/S) ratio 

o Material properties – Excipient and binder formulation 

o Screw speed 

o Material feed rates 

 Process outcomes and product quality; 

o Mixing and Residence Time Distribution (RTD) 

o Granule Particle Size Distribution 

o Torque 

o Granule porosity/density 

o Final tablet properties 

Given both the need for viable continuous processing and the developing interest in twin screw 

granulation this article seeks to review and present currently available research work in an effort to 

further process understanding and development. 
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2. Components 

A twin screw granulator consists of two intermeshed screws enclosed in a barrel. As such there is 

small variety between granulators and differences are typically limited to geometric constraints i.e. 

length, screw diameter and specific screw element geometry. Co-rotating twin screw extruders are 

more popular in industry and so far only co-rotating twin screw granulators have been investigated. 

The effectiveness of counter-rotating screws on granulation has not been explored. Twin screw 

granulators work by conveying material along their screw length while imparting the mechanical 

energy required for liquid distribution and granulation in mixing zones. As the screws are 

intermeshing they are self-cleaning with the flight of one screw scraping clear the surface of the 

other in rotation.  

There exists a large number of twin screw granulators with varying size and geometry. Granulators in 

use have varied from initial experiments carried out on modified twin screw extruders [11,12], to 

purpose built continuous tableting systems in GEA Pharma Systems ConsiGma™ continuous 

granulation module [5]. As the dimensions and processing capacity of granulators can vary greatly 

granulators are most commonly defined by the ratio of screw Length to Diameter (L/D). However 

granulation does not scale up linearly based around similar L/D ratios and instead requires 

optimisation based on the geometry of the granulator [12].  

 

Figure 1 – Components of a typical Twin Screw Granulation module 

  

Figure 1 shows the typical components of a twin screw granulator. A variety of feeders exist to feed 

powder into the barrel inlet such as screw feeders, gravity feeders and vibratory feeders. One of the 

challenges associated with feeding is the delivery of consistent feed of material which can be 

particularly difficult when dealing with materials with poor handling properties. Cartwright et al [13] 

have examined feeding of a poorly flowing API using a variety of loss in weight feeders. To 
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consistently feed the API to the granulator, the original rigid walled hopper twin screw feeder had to 

be replaced with one of flexible wall design to prevent powder bridging. Additionally the various 

designs of screws available to the twin screw feeder were evaluated; feeding at the desired range 

was only possible with one design of screw (core and spiral) at a severely reduced maximum feed 

capacity. The other screw designs would lead to compaction of the API material and eventually 

cause the feeder to jam.  Three different flexible wall single screw gravimetric feeders were 

compared to the twin screw feeder, it was concluded that for the application the Brabender FW40 

gave the best performance due to its mechanical design and broad weight capability of the load cell 

[13]. It should not be forgotten that tablets are multicomponent formulations. The decision must be 

made whether to premix ingredients and feed with a single feeder (and run the risk of 

segregation/demixing) or to have multiple feeders. The latter presents a physical challenge of 

installation as well as the need to provide feeders of a wide range of delivery accuracy. The benefit 

would be to eliminate a step within a processing line however it also increases the mixing burden of 

the TSG. Despite some work covering co-feeding relatively small proportions of API [13,14] this has 

not been covered in the literature and is worthy of investigation. 

Material in the granulator typically experiences a rise in product temperature due to friction 

between the material and barrel and the extensive work caused by kneading elements. Temperature 

controlled jackets allow for precise control of product temperature through cooling or heating, in 

the case of hot melt granulation [15-18] temperature profiles along the length of the barrel are also 

possible with appropriate design of the jacket.  

 

The screws used in twin screw granulators are typically modular and are built up of matching pairs of 

individual elements on the screw root. There are broadly three types of screw elements used in 

granulation Conveying elements, Kneading blocks and Comb mixer elements. 
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Figure 2 – Typical Screw Profile of a bilobal screw geometry 

The profile of two screw elements is shown in Figure 2. All screw elements, with the exception of 

comb mixer elements, share the profile ABCD and hence all elements have the same cross sectional 

area. Conveying elements can be considered to be made of an infinite number of slices of profile 

ABCD offset at slight angle to each other to produce a continuous helical flight. Kneading elements 

clearly share the profile ABCD with defined thickness, typically at a minimum of 1/8 D or 1/4 D, 

where D refers to the screw diameter. Screws with a double-flighted profile are typically used in twin 

screw granulation. Granulation with screws with single, triple or higher flighted profiles has not yet 

been reported. 

  

As all elements (with the exception of comb mixer elements) share the same profile, the cross 

sectional area of the screws does not change along their length. The screw cross sectional area 

determinines the free volume - the available volume within the barrel unoccupied by the screws. 

The cross-sectional area is dependent on the ratio of inner (Di) to outer (Do) diameter[19]. Consider 

the hypothetical case of two granulators of different free volume but otherwise identical geometry, 

operating at the same speed and throughput. The material passing through the extruder with the 

lower free volume might be expected to be squeezed and compacted more. Shear stress might also 

be higher as the average gap would be lower. Hence the ratio Di:Do is an important design and 

operation consideration. This has received scant attention in the literature. 
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2.1 Conveying Elements 

 

Figure 3 Pair of intermeshed conveying elements (a) Isometric view to show self-wiping geometry (b) 

End view to show screw profile 

Conveying elements (see Figure 3) are designed to impart low mechanical energy and act to 

transport material between mixing zones. As their main role is transportation of material they 

impart low shear force. Screws operate part filled, with fill level dependent on screw geometry, 

material feed rate and screw speed. The angle of pitch determines conveying capacity. For a given 

rotation speed, longer pitch elements will operate at lower fill level or accommodate higher 

throughput without over fill. It is not solely about transport between mixing zones however: 

  

Djuric and Kleinebudde [20] found an increase in the proportion of fine and oversize granules with 

decreasing flight pitch. Short pitch conveying elements have more flight chambers with smaller 

volume in a given length. Material can potentially become unevenly distributed between these flight 

chambers and remain isolated from interaction with adjacent chambers. This promotes the 

formation of lumps and reduces agglomeration, giving high proportions of oversize agglomerates 

and fines. Granule porosity decreases slightly with increasing flight pitch and is attributed to 

increased densification in the barrel chamber. The cause of the increased densification was not 

explored and the result is unintuitive as the superior feeding properties of long pitch elements 

would imply a lower overall fill level and less compaction [20]. 

Thompson and sun [21] found the size distribution of granules produced using only conveying 

elements to be bimodal with a high proportion of fines. When the fill level was increased from 30% 

to 70% by reducing the screw speed, the size distribution of granules remained bimodal however a 

greater proportion of large granules were formed.  The authors suggest that the greater channel fill 
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insulates the granules from the high shear environment at the barrel wall, leading to less breakage. 

Additionally, higher fill leads to higher compressive forces leading to consolidation and granule 

growth. Although granules of sufficient quality for tableting could be produced using just conveying 

screws only at high barrel fill level, further optimisation would be required to reduce the high 

proportion of unwanted fines. 

While granulation has been shown to be possible with conveying elements only [21,22] further 

research would be required to establish that adequate mixing is achieved.  
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2.2 Kneading Blocks 

 

Figure 4 60° Forwarding kneading block (a) Isometric view and (b) End view to show shared profile 

with conveying elements 

Figure 4 shows a typical kneading block used for granulation. Kneading blocks are made up of 

individual kneading discs and act as mixing zones in twin screw granulation. Kneading blocks impart 

high mechanical energy into the wetted mass of powder, producing high shear forces, compaction 

and distributive mixing. Pairs of kneading discs in kneading blocks provide a region of compaction in 

the intermeshing region of the screws. The compaction between discs causes densification and 

squeezes liquid to the outside of the granule allowing for growth through consolidation. The 

chopping and shearing motion of kneading block breaks apart large agglomerates and disperses 

liquid.  

The kneading discs in a kneading block are typically offset at angles of 30°, 60° or 90°. Depending on 

the angle of offset kneading blocks can produce forwarding or reversing flow [19,23]. Kneading 

blocks offset at 30° forwarding and 60° forwarding have some conveying capacity and will tend to 

push material forward along the screw. Reversing kneading blocks force material back against the 

direction of flow leading to areas of high pressure and compaction. Although strong granules can be 

formed the risk of blockages is high [20]. 90° blocks have no inherent conveying capacity and are 

dependent on “pressure” driven flow [21]. 

Vercruysse et al [24] found the angle of kneading elements to have no significant effect on particle 

size distribution under the conditions investigated. However the number of kneading elements 

contributes significantly to the properties of granules [20,24]. An increase in the number of kneading 

elements leads to a reduction in the proportion of fines (defined as granules <150 μm) formed and 

an increase in the proportion of oversize agglomerates (>1400 μm). A correlation between the 
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number of kneading elements and torque generated was found. Higher numbers of kneading 

elements lead to granules with higher density and longer dissolution times. The number of kneading 

elements significantly affects the heat generated in the barrel. Within the study, higher barrel 

temperatures were found to lead to less friable granules. This was thought to be due to the 

increased solubility of the lactose, theophylline mixture resulting in more solid bridges formed after 

recrystallization. An analysis of start-up time was undertaken and it was found that more kneading 

elements leads to a longer time to equilibrium (steady state torque and temperature). The time 

taken to equilibrium was suggested to be the period within which gradual layering of material on the 

barrel wall in mixing zones completes. It was suggested that material loss during start up could thus 

be minimised through a feedback control system within the temperature control jacket in order to 

compensate for heat generated through friction in mixing zones.  

Thompson and Sun [21] found that the angle of kneading elements only affect granule properties 

when the fill level is high. At low fill only small changes in granule properties were observed for 

kneading discs offset at different angles. Thus the intermeshing region between kneading discs is the 

important factor in determining granule morphology. Long compressed granules with a ribbon like 

shape were formed in the intermeshing region, suggesting the thickness of the kneading discs in a 

kneading block controls the size of granules. 

Van Melkebeke et al [14] found that the inclusion of a conveying element after a kneading block led 

to a reduction in oversize agglomerates, but otherwise no effect on granule properties. The porosity 

of granules produced with a single kneading block were similar for 30°, 60° forwarding and 90° 

offset angles however the median pore diameter from the 90° configuration was significantly lower . 

The neutral conveying characteristics at 90° led to higher material pressures and compaction. 

Tablets were formed by compression and while all granules had similar compressibility tablet 

strength decreased slightly at higher offset angle. However all tablets displayed similar disintegration 

times.  
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Periodic surging of material has been observed by Shah [25] and Thompson and Sun [21]. Surging 

could be eliminated through modification of the screw configuration and was a result of the specific 

equipment setup. Periodic surging is not typical of twin screw granulation and was attributed to the 

high flow resistance of the kneading block. However surging is likely a result of the liquid inlet port 

location relative to the kneading block rather than kneading block characteristics. Shah [25] explored 

atypical configurations where liquid was injected directly before the kneading block rather than in a 

relatively long conveying section. It is likely that the long residence time in the kneading block led to 

an overly wetted zone due to the constant liquid feed, resulting in sticky flow resistant material. A 

build-up of material in the conveying zone leading up to the kneading block would then be required 

to generate the throughput force required to dislodge the paste like pseudo-blockage, resulting in 

the periodic surging. Thompson and Sun [21] explored methods of liquid injection, the exact 

configuration is not described but was likely similar to that of Shah [25]. 
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2.3 Comb mixer elements 

 

Figure 5 Pair of Comb mixer elements (a) Isometric and (b) End view 

Comb mixer elements shown in Figure 5 are a type of distributive mixing element typically used in 

extrusion processes. Comb mixers are composed of rings arranged perpendicular to the direction of 

flow containing angular cuts in the ring wall to allow for the passage of material through the 

element. Comb mixers act to distribute and recombine flow streams in the extruder in a low shear 

environment providing good mixing of material. The angle of cut in the ring wall determines the 

direction of flow generated by the comb mixer element, comb mixers can generate forwarding or 

reversing flow either aiding or opposing downstream flow. As flow through comb mixer elements is 

dependent on material pressure flow they generally operate fully filled [21]. 

Thompson and Sun [21] investigated the effect of the Leistritz GLC-type comb mixer element. Their 

results showed that reversing mixer elements would lead to high pressure zones in the mixing 

section leading to extensive agglomeration of material and the formation of a large proportion of 

oversize agglomerates even at low fill level. At high fill level the high pressure zone caused by the 

mixing element would lead to blockage of the granulator. Forwarding mixer elements behave 

similarly to kneading elements, producing granules with a bimodal size distribution with increasing 

particle size with increasing fill level. Placing two comb mixers in series removed the effect of fill 

level on granule size distribution as the compaction and fracture of particles was mitigated between 

the two elements, leading to a uniform particle size distribution [21]. 

Comb mixer elements produce granules of greater density than conveying elements but lower 

density than kneading blocks. With high density granules being the least friable [20].  
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Figure 6 Optical micrographs demonstrating particle shape for specimens found on the 850 μm sieve 

for screws with the following element at location 180 mm from the screw tip: (a) 30 mm conveying, 

(b) 60° kneading block, (c) forwarding comb mixer, (d) series of two forwarding comb mixers, (e) 60° 

kneading block followed by forward comb mixing element, and (f) reverse comb mixer. Conditions: 

7.5% (w/w) binder and 30% channel fill. Included scale bar represents 1 mm. 

(Thompson, M. R. and J. Sun (2010) Wet granulation in a twin-screw extruder: Implications of screw 

design Journal of Pharmaceutical Sciences 99(4): 2090-2103.) 

 

In Figure 6 Thompson and Sun [21] demonstrate the wide range of granule shapes that could be 

produced in the same size range with various screw elements by twin screw granulation. From their 

findings they suggest that the particle shape could be tailored allowing a user another dimension of 

control unavailable in batch granulation techniques such as high shear mixing and fluidized bed 

granulation. 

The shape of granule formed was dependent on the type of screw element used and was dominant 

over changes in formulation or binder concentration. It was suggested that the differences in 

granule shape observed in the study would persist for any comparable material system. 
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3. Mixing and Residence time 

Characterization of the residence time distribution is an important step in design, improvement and 

scale-up of twin screw systems [26,27]. Typically higher mean residence times lead to better 

distributive mixing during extrusion, however the complex rheological mixtures used in granulation 

increase design complexity. Understanding of residence time distribution is a powerful tool in 

process design in producing high quality product while meeting design criteria. RTD represents the 

degree of axial mixing, where good mixing is important in smoothing out any variation in feed. RTD 

can either be measured by a stimulus response test [18,28-32] or direct measurement such as 

through particle tracking [33]. 

  

In a series of papers on the mechanics of twin screw granulation Dhenge et al [28-30] investigated 

the effect of process parameters on residence time. RTD was determined using an impulse response 

technique where a dye was added as a tracer. Given the short mean residence times measured (10-

20 seconds) it should be noted the sampling interval was fairly broad at 10 seconds. 

 

Mean residence time decreases with increasing screw speed due to the increased conveying capacity 

of the screws. Residence time was shown to decrease with increasing material feed rate. Dhenge et 

al [29] came up with the concept of “throughput force” to describe efficiency of transport. Low feed 

rates lead to small material throughput force and what was described as increased “back mixing” 

due to the smaller degree of forwarding flow, giving broader residence time distribution curves 

Figure 7 [29]. Both an increase in liquid to solid ratio and binder viscosity leads to an increase in 

mean residence time and a broadening of residence time distribution curves. Both liquid to solid 

ratio and binder viscosity change the rheology of the mixture in the granulator, increasing either 

factor causes the wetted powder to become stickier and more resistant to flow Figure 8 [30]. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

17 
 

 

 

Figure 7 Residence time distribution curves at different powder feed rates. 

(Ranjit M. Dhenge, James J. Cartwright, David G. Doughty, Michael J. Hounslow, Agba D. Salman, 

Twin screw wet granulation: Effect of powder feed rate, Advanced Powder Technology, Volume 22, 

Issue 2, March 2011, Pages 162–166) 

 

 

Figure 8 Residence time distribution with increasing amounts of HPC at different liquid to solid 

ratios. 

(Ranjit M. Dhenge, James J. Cartwright, Michael J. Hounslow, Agba D. Salman, Twin screw wet 

granulation: Effects of properties of granulation liquid, Powder Technology, Volume 229, October 

2012, Pages 126–136) 

 

 

Lee et al [33] used PEPT (Positron Emission Particle Tracking) to determine residence time in the 

granulator and RTD across individual screw elements. Due to the nature of PEPT residence time 

distribution was determined at low material flow rate and screw speed. Residence time was 

observed to decrease with increasing screw speed. Increasing the material feed rate also decreases 

the overall residence time as shown by Dhenge et al [29], due to the greater amount of material in 

the granulator producing more conveying capacity. Increasing the kneading disc offset angle 

increased the residence time due to the reduced conveying capacity at higher angles. At higher 

material feed rates and screw speeds the difference in residence time between 30° and 60° kneading 
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blocks becomes less significant. It was suggested the higher material throughput allowed for more 

bypassing of the 60° blocks [33]. 

The extent of mixing of different screw configurations was compared by Lee et al [33] through 

normalisation of the residence time distribution. Near identical normalised RTD curves and Peclet 

numbers were found for screws with 30°, 60° and 90° kneading blocks.  It was concluded that the 

extent of axial mixing is similar regardless of screw speed, powder feed rate and screw configuration 

[33]. This contradicts the results of Kumar et al [32] who found considerable variation in axial mixing 

and may be a feature specific to the low screw speeds and feed rates necessary for PEPT. Thus this is 

worthy of further investigation. 

Using a method developed by Vercruysse et al [34], Kumar et al [32] carried out an extensive study 

on RTD and mixing within TSG. RTD was determined by near infra-red (NIR) chemical imaging of 

granules discharged onto a moving conveyor belt. RTD curves were determined and three factors 

quantified; the mean residence time (tm), the Peclet number (Pe) and the normalised variance ( 2

  ) 

a description of the breadth of the RTD curve which represents the extent of axial mixing. Screw 

speed, material feed rate, number of kneading elements and element offset angle were the 

parameters explored. Multivariate analysis was undertaken to determine the factors of greatest 

impact.Screw speed has the largest effect on tm, higher speeds give shorter residence times. Screw 

speed has the greatest interaction with material feed rate which alone had relatively small effect on 

RTD. Screw speed and material feed rate were equated as the factors most important in generating 

"throughput force", a crucial factor in determining RTD and mixing behaviour. Both screw speed and 

material feed rate cause a reduction in tm at higher values, however neither scales linearly, with a 

greater effect from transition from low to middle conveying capacities than middle to high. Higher 

screw speeds lead to improved axial mixing, indicated by a rise in 2

 . This is most prevalent under 

low fill conditions with reduced material feed rate and few kneading elements. Under high fill 

conditions increasing screw speed will reduce mean residence time without improving axial 
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dispersion as flow becomes plug like.  At low screw speeds Pe rises sharply with feed rate, number of 

kneading elements and element angle indicating a transition to plug flow when there is low 

throughput force. 

The offset angle of kneading discs only affects RTD when high numbers of kneading discs are used. 

The number of kneading discs has a considerable effect on RTD. As expected mean residence rises 

with increasing number of elements, however the relationship is not linear: the effect diminishes 

with increasing number [18,32]. Increase in the flow impediment through higher number of 

elements or more pronounced offset angle leads to longer mean residence times and by implication 

longer mixing times. However with high flow impediment variance is lower and Peclet numbers 

increase, indicating less axial mixing and more plug like flow. Thus to ensure good axial mixing it was 

concluded that throughput force must be correspondingly raised through screw speed [32]. While 

the RTD study of Kumar is in depth and extensive, further understanding of the relationship of flow 

impediment and throughput force is required, particularly in understanding  the mechanisms of 

mixing elements. No data on granule properties was presented thus it is difficult to correlate 

changes in granule quality and mixing mechanisms with changes in axial dispersion. 

An advantage of PEPT over other techniques is that it allows for analysis of residence time within 

individual screw elements as well as the entire screw length. Lee et al [33] determined that kneading 

blocks have a longer residence time than conveying zones and broader RTD curves, indicating the 

dispersive mixing of material passing through them. Analysis across individual elements also allows 

for calculation of the fill level in mixing and conveying zones, based on the steady state material 

throughput and the average residence time, as shown in Figure 9. Fill levels are shown to be 

proportional to the material input rate and inversely proportional to the screw speed. Fill levels 

across the kneading block are low for 30° and 60° offset angles indicating that the flow of material is 

mainly due to their inherent conveying capability. Fill levels across 90° blocks never reach 100% 
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occupancy and a fill gradient is established decreasing from the first kneading disc suggesting 

pressure driven flow of material. 

 

Figure 9 Occupancy along granulator with (a) 30°; (b) 60° and (c) 90° mixing zones 

(c = conveying; k = kneading) 

(Kai T. Lee, Andy Ingram, Neil A. Rowson, Twin screw wet granulation: The study of a continuous 

twin screw granulator using Positron Emission Particle Tracking (PEPT) technique, European 

Journal of Pharmaceutics and Biopharmaceutics, Volume 81, Issue 3, August 2012, Pages 666–673) 

 

Van Melkebeke et al [14] analysed the mixing efficiency in twin screw granulation through co-

feeding of tracers. In separate experiments low volumes of tracer were fed as a separate dry stream 

(2.5% w/w) and within the granulation liquid (0.05% w/w). Analysis of granules showed tracer 

distribution was excellent for both feed methods with homogeneous tracer distribution across all 

granule sizes. Tracer distribution was also independent of time with small variance over one hour. As 

such it was determined that twin screw granulation displays good mixing efficiency independent of 

tracer addition method, screw configuration, granulation time and granule size. The conclusions for 

liquid tracer distribution contradict somewhat the results of El Hagrasy & Litster [35] who found the 

screw configuration to have considerable control over liquid distribution across the granule size 

range. 
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4. Liquid to Solid Ratio 

Liquid to solid ratio is an important factor in twin screw granulation. TSG is advantageous in that the 

minimum liquid to solid ratio to consistently granulate a formulation is lower than in other 

conventional wet granulation techniques such as high shear mixing and fluidised bed granulation 

[11,12,36,37]. TSG is also more tolerant of high liquid to solid ratios and the point at which over-

wetting occurs is higher than in high shear granulation [37]. Thus the operating range for TSG is 

broader providing a higher degree of process control. Minimum liquid levels are required for 

granulation to take place [11,12,38,39], similarly an upper limit exists beyond which powder 

becomes over wetted and forms a paste [11,12,21,38,39]. 

Twin screw granulation has some advantages over high shear mixing in its capability to granulate 

difficult to process active pharmaceutical ingredients. Keleb et al [36] were able to produce granules 

of pure paracetamol using water as a granulation liquid through twin screw extrusion granulation 

but were unable to do so by high shear mixing. Similarly through the use of a modified twin screw 

extruder Shah [25] was able to produce granules with high drug dosage at API to excipient ratios that 

would result in a tacky mess through high shear granulation. 

The size distribution of granules produced by TSG is characteristically broad and bimodal at low 

liquid to solid ratios becoming narrow and monomodal at high liquid to solid ratio. However it is 

important to note that the monomodally distributed granules at high liquid to solid ratios are too 

large to be directly used for tabletting [28,31,37]. 

Multiple authors [2,18,31] found the average size of granules to increase with increasing liquid to 

solid ratio. Dhenge et al [2] suggest this is due to the higher liquid amount leading to greater liquid 

distribution and providing more surface wetting of granules. Contrary to this, in a separate paper 

Dhenge et al [28] found the average size of granules to decrease with increasing liquid to solid ratio 

however this was due to the shape of granules being produced. Low liquid to solid ratios would 

result in elongated granules which skew the size distribution. Granules produced at low liquid to 
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solid ratios generally consist of a mixture of fines and large oversize agglomerates, increasing liquid 

to solid ratio gives both a reduction in both fines and oversize agglomerates [28]. However El 

Hagrasy et al [31] observed that some oversize lumps remained regardless of liquid to solid ratio, 

from which they inferred that kneading blocks partially break down lumps formed by liquid addition 

but do not cause complete liquid dispersion. 

El Hagrasy et al [31] analysed the effect of changing liquid to solid ratio on formulations consisting of 

three different grades of lactose. Size distributions displayed the bimodal to monomodal shift at high 

liquid to solid ratio regardless of the grade of lactose. Despite one grade of lactose investigated, 

Supertab 30GR, having a narrow monomodal size distribution, the size distribution of granules at low 

L/S ratios were bimodal, similar to the other grades of lactose (Pharmatose 200 M and Lactose 

Impalpable). 

El Hagrasy et al [31] believe the method of binder addition contributes to bimodality, analogous to 

spray versus drop-wise binder addition in high shear mixing. The current most commonly used 

method of liquid addition is by direct injection through liquid inlet ports, resulting in concentrated 

wetted areas, as with drop wise addition in high shear mixing. The granulator provides insufficient 

mechanical dispersion to give homogenous liquid distribution, resulting in large wetted 

agglomerates and small dry fines [31]. 

In a recent paper El Hagrasy and Litster [35] examined granule formation in the kneading elements 

of a twin screw granulator and developed concepts for the dominant rate processes. Liquid 

distribution was analysed and found to be unevenly distributed within the granule population, 

skewed toward the top end. Liquid distribution became more uniform in screw configurations that 

provided more densification and similarly with increasing kneading block length. As such for mixing 

zones with three kneading elements the liquid distribution could be ordered from best to worst as 

follows: 30°R > 60°R > 90° > 30°F > 60°F. Interestingly the 60°F setup, which is generally the most 

commonly used in current granulation work, displayed the worst liquid distribution, with 
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characteristics closest to conveying elements [35]. Contrary to this Yu et al [40] found a notably 

higher improvement in liquid distribution homogeneity with increasing number of 60°F kneading 

elements than that observed by El Hagrasy and Litster [35]. This was attributed to the differences in 

liquid injection method. The granulator used by Yu et al [40] featured dual inlet ports set in parallel 

on top of either screw, the authors believe this setup results in a more uniform distribution during 

nucleation, making the granulator less reliant on mechanical dispersion. A similar result was 

obtained by Vercruysse et al [34] with the variance in moisture content reducing with when a larger 

number of elements was used. 

El Hagrasy and Litster [35] suggested granulation rate processes in kneading sections according to 

the three dimensional shape characterisation of granules. Analysis of the morphology of the 

granules allowed for determination of the mechanisms behind formation. Two main rate processes 

by which the granule shape, size and liquid distribution are determined were suggested. The two 

main rate processes are: firstly: Breakage and Layering and secondly: Shear-elongation and 

Breakage followed by Layering. Breakage and layering occurs in neutral and forwarding kneading 

blocks (90° and 30°F), barring 60°F kneading blocks which display characteristics closer to conveying 

elements. Reversing geometries (30°R and 60°R) exhibit Shear-elongation combined with breakage 

and layering. 

A point to note is that 60 granules for each configuration were chosen for shape analysis, all from 

the 2-2.8mm size range, corresponding to the second mode in the bimodal size distribution. As such 

the differences in shape between these and smaller granules was not considered. Presumably the 

shape of granules within this size range is considered comparable to granules of all sizes, which may 

not necessarily be a fair assumption. 

Primary agglomerates are formed by drop nucleation at the point of liquid addition, resulting in 

large, low strength, intensely wetted agglomerates. In configurations where breakage and layering is 

the main rate controlling process these primary agglomerates are broken apart by the "chopping" 
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motion from intersection of the kneading elements. This results in smaller rounded granules with 

exposed wetted edges. These newly formed wetted edges then allow for growth through layering as 

dry primary powder particles adhere to the surface. 

In reversing configurations the kneading block operates fully filled and generates force against the 

direction of forwarding flow. Material passes through the kneading block as it becomes smeared out 

between the block and barrel wall, forced through by build up of material within the conveying 

section upstream of the kneading block. This is similar to flow through reversing geometries in 

extrusion processes. Shear-elongation occurs as the material becomes smeared against the barrel 

wall, causing densification and driving liquid to the outside of the granule structure. The thinning in 

structure during shear-elongation results in an easily broken "ribbon" that splits into thin, dense 

"flake-like" granules. The wetted surface of these flake-like granules formed in shear-elongation 

allows for secondary growth through a layering stage [35]. While it was shown that 30° reversing 

kneading blocks result in monomodal granules with the most uniform liquid distribution, it is 

important to note that other properties may mean these granules are impractical for downstream 

use. Their flake-like will result in difficulties with handling and particle flow. Furthermore the high 

densification that granules undergo during shear-elongation may result in granules with poor 

dissolution times, as well as low strength, friable tablets due to the low granule compressibility 

leading to poorly interlocked particles during tableting. 

 

 

Figure 10 (a) Rough elongated granules produced at L/S of 0.25. (b) Rounder, smoother granules 

produced at L/S of 0.4. 
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(Ranjit M. Dhenge, Richard S. Fyles, James J. Cartwright, David G. Doughty, Michael J. Hounslow, 

Agba D. Salman, Twin screw wet granulation: Granule properties, Chemical Engineering Journal, 

Volume 164, Issues 2–3, 1 November 2010, Pages 322–329) 

 

Many authors have examined the effect liquid to solid ratio has on the shape of granules produced 

by twin screw granulation. The aspect ratio of granules decreases with increasing liquid to solid ratio 

as particles become more rounded [28,30,41] . Figure 10 shows granules produced at low and high 

liquid to solid ratios. At low liquid to solid ratios granules produced by twin screw granulation are 

long and elongated with rough surfaces. High L/S granules become more spherical with smooth 

surfaces due to surface wetting and increased granule deformability [28]. In the granulation of pure 

microcrystalline cellulose with water, Lee et al [37] produced granules with similar aspect ratios 

through both twin screw granulation and high shear mixing. However granules produced by twin 

screw granulation were found to have a much lower sphericity than high shear mixer granules. 

Scanning electron micrographs attribute this to the much rougher surfaces of granules produced by 

twin screw granulation. The porosity of granules decreases with increasing liquid to solid ratio 

[30,31], due to the greater wetting of the powder bed producing more deformable granules that are 

more easily compacted. 

  

With the addition of liquid, wetted material becomes cohesive and resistant to flow. So granulator 

torque initially increases with rising liquid to solid ratio, until a critical liquid to solid ratio is reached 

beyond which the liquid acts as lubricant reducing friction and flow resistance [30]. 
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5. Binder viscosity 

In TSG an increase in viscosity of binder liquid (i.e. binder concentration) reduces the amount of 

liquid required to produce granules with a monomodal size distribution [30]. Dhenge et al [30] found 

the average size of granules to be proportional to the binder viscosity and a similar result was found 

by Keleb et al [12]. An increase in PVP concentration led to an increase in the mean granule size due 

to the superior binding properties of PVP over pure water. It is possible to produce granules within 

higher size classes at lower water concentrations with the addition of PVP [11,36]. 

When using screw configurations with conveying elements only the relationship between average 

granule size and binder viscosity is reversed. Dhenge et al [22] attributed this to the low shear 

environment caused by conveying screws leading to a dependence on drop penetration time for 

liquid dispersion. High viscosity binder solutions penetrate the bed slowly leading to poor liquid 

distribution and a high proportion of fines. 

The relationship between binder viscosity and granule size is formulation dependent and will require 

process optimisation based around material. Yu et al [40] demonstrated that although d50 increases 

for hydrophilic formulations at higher binder concentration, when formulations contain substantial 

hydrophobic materials d50 is lower following the addition of binder than with pure water. This was 

explained by the preferential take up of liquid by hydrophilic components during nucleation resulting 

in more ungranulated hydrophobic fines. The presence of binder in the hydrophilic agglomerates 

increases their strength making them more resistant to breakage and redistribution of liquid. Further 

increases in binder viscosity result in higher d50 values as the increased strength of the hydrophilic 

agglomerates allow them to retain size and skew the size distribution [40]. 

Binder viscosity displays a small influence over the shape of granules, with more rounded granules 

formed at higher binder viscosity. Thompson and Sun [21] suggest that the effect of binder 

concentration on shape factor only occurs with conveying screw elements. 
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The porosity of granules decreases with increasing binder viscosity as stronger liquid bonds are 

formed under compaction and consolidation, leading to denser particles. Similarly the strength of 

granules increases with increasing binder viscosity due to the overall 'stickiness' of the material 

increasing, leading to a greater number of viscous bonds being formed during particle interaction 

[2,30,40]. 

  

Viscous binders change the rheology of the powder mixture. Dhenge et al [30] describe how viscous 

binders cause "thickening" leading to an increase in the cohesiveness and frictional resistance of the 

material to flow. This increases the energy required to rotate the screws which is observed as an 

increase in motor torque. The mean residence time increases due to the increased cohesiveness and 

resistance to flow. This increase in residence time in the granulator means intensified compaction 

and consolidation of granules. This explains the raise in granule strength and decrease in porosity 

observed in granules. Similarly aspect ratios are closer to unity as elongated granules are broken and 

compressed to more uniform shape [30]. 

Dhenge et al found [30] the surface tension of binders to have no notable effect on the residence 

time of the granulator or motor torque. However it should be noted that the concentrations of 

surfactants used in this study were low and surface tensions were similar. Surface tension produces 

no discernible changes in granule size, shape and morphology. This is due to viscous forces being far 

more dominant over surface forces, meaning that variation in surface tension has little effect on the 

mixture rheology [30]. 

  

5.1 Granulation Regime maps 

Existing regime maps for batch wet granulation such as that for drum and high shear granulation 

developed by Iveson and Litster [42] are robust and play an important role in process development. 
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Understanding the granulation rate processes is essential for regime map development. Twin screw 

granulation differs from batch granulation in that it is a continuous, ideally steady state process. 

Granulation regimes occur simultaneously and are physically separated from each other, with 

nucleation, growth and breakage processes occurring one after the other along the length of the 

screws. As such granulation becomes unique for each screw configuration and the application of a 

general regime map may not be feasible [43]. Furthermore despite insightful studies [35,41] 

granulation rate processes of screw elements are still not well understood. This is frequently 

reflected in the lack of systematic arrangement in screw configurations, elements are approached as 

a series of “black boxes” or the screw unit as a single “black box”. 

Nevertheless authors have made efforts to develop regime maps for twin screw granulation. Tu et al 

[43] developed regime maps based on variation in screw speed (and thus fill level) and L/S ratio; 

such regime maps are highly geometry, formulation and screw configuration dependent. This was 

demonstrated by re-feeding the granules in a series of passes through the granulator to imitate 

multiple mixing sections in a longer screw length. Multiple passes consolidated granules to a more 

homogenous state resulting in an increasingly uniform size distribution. However behaviour was 

different in a long single mixing section which was more prone to blockages, highlighting the 

interdependency of conveying and mixing elements. By non-dimensionalisation of the screw speed 

in terms of Froude number (Fr) an attempt was made to compare granules produced at similar 

values of Fr to that of previous work on high shear granulation. Froude number was identified as not 

a viable factor for comparison as screw speeds required for TSG were an order of magnitude higher 

than those investigated [43]. 

 

Similar to the regime map for drum and high shear granulation developed by Iveson and Litster [42], 

Dhenge et al [22,30] have developed two regime maps for twin screw granulation. A granulation 

regime map for screws including kneading elements [30] and for screws with conveying elements 
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only [22]. Dhenge et al [30] suggest that as twin screw granulation is an open ended process growth 

mechanisms are not time dependent, therefore granulation is less dependent on rate processes and 

more dependent on the binding capability of the liquid. The binding capability of the liquid is 

determined by the liquid to solid ratio and the binder viscosity. The free volume in twin screw 

granulation is smaller than in high shear or fluidised bed granulation and the stresses acting on 

material are believed to be higher. As the stresses on the material are more important in 

determining rate mechanisms and granule properties the value of Stokes deformation used in Litster 

and Iveson's [42] regime map has been replaced by the deformation value (β) equal to the ratio of 

the stresses acting on powder or granules (σ) to the strength of granules (τ) [24]. The stresses (σ) 

acting on material are represented by the value of torque (T) divided by the volume of material in 

the barrel (V). The strength of granules was determined using Adams’ model [44] following a uniaxial 

compression test of dried granules, which as stated should be ideally replaced by the wet granule 

strength [30]. This is a weakness of the regime maps and work is required to measure the wet 

granule strength. 

 

 

Figure 11 Granule growth regime map for twin screw granulation with kneading elements. 

(Ranjit M. Dhenge, James J. Cartwright, Michael J. Hounslow, Agba D. Salman, Twin screw wet 

granulation: Effects of properties of granulation liquid, Powder Technology, Volume 229, October 

2012, Pages 126–136) 

 

Figure 11 shows the granulation regime map for screws with kneading elements. There are four 

different regions in the regime map; "under-wetted (dry)", "crumb", "granules" and "over wetted or 

paste". The "under-wetted" region consists of un-granulated or poorly granulated powder, the 
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boundary between the "under-wetted" and crumb region is determined by the liquid to solid ratio 

and binder viscosity. Small increases in liquid to solid ratio or binder viscosity will shift the material 

into the "crumb" region consisting of small or poorly granulated granules. Addition of higher 

amounts of liquid will lead to the "granule" region where consolidated, strong and stable granules 

are formed. Higher liquid to solid ratios or binder viscosities will result in "over-wetted material or 

paste". High deformation values at intermediate L/S & binder values can shift the system from the 

"granule" to the "crumb" regime; at high deformation values the system is weaker and granules are 

unable to support their structure under the stresses they are undergoing. The boundaries of the 

granule regime map are highly system dependent and will move according to the process 

parameters used such as screw configuration, material properties and operating conditions. 

 

Figure 12 Granule regime map for TSG using conveying screws. 

(Ranjit M. Dhenge, Kimiaki Washino, James J. Cartwright, Michael J. Hounslow, Agba D. Salman, 

Twin screw granulation using conveying screws: Effects of viscosity of granulation liquids and flow 

of powders, Powder Technology, Available online 29 May 2012) 

 

The regime map for conveying screw in Figure 12 is similar to that for screws with kneading 

elements, however it differs in the formation of nuclei in the crumb region. “Nuclei” refers to the 

wetted mass formed after liquid addition under the liquid injection port in the granulator. These are 

relatively well wetted but poorly formed, loose agglomerates. They remain fully formed when using 

conveying screws due to the low shear forces imparted on to the material and are easily broken 

down by kneading blocks. 
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6. Binder addition method 

El Hagrasy et al [31] compared the results of adding dry binder (in the solid phase) to wet binder (in 

the liquid phase) on granulation. Formulations were a mixture of lactose and microcrystalline 

cellulose with HPMC as a binder. Granulation was carried out at a liquid to solid ratio of 0.3 and the 

effect of adding binder in the solid or liquid phase was compared.  Three methods of binder addition 

were used: first with the HPMC binder mixed with the excipients fully in the solid phase, secondly in 

a 1:1 ratio in the solid phase and solubilised in the liquid phase, and finally with all the binder fully 

solubilised in the liquid phase. The size distributions for all conditions and grades of lactose were 

similar, however it was found that the greater the proportion of binder in the liquid phase, the lower 

the amount of fines and narrower the size distribution. This was attributed to the short residence in 

the granulator meaning the dry binder has insufficient time to solubilise and become fully 

distributed. The use of a wet binder allows for greater binder distribution, giving a smaller 

proportion of fines [31]. A similar result was observed by Vercruysse et al [24] who concluded binder 

was more effective when added in the liquid phase. 

  

Typically granulation liquid is fed into the barrel through a single injection port. Shah [25] explored a 

range of locations for single and dual injection ports. How these were arranged relative to the screw 

configurations used is a little ambiguous. A single liquid injection port led to surging of material and 

“torque excursions” possibly due to over-wetting of material as described earlier. Optimisation of 

liquid injection was explored via dual ports. The set-up which resulted in minimum torque featured 

two ports both located in the feed conveying zone, the first port positioned at the point of powder 

feed inlet and the second immediately before the first pair of mixing elements. This also eliminated 

surging of material [25]. Vercruysse et al [34] determined the moisture content of granules as they 

were discharged through NIR chemical imaging. A periodic fluctuation in the granule moisture 

content corresponded to pulsation of the peristaltic pump delivering liquid. By running two pumps 
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out of phase the fluctuation in moisture content was eliminated however the standard deviation in 

moisture content was only marginally improved. As the size distributions of granules were bimodal 

under these conditions according to the results of El Hagrasy and Litster [35], the variance in liquid 

distribution may be a result of the non-uniform liquid distribution of liquid across the size range 

exhibited in granules formed by 60°F kneading blocks. Contrary to the results of Shah [25] the use of 

dual injection ports led to no improvement in liquid homogeneity. The liquid injection port is the 

same as that of Yu et al [40] where each port consists of two nozzles mounted in parallel, one above 

each screw. Yu et al [40] believe this setup leads to superior liquid distribution during nucleation and 

may be the reason why Vercruysse et al [34] observed no differences with the addition of a 

secondary port. 

The droplet size is important in high shear granulation. To explore the comparative effect in TSG 

Vercruysse et al [34] used nozzles of varying diameter to inject liquid assuming that the liquid would 

enter the granulator in discrete droplets proportional in size to the nozzle diameter. No effect on 

liquid homogeneity or particle size distribution was observed. However the assumption of droplet 

nucleation may not be valid, given the layering of material observed on barrel walls [24] liquid may 

be delivered into a region of saturated paste rather than forming separate droplets. Thus wetting 

during nucleation may be more reliant on liquid feed pulsation than theoretical droplet size. 

Thompson et al [39,45] investigated the use of foam granulation in a twin screw extruder as a 

method of reducing surging and improving process stability. To achieve this a foamed binder was fed 

into the extruder through a side stuffer. The shear strength of the foam allows it to flow separately 

alongside the powder material and the slow drainage time into the powder bed gives a large wetted 

contact area, which allows for more homogenous growth of granules. The foam forms a boundary 

slip layer between the barrel wall and powder material during penetration, reducing the frictional 

forces and heat generated.  
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7. Fill level, Screw Speed and Feed rate interaction 

The barrel fill level in granulation depends on three factors: the screw and barrel geometry, the 

screw speed and the material feed rate. High screw speed lowers fill level, high feed rate raises it, 

thus operating fill level is determined by these factors. The fill level is an essential factor in 

determining granule properties. High fill levels result in high compaction and densification, low fill 

levels can result in insulation of material from interaction. Fill level affects the residence time in 

dictating the throughput force for material to flow through mixing zones and affects mixing 

mechanisms [32]. Thus fill level is an essential consideration during scale up as behaviour may be 

totally different despite similar screw speeds and feed rates. 

The free volume in the barrel is determined by the screw geometry and is therefore a fixed property, 

during operation the fill level can therefore be controlled by the screw speed and material feed rate. 

Granulator geometry has variation between different vendors including the clearance between the 

barrel wall and screws. These differences in clearance are believed to have impact on the 

granulation process and product quality. For example the residence time and thickness of the slip 

layer of material which forms against the barrel wall [32,33] which has repercussions for the “Shear 

elongation and breakage” rate process proposed by El Hagrasy et al [35]. Thus despite similar 

operating conditions operators may see variation in granule quality from different granulators.  

 Therefore knowledge of the fill level relative to operating conditions is important in interpreting the 

final properties of granules, however quantifiable determination of fill level is noticeably absent 

within papers, potentially due to the complexity in calculating free volume and determination of 

residence time. Additionally the axial variation of fill level as shown by Lee et al [33] increases 

complexity. 

Fill level is an important factor which should be considered in comparison of different granulators. 

An additional property overlooked is Specific Mechanical Energy (SME), the energy input per unit 

mass, essentially power consumption divided by mass rate. SME would allow for direct comparison 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

34 
 

between different granulators and provide understanding into how granule properties relate to the 

energy input. Furthermore, SME has importance in an industrial context in determining running 

costs of equipment. 

7.1 Screw speed 

Screw speed has been reported to have a minor influence over the properties of granules formed by 

twin screw granulation [12,28,46]. This appears to contradict the fact that screw speed is a critical 

factor in determining the barrel fill level, which is crucial in determining granule properties. It may 

be that, as reported within typical operation limits screw speed has small effect over granule 

properties, however toward the upper and lower limits of barrel fill the properties of granules 

become more dependent on fill level. High screw speeds lead to short residence times in the 

granulator and the conveying capacity is greater [28].. At a constant feed rate, low screw speeds 

result in high torque values due to the greater mass load of material filling the granulator. High 

screw speeds give a reduction in torque as the increased conveying capacity of the screws results in 

a lower barrel fill level and a lower mass load [21]. Tan et al [47] suggest that at low screw speeds 

frictional resistance between material and the internal granulator surfaces plays a role in increasing 

the energy demand in addition to mass load. At high screw speed frictional resistance is considered 

less important. 

Low screw speeds result in high fill levels in the granulator barrel, leading to material compaction 

where blockages can form at high mass loads. High screw speeds result in low barrel fill levels, where 

the screw channels may become starved of powder resulting in low compaction and particle 

interaction. As variation in fill level can result in considerable differences in binder distribution and 

granule properties screw speed is an important factor to be considered during scale up of twin screw 

granulation [48]. 
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Dhenge [28] found a small reduction in the size of granules with increasing screw speed, the longer 

residence times at low screw speeds allow for greater growth of granules. The combination of higher 

shear and lower fill at high screw speed leads to poorly compacted, rough surface, elongated 

granules. Conversely granules produced at low screw speeds undergo greater compaction resulting 

in smooth surfaces and more spherical shape. 

Similar results were found by Thompson et al [39] who suggest that the lower screw speed leads to 

an upstream pressure at the kneading block leading to greater compaction of material. Furthermore 

granules experience fewer "chopping" events as they flow through the kneading block, leading to 

less breakage. This is supported by the work of Kumar et al [32] who demonstrated that flow 

becomes more plug like at low screw speed. Thompson et al [39] found an increase in granule 

fracture strength with screw speed. Screw speed was inversely correlated with granule size, small 

granules produced at high screw speeds displayed higher fracture strengths than large granules 

produced at low screw speeds. However this may be the result of the size strength relationship of 

granules, a full evaluation should compare the strength of granules in comparable size classes in 

order to determine this. 

Lee et al [37] observe that the influence of screw speed on average particle size only occurs at higher 

liquid to solid ratios. Variation in screw speed gave no change in average granule size at low liquid to 

solid ratio however at high ratios an increase in screw speed led to a decrease in average granule 

size. However screw speed produced no significant effect on granule porosity or strength. 

 

7.2 Material Feed Rate 

  

Many authors observe that the strength of granules is dependent on the fill level. The higher the 

feed rate, the more powder in the barrell and the denser and stronger the granules formed 
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[21,28,29,46,48]. Motor torque at steady state increases with increasing material feed rate [24,29]. 

Dhenge et al [29] took torque values to be an indication of the degree of compaction of the material 

in the granulator, as the porosity of granules decreased with increasing material feed rate, shown by 

X-ray tomography. The greater compaction of granules at higher feed rates leads to stronger 

granules with longer dissolution times [46,48].  

  

Surface velocity of powder above conveying screws was determined by Dhenge et al [22] through 

Particle Image Velocimetry (PIV). The surface velocity of powder was higher at lower feed rates. 

Dhenge et al [22] suggest that the higher fill level at pronounced feed rates leaves less space for 

individual particle movement due to the close packing of particles. Powder moves in the form of 

compacts as opposed to individual particles. The higher fill level results in greater frictional forces 

between the powder and barrel wall, giving lower surface velocity. At low fill levels particles are able 

to move freely and experience less frictional resistance and therefore surface velocities are higher 

[22]. This is confirmed by Kumar et al [32] who observed poorer axial dispersion under higher feed 

rates. 

Contrary to the results of Dhenge et al [22,28], Djuric et al [46,48] found the median size of granules 

to increase with increasing material input rate. The difference in results can be explained by the 

different screw configurations used in the studies. Djuric [46] compared two granulators with the 

same screw configuration but different size. Both had a single long kneading block. Dhenge et al [28] 

used the same number of kneading elements relative to screw length but arranged as two separate 

kneading blocks. The single long kneading block leads to enhanced compaction and consolidation 

meaning growth rates outweigh breakage rates. This provides evidence for the as yet unquantified 

fill dependency of granulation mechanisms and their variation with screw configuration. 
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The two granulators compared by Djuric et al [46] had similar screw configurations but different free 

volumes. A Leistritz extruder with a screw diameter of 27 mm and an APV Baker extruder with a 

screw diameter of 19 mm. Increasing the feed rate gave a considerable increase in median granule 

size in the granulator with smaller free chamber volume and only a small increase in median granule 

size in the granulator with a larger free chamber volume. Showing the importance for fill level 

consideration in scale up as well as material feed rate, screw speed and geometry.  

Vercruysse et al [24] found no significant effect on the size distribution of granules with varying 

material feed rate. Although varying the feed rate gave different degrees of barrel filling and torque 

values there were no significant differences in size distribution. Fill levels were not quantified but 

may have been below levels that result in significant changes in degree of compaction similar to 

Thompson and Sun [21] who found the angle of kneading elements to only affect size distribution 

when the fill level is high, at 70% in their work. 
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Conclusions 

Twin screw granulation is a technique rapidly growing in popularity for pharmaceutical processes. 

While research on TSG has advanced considerably within the past two decades there still exists 

considerable need and potential for developing process understanding and optimisation. The 

process is still frequently taken with a black box approach and granulation mechanisms must be 

better understood. Whilst insightful work has helped develop understanding into the mechanisms of 

mixing elements [32,35], the complex interaction between conveying and mixing zones and the 

dependency on process and formulation properties remains poorly comprehended. 

Design of screw configuration remains very empirical, the traditional configuration is a long 

conveying section feeding into one or two mixing sections however it remains unknown if this is the 

optimum configuration. Adaption of screw configuration has been shown to have the potential for 

control of granule size and shape [21]. By developing understanding of the granulation mechanisms 

of screw elements and their interaction with each other a systematic approach can be taken by an 

operator to optimise the process in a true quality by design approach. 

A challenge which exists in building understanding is knowing what factors to measure and how to 

measure them. Interpreting the granulation mechanisms is inherently difficult due to the complexity 

in visualising the active process. Techniques such as NIR chemical imaging employed by Kumar et al 

[32], PEPT employed by Lee et al [33] and 3D shape characterisation employed by El Hagrasy and 

Litster [35] are powerful tools in understanding flow and mixing properties. While traditional 

methods of granule quality measurement are essential due to the continuous nature of TSG there is 

a need to develop methods of in-line quality measurement. Fonteyne et al [49] have made progress 

in this area through the application of in-line sizing and NIR and Raman spectroscopy for continuous 

measurement of solid state distribution. 

Currently work is being carried out on a variety of different granulators of varying geometry with 

often apparently contradictory observations. Because of this there exists a need to develop a 
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quantifiable measurement to allow for comparison between different granulators. Fill level is a 

dimensionless quantity that can allow comparison but is incomplete in that residence time and 

energy input are not considered. Development of a quantifiable measurement will ease both scale 

up and process characterisation. Attempts to achieve this have been made through the development 

of regime maps [22,30,43] but these remain extremely equipment and formulation specific. 

Despite the progress made in understanding TSG there is still difficulty in producing high quality 

granules. The characteristic bimodal granule size distribution adds complexity to downstream 

processing, similarly monomodal distribution granules formed at high L/S are consistently too large 

for tabletting without milling. Fines are often in abundance and factors leading to reduction in fines 

often result in higher proportions of oversize agglomerates [24,34]. There exists a large scope for 

process optimisation to increase the yield and the need to develop the understanding to achieve 

this. 

Formulation varies widely within the different bodies of work on TSG and will have strong influence 

over granulation mechanisms and granule quality. While it has been demonstrated that TSG is 

effective in granulating high drug load formulations [16,17,25,38] and traditionally difficult to 

process materials [13] most papers are limited to easily processed common pharmaceutical 

excipients. Work has gone into understanding the process response to variation in formulation 

properties [40] but extensive optimisation will still be required for new process lines, particularly 

due to the unique flow properties associated with many APIs. Because of the variation found in 

model formulations there exists a need for a thorough exploration into process formulation 

dependence such that conclusions drawn from a wide variety of sources can be consolidated. 

Finally modelling of twin screw granulation is an area conspicuously under-represented from 

research work, with only two instances of recently published work [50,51]. Development of robust 

models is an essential requirement for process understanding and scale up. 
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Nevertheless twin screw granulation remains an attractive method of continuous wet granulation. 

The wide scope and success of research work shows the potential of this emerging granulation 

process. 
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