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On wave families in a two-layer falling film

G. Çekiç

School of Mathematics, University of Birmingham, Birmingham B15 2TT, United
Kingdom

G. M. Sisoev

School of Mathematics, University of Birmingham, Birmingham B15 2TT, United
Kingdom

Abstract

Using an approximate method, families of nonlinear steady-traveling periodic waves
in a two-layer falling film have been found for the first time. Computed waves have
qualitatively similar behavior as that of those found in homogeneous films but the
quantitative characteristics of the waves strongly depend on additional similarity
parameters in the two-layer films. In particular, the average location of the interface
affects the bifurcation scheme of the waves.

Key words: thin fluid film, interface, nonlinear waves, bifurcations

1 Introduction

Interest in two-layer (and multilayer) films is stimulated by applications, in
particular, in technologies providing mass transfer between two liquids. Due
to difficulty of the problem, most attention has been paid to linear models and
weakly nonlinear models.

Long wave instability of the two-layer flow was studied in [1] in the case of
equal dynamic viscosities and different densities of the liquids. The asymptotic
method developed in [2] was used to analyze the dependence of the neutral
curves for the surface mode on the density ratio and the depth ratio. The
interface mode was analyzed in [3], and the general case of both modes in flow
with viscous stratification was considered in [4] using the same method.
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The linear stability at arbitrary values of the similarity parameters was inves-
tigated for the first time in [5] where the generalized Orr-Sommerfeld problem
was solved numerically. Two unstable modes associated with the free surface
and the interface were computed at moderate values of the Reynolds number.
It has been shown that the interface mode corresponds to the Rayleigh-Taylor
instability depending on the ratio of the liquids’ densities in the case of small
wall inclination. It was also found that the interface mode is unstable if the
less viscous liquid is in the layer adjacent to the free surface, and this mode
is stable if this liquid is adjacent to the solid substrate.

Later the Orr-Sommerfeld problem was used in [6] to investigate the interface
and surface modes without taking into account both interface and surface ten-
sions, or the surface tension only. In [7,8] the temporal and spatial growth rates
were also calculated without considering the interface and surface tensions. In
particular, the result of [5] about the absolute instability in the two-layer flow
as the Rayleigh-Taylor instability was confirmed.

The limit case of zero value of the Reynolds number and absence of the sur-
face and interface tension was analyzed in [9] using an asymptotic method.
Mechanism of the surface and long interfacial waves was discussed in [10,11]
at zero and very low values of the Reynolds number.

In parallel with the papers directly dealing with the gravity-driven two-layer
film flow, there are many works dealing with two types of flows, falling films
and interface waves, which are relevant to the considered problem.

Film flow down a vertical plane at moderate flow rates, or a falling film,
has been considered in numerous experimental and theoretical investigations.
Falling films demonstrate a wide variety of flow regimes, which are very sen-
sitive to flow conditions. The first systematic experimental investigations [12]
demonstrated the existence of two principal wave types: periodic sinusoidal
waves and solitary waves, traveling with constant velocity. These so-called
regular waves can take on different shapes, amplitudes and velocities depend-
ing on flow conditions.

The principal method of theoretical investigation based on use of a thin layer
approximation was suggested in [13]. The majority of theoretical results used
to describe experimental data were reached in the framework of the Kapitza-
Shkadov evolution equations derived in [14] by the integral method. In particu-
lar, numerous types of steady-traveling waves in the framework of this approx-
imation, see [15–23] and references in these publications, have been computed.
Detailed description of the film theory can be found in monographs [24,25].

Another relevant area of research is the interface instability between two vis-
cous flows. This type of instability was first studied in [26] by the asymptotic
method [2] in the case of the plane Couette-Poiseulle flow. In a specific case
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of liquids with equal densities, it was shown that the flow is unstable for any
small value of the Reynolds number, and the instability is supplied by either
the moving boundary or the pressure gradient. In [27], a parallel flow of two
viscous liquids of equal density in infinite domains divided by a flat interface
was studied, and it was shown that there exists a short wave instability in
the absence of the surface tension. This mechanism of instability is compar-
atively small, and it can be stabilized by the surface tension. As illustrated
in [28], the interface tension should be unrealistically small to observe the in-
terface instability in the unbounded stratified Couette flow. In the case when
one of liquids is bounded by a wall, and another liquid is unbounded, there
were found a long wave interface instability in [29]. In [30], a weakly nonlinear
equation modeling the plane Couette-Poiseulle flow of two liquids was derived,
and some examples of wave evolution were computed. A special case of the
two-layer Couette flow with high dynamic viscosities ratios was modeled in
[31] using an evolution equation derived by the integral method. The integral
method was also used to model non-linear solitary waves in two-layer plane
flows driven by the gravity [32] and the pressure [33]. Some attention was
also paid to stability of interface waves in [34] where a gas-liquid waves were
studied. Solitary and periodic waves in an interface between two-liquids were
observed in a cylindrical Couette flow at high ratio of the dynamic viscosities
[35] and a microchannel [36].

In this paper, we use the integral method to find steady-traveling periodic
waves in the two-layer film flow.

This paper is organized as follows: In Section 2, the evolution equations are
derived to model flows at real-life values of the similarity parameters. In Sec-
tion 3, the method used to compute steady-traveling waves is given, and ex-
amples of the waves are shown. Finally, conclusions are provided in Section 4.

2 Evolution equations

2.1 Equations and boundary conditions

To model two-layer film flowing down on a vertical wall, the Cartesian coor-
dinate system (x, y) is introduced with the x-axis pointed down and y-axis
pointed into the film bulk. We assume that both liquids are immiscible, in-
compressible and viscous, and we will refer the liquid attached to the wall as
‘1’ and the liquid having the free surface as ‘2’.

The flow is described by the full Navier-Stokes equations and relevant bound-
ary conditions for the velocity components u and v corresponding to the axis
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x and y, respectively, the pressure p , the first layer thickness h(1) and the
film thickness h(2). To formulate the equations and boundary conditions in
the dimensionless form, we take film thickness Hc of the waveless flow as the
length scale, and the average film velocity Uc = Qc/Hc, where Qc is the to-
tal flow rate of the film, as the velocity scale. Then dimensional variables are
converted into dimensionless form as,

t → Hc

κUc

t,
(
x, y, h(1), h(2)

)
→ Hc

(
xκ

κ
, y, h(1), h(2)

)
,

(u, v) → Uc (u, κvκ) , p → ρ(2)U2
c p,

where κ is the stretching parameter defined below.

The dimensionless Navier-Stokes equations and the problem boundary condi-
tions are written in the form

∂u

∂xκ

+
∂vκ
∂y

= 0, (1)

∂u

∂tκ
+ u

∂u

∂xκ

+ vκ
∂u

∂y
= − 1

ρ
(j)
0

∂p

∂xκ

+
ν
(j)
0

κRe

(
κ2 ∂

2u

∂x2
κ

+
∂2u

∂y2

)
+

1

κFr2
,

κ2

(
∂vκ
∂tκ

+ u
∂vκ
∂xκ

+ vκ
∂vκ
∂y

)
= − 1

ρ
(j)
0

∂p

∂y
+

κ2ν
(j)
0

κRe

(
κ2∂

2vκ
∂x2

κ

+
∂2vκ
∂y2

)
,

y = 0 : u = 0, vκ = 0,

y = h(1)(xκ, tκ) :
∂h(1)

∂tκ
+ u

∂h(1)

∂xκ

= vκ, [pnn]
2
1 +

κ2σ0ς
(1)
κ

We
= 0,

[pnτ ]
2
1 = 0, [u]21 = 0, [vκ]

2
1 = 0,

y = h(2) (xκ, tκ) :
∂h(2)

∂tκ
+ u

∂h(2)

∂xκ

= vκ, pnn −
κ2ς(2)κ

We
= 0, pnτ = 0,

where the notation [f ]21 ≡ f2 − f1 denotes the jump in quantity f from the
value in the first liquid, f (1), to the value in the second, f (2). The boundary
conditions in (1) include the normal, pnn, and tangential, pnτ , stresses and the
curvatures ςκ which are calculated as follows

pnn = −p+
2κ2ρ

(j)
0 ν

(j)
0

κRe

1 + κ2

(
∂h

∂xκ

)2
−1

×
1− κ2

(
∂h

∂xκ

)2
 ∂vκ

∂y
− ∂h

∂xκ

(
∂u

∂y
+ κ2 ∂vκ

∂xκ

) , (2)

pnτ =
ρ
(j)
0 ν

(j)
0

Re

1 + κ2

(
∂h

∂xκ

)2
−1

×
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1− κ2

(
∂h

∂xκ

)2
(∂u

∂y
+ κ2 ∂vκ

∂xκ

)
+ 4κ2 ∂h

∂xκ

∂vκ
∂y

 ,
ςκ =

1 + κ2

(
∂h

∂xκ

)2
− 3

2
∂2h

∂x2
κ

.

The system (1) and (2) contains the following dimensionless parameters:

Re =
UcHc

ν(2)
, We =

ρ(2)U2
cHc

σ(2)
, Fr2 =

U2
c

gHc

,

ρ0 =
ρ(1)

ρ(2)
, ν0 =

ν(1)

ν(2)
, σ0 =

σ(1)

σ(2)
,

with ρ
(2)
0 = 1, ρ

(1)
0 = ρ0, ν

(2)
0 = 1 and ν

(1)
0 = ν0, where ρ(j) and ν(j), j = 1, 2

are the densities and viscosities of the liquids, respectively, σ(1) and σ(2) are
the interface and surface tensions, and g is gravity.

The system (1) and (2) has a solution, denoted by capital letters below, de-
scribing the steady waveless flow:

y ∈ [0, H] : U (1) =
Re

ν0Fr
2

(
a(1)y − y2

2

)
, V (1) = 0, P (1) = 0,

y ∈ [H, 1] : U (2) =
Re

Fr2

(
a(2) + y − y2

2

)
, V (2) = 0, P (2) (y) = 0,

where the coefficients

a(1) =
1

ρ0
+

(
1− 1

ρ0

)
H, a(2) =

(
1 + ν0
2ν0

− 1

ρ0ν0

)
H2 +

(
1

ρ0ν0
− 1

)
H

have been used. Then the flow rates in the first layer, Q(1), and the second
layer, Q, are calculated

Q(1) =

H∫
0

U (1)dy =
Re H2

2ν0Fr
2

[
1

ρ0
+

(
2

3
− 1

ρ0

)
H

]
, (3)

Q =

1∫
H

U (2)dy

=
Re (1−H)

Fr2

[
1

3
+

(
1

ρ0ν0
− 2

3

)
H +

(
1

3
+

1

2ν0
− 1

ρ0ν0

)
H2

]
.
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Finally, we find the total flow rate in the two-layer film

Q(2) = Q(1) +Q =
φRe

Fr2
,

φ =
H2

2ν0

[
1

ρ0
+

(
2

3
− 1

ρ0

)
H

]

+(1−H)

[
1

3
+

(
1

ρ0ν0
− 2

3

)
H +

(
1

3
+

1

2ν0
− 1

ρ0ν0

)
H2

]
.

Since we have taken the average velocity of the waveless flow as the velocity
scale, the dimensionless total flow rate is Q(2) = 1 and thus Fr2 = φRe. This
relation allows us to eliminate the Froude number, and calculate the scale
velocity Uc = φgH2

c /ν
(2).

In the theory of thin films, the Reynolds number and the Weber number are
replaced with the Kapitza number, Ka, and the film parameter, δ, which can
be defined for the two-layer film as

Ka ≡ σ(2)

ρ(2)
(
g (ν(2))

4
) 1

3

, δ ≡ 1

45 (ν(2))
2

(
ρ(2)g4H11

c

σ(2)

) 1
3

.

Then the original parameters are re-calculated:

Re = φ (45δ)
9
11 Ka

3
11 , We =

φ2 (45δ)
15
11

Ka
6
11

.

2.2 Approximate system

Wave regimes in film flows are observed under conditions when there is a bal-
ance of the gravity, viscosity and capillarity. Acting in opposite directions, the
gravity and viscosity form a flow with some average parameters. As known
from experiments and observations, this flow is unstable and it leads to the
development of wave regimes whose parameters depend on the capillarity com-
peting with the gravity and the viscosity. It can be formulated as a balance of
the following terms in the equations (1):

1

κφRe
=

κ2

We
, (4)
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Liquid Density, Kinematic viscosity, Surface tension with air,

g/cm3 cm2/s g/s2

Water 0.998 0.0101 72

Benzene 0.879 0.0074 29

Table 1
Physical properties of water and benzene. The interface tension between water and
benzene is 33.6 g/s2.

where, taking into account the formula derived above for the Froude number,
the left-hand side is the gravity term in the x-momentum equation in (1),
and the right-hand side characterizes the pressure gradient induced by the
surface tension on the free surface. Equation (4) allows us to find the stretching
parameter κ:

κ =

(
ρ(2)gH2

c

σ(2)

) 1
3

=

(
(45δ)2

Ka3

) 1
11

.

The method of using the longitudinal wave scale to derive an approximate
equations to model thin film flows was successfully applied in [14] and nu-
merous succeeding works for one-layer films [24,25], and we can expect that it
should also give a good approximation in two-layer film flows if the properties
of the liquids are close each other. On the other hand, the surface instability
and the interface instabilities have different length scales, and the accuracy
of the approximation can be relatively worse in comparison with the homoge-
neous film.

It is worth to note that the parameter κ can also be written in the form
κ = (Ca/φ)1/3 where the capillary number Ca ≡ ρ(2)ν(2)Uc/σ

(2) = We/Re has
been used.

For many liquids, including water, the Kapitza number is sufficiently large,
and it leads to small values of the stretching parameter κ2 ≪ 1 in homogeneous
films at moderate values of the Reynolds number [22]. As an example of two-
layer film, in this paper we consider the case of water (liquid 1) and benzene
(liquid 2) whose physical properties are summarized in Table 1.

Fig. 1 demonstrates an example of values κ2 and Re. It is seen that κ2 ≤ 0.05 if
δ ≤ 0.4 at H = 0.3. For the same interval of δ, the Reynolds number Re ≤ 25
which is typical for observed regular waves in film flows.

Due to the small values of κ2, we can neglect terms of order O (κ2) in (1) and
(2), and then the system is re-written as follows:
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Fig. 1. Dependencies of the stretching parameter κ2 (a) and the Reynolds number
Re (b) on the film parameter δ in the case water-benzene system at H = 0.3.

∂u

∂xκ

+
∂vκ
∂y

= 0, (5)

∂u

∂tκ
+ u

∂u

∂xκ

+ vκ
∂u

∂y
= − 1

ρ
(j)
0

∂p

∂xκ

+
φν

(j)
0

5δ

∂2u

∂y2
+

1

5δ
,

∂p

∂y
= 0,

y = 0 : u = 0, vκ = 0,

y = h(1)(xκ, tκ) :
∂h(1)

∂tκ
+ u

∂h(1)

∂xκ

= vκ, [u]21 = 0, [vκ]
2
1 = 0,[

ρ
(j)
0 ν

(j)
0

∂u

∂y

]2
1

= 0, [−p]21 +
σ0

5δ

∂2h(1)

∂x2
κ

= 0,

y = h(2)(xκ, tκ) :
∂h(2)

∂tκ
+ u

∂h(2)

∂xκ

= vκ,
∂u

∂y
= 0, p+

1

5δ

∂2h(2)

∂x2
κ

= 0

where we have used that δ = κφRe/5.

The y-momentum equations in the layers and the boundary conditions for the
normal stresses allow us to eliminate the pressures from the system:

p(1) = − 1

5δ

(
σ0

∂2h(1)

∂x2
κ

+
∂2h(2)

∂x2
κ

)
, p(2) = − 1

5δ

∂2h(2)

∂x2
κ

.

Having substituted these formulas into the x-momentum equations and then
integrating them as well as the continuity equations across each layer, we
arrive at the following evolution system
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∂h(1)

∂tκ
+

∂q(1)

∂xκ

= 0, q(1) ≡
h(1)∫
0

u dy,

∂q(1)

∂tκ
+

∂

∂xκ

h(1)∫
0

u2 dy

=
1

5δ

[
σ0h

(1)

ρ0

∂3h(1)

∂x3
κ

+
h(1)

ρ0

∂3h(2)

∂x3
κ

+ φν0

(
∂u

∂y

∣∣∣∣
h(1)

− ∂u

∂y

∣∣∣∣
0

)
+ h(1)

]
,

∂
(
h(2) − h(1)

)
∂tκ

+
∂q

∂xκ

= 0, q ≡
h(2)∫

h(1)

u dy,

∂q

∂tκ
+

∂

∂xκ

h(2)∫
h(1)

u2 dy

=
1

5δ

[(
h(2) − h(1)

) ∂3h(2)

∂x3
κ

+ φ

(
∂u

∂y

∣∣∣∣
h(2)

− ∂u

∂y

∣∣∣∣
h(1)

)
+ h(2) − h(1)

]
,

where q(1)(xκ, tκ) and q(xκ, tκ) are local flow rates in the layers. To calculate the
integrals in the left-hand sides and viscous terms in the right-hand sides of the
momentum equations, we approximate the velocity profiles by the following
parabolic functions:

y ∈
[
0, h(1)

]
: u = U11y + U12y

2, (6)

U12 =
3

h(1) [(3− 4ρ0ν0)h(1) + 4ρ0ν0h(2)]

×
{

3q(2)

h(2) − h(1)
−
[

3

h(2) − h(1)
+

2

(h(1))
2

[
(3− ρ0ν0)h

(1) + ρ0ν0h
(2)
]]

q(1)
}
,

U11 =
2q(1)

(h(1))
2 − 2h(1)U12

3
,

y ∈
[
h(1), h(2)

]
: u = U20 + U22

(
y2 − 2h(2)y

)
,

U22 = −ρ0ν0
2

U11 + 2U12h
(1)

h(2) − h(1)
,

U20 =
q(2) − q(1)

h(2) − h(1)
+

1

3

[
2
(
h(2)

)2
+ 2h(1)h(2) −

(
h(1)

)2]
U22.

The approximating solution (6) satisfies the boundary conditions in (5), and
provides the flow rates q(1) and q(2) ≡ q(1) + q in the first layer and the whole
film, respectively. Finally, we derive the evolution equations for h(1), q(1), h(2)

and q(2):
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∂h(1)

∂tκ
+

∂q(1)

∂xκ

= 0, (7)

∂q(1)

∂tκ
+

∂J (1)

∂xκ

=
h(1)

5δ

(
σ0

ρ0

∂3h(1)

∂x3
κ

+
1

ρ0

∂3h(2)

∂x3
κ

+ 2φν0U12 + 1

)
,

∂h(2)

∂tκ
+

∂q(2)

∂xκ

= 0,

∂q(2)

∂tκ
+

∂J (2)

∂xκ

=
1

5δ

[
σ0h

(1)

ρ0

∂3h(1)

∂x3
κ

+

(
h(2) +

(
1

ρ0
− 1

)
h(1)

)
∂3h(2)

∂x3
κ

]

+
φ

5δ

[
2ν0U12h

(1) (1− ρ0)− ρ0ν0U11

]
+

h(2)

5δ
,

where

J (1) =
(
h(1)

)3 [U2
11

3
+

U11U12

2
h(1) +

U2
12

5

(
h(1)

)2]
, (8)

J (2) = J (1) + U2
20

(
h(2) − h(1)

)
− 2U20U22h

(2)
[(
h(2)

)2
−
(
h(1)

)2]
+

2

3

[
2U2

22

(
h(2)

)2
+ U20U22

] [(
h(2)

)3
−
(
h(1)

)3]
−

U2
22h

(2)
[(
h(2)

)4
−
(
h(1)

)4]
+

U2
22

5

[(
h(2)

)5
−
(
h(1)

)5]
.

The system contains the film parameter δ, the parameters σ0, ρ0 and ν0 char-
acterizing physical properties of the liquids, and the parameter H depending
on the waveless interface location for given flow rates in the layers.

2.3 Linear stability analysis

We start from the linear stability analysis of the steady waveless flow to find
the domain of instability in the space of the similarity parameters. The results
can be compared with the linear spectrum of the Orr-Sommerfeld problem for
the Navier-Stokes system, (1) and (2).

The system (7) possesses a steady flow solution h(1) = H and h(2) = 1 satis-
fying the following equations:

2φν0U12 + 1 = 0, φ
[
2ν0U12h

(1) (1− ρ0)− ρ0ν0U11

]
+ h(2) = 0. (9)

The flow rates Q(1) and Q in the layers are given by (3).

To analyze the linear stability of the steady flow, we look for a solution of (7)
in the form of normal modes
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Fig. 2. Wave velocities (a) and amplification factors (b) for the surface mode in
the water-benzene system at δ = 0.1 and H = 0.3. Solid curves and dashed curves
denote solutions of the approximate model (7) and the Orr-Sommerfeld problem for
(1) and (2), respectively.

h(1) = H + h̆(1)eiακ(xκ−ctκ), h(2) = 1 + h̆(2)eiακ(xκ−ctκ),

q(1) = Q(1) + q̆(1)eiακ(xκ−ctκ), q(2) = Q(2) + q̆(2)eiακ(xκ−ctκ),

where variables with breves denote small amplitudes, ακ is the wavenumber,
and c = cr + ici is the complex velocity to be computed. Substituting this
solution into (7) and linearizing lead to the characteristic equation for the
eigenvalue c

b4c
4 + b3c

3 + b2c
2 + b1c+ b0 = 0, (10)

where formulas for the coefficients b0, . . . , b4 have been omitted for the sake of
brevity.

As noted in Section 1, the two-layer film flow has two unstable modes at
moderate flow rates. Figs. 2 and 3 show the wave velocity cr and amplification
factor ακci in the case of water-benzene system at H = 0.3 and δ = 0.1
(Re = 7.3). In dimensional terms, this example corresponds to the film of
the thickness Hc = 0.116 mm and the average velocity Uc = 4.66 cm/s. In
parallel with the solutions of (10), Figs. 2 and 3 shows the results of the
Orr-Sommerfeld problem [5].

It is seen that the model (7) provides a good approximation of the intervals
of instability and wave velocities of both modes. This is a typical case for
homogeneous film flows, and successful applications of the integral method are
explained by the fact that real-life waves are usually observed for ακ ≤ ακ,n/2
where ακ,n is the neutral wavenumber of the surface mode. In the considered
case, eigenvalues of the surface mode computed in both models are also close
but there is some discrepancy of the amplification factors of two models for the
interface mode. However, we note that the scale of amplification factors of the
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Fig. 3. Wave velocities (a) and amplification factors (b) for the interface mode waves
in the water-benzene system at δ = 0.1 and H = 0.3. Solid curves and dashed curves
denote solutions of the approximate model (7) and the Orr-Sommerfeld problem for
(1) and (2), respectively.
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Fig. 4. Neutral curves of the surface mode (curves 1 and 2) and the interface mode (3
and 4) in the case of water-benzene system at H = 0.3. Curves 1 and 3 correspond
to solutions of the approximate model (7), and curves 2 and 4 denote solutions of
the Orr-Sommerfeld problem (1) and (2).

interface mode is about one thousand times smaller than ones of the surface
mode. Even for such small values lying on the border of the method accuracy,
the approximate model gives sufficiently good results, in particular as ακ → 0.
It is worthy to note that amplification factors of the interface mode can be
comparable with that of the surface mode in films flowing down an incline
whose inclination is relatively small [5] but we do not study non-vertical flows
in this work.

Neutral curves of both modes are shown in Fig. 4. It is seen that the interface
mode is unstable at relatively small values of the wavenumber. It indicates
that the unstable interface modes can affect only very long waves.
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3 Steady-traveling waves

3.1 Nonlinear eigenvalue problem

To find steady-traveling waves, we look for a solution of (7) in the form h(1)(η),
h(2)(η), q(1)(η), q(2)(η) where η = ακ (xκ − ctκ). Having substituted this solu-
tion and integrated the continuity equation to find the flow rates

q(1) = ch(1) + A(1), q(2) = ch(2) + A(2), (11)

where A(1) and A(2) are constants, we arrive at the following equations for the
interface h(1) and the surface h(2):

−c2
dh(1)

dη
+

dJ (1)

dη

= h(1)

[
1

5δακ

(
α3
κσ0

ρ0

∂3h(1)

dη3
+

α3
κ

ρ0

∂3h(2)

dη3
+ 2φν0U12 + 1

)]
(12)

−c2
dh(2)

dη
+

dJ (2)

dη
=

α2
κ

5δ

[
σ0h

(1)

ρ0

∂3h(1)

dη3
+

(
h(2) +

(
1

ρ0
− 1

)
h(1)

)
∂3h(2)

dη3

]

+
φ

5δακ

[
2ν0U12h

(1) (1− ρ0)− ρ0ν0U11

]
+

h(2)

5δακ

where the coefficients are given by (6) and (8).

Integrating both equations (11) over the period 2π allows us to find the con-
stants A(1) and A(2):

A(1) = q
(1)
0 − ch

(1)
0 , A(2) = q

(2)
0 − ch

(2)
0 ,

where

h
(1)
0 =

1

2π

2π∫
0

h(1)dη, q
(1)
0 =

1

2π

2π∫
0

q(1)dη,

h
(2)
0 =

1

2π

2π∫
0

h(2)dη, q
(2)
0 =

1

2π

2π∫
0

q(2)dη.

Thus, the flow rates are

q(1) = c
(
h(1) − h

(1)
0

)
+ q

(1)
0 , q(2) = c

(
h(2) − h

(2)
0

)
+ q

(2)
0 . (13)
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Fig. 5. Bifurcation scheme of the wave families at δ = 0.1 and H = 0.3.

Equations (12) and (13) are accompanied by the periodic boundary conditions:

h(1)
∣∣∣
0
= h(1)

∣∣∣
2π
,

dh(1)

dη

∣∣∣∣∣
0

=
dh(1)

dη

∣∣∣∣∣
2π

,
d2h(1)

dη2

∣∣∣∣∣
0

=
d2h(1)

dη2

∣∣∣∣∣
2π

, (14)

h(2)
∣∣∣
0
= h(2)

∣∣∣
2π
,

dh(2)

dη

∣∣∣∣∣
0

=
dh(2)

dη

∣∣∣∣∣
2π

,
d2h(2)

dη2

∣∣∣∣∣
0

=
d2h(2)

dη2

∣∣∣∣∣
2π

.

Integrating (7) from 0 to 2π and using these periodic boundary conditions

give us h
(1)
0 = H and h

(2)
0 = 1.

Solutions of the eigenvalue problem (12), (13) and (14) for the first layer
thicknesses h(1), the film thickness h(2), the wave velocity c and the flow rates
q(1) and q(2) depend on the wavenumber ακ, the similarity parameters δ, ρ0,
ν0 and σ0, and the relative thickness of the first layer H. It is convenient to
use the normalized wavenumber s ≡ ακ/ακ,n instead of the wavenumber ακ

itself.

3.2 Bifurcating wave families

In the theory of film flows, regular waves are sorted into families which are
continuously parameterized by the normalized wavenumber s at given values
of other similarity parameters, in this case δ, ρ0, σ0 and H. To identify the
wave families we use the notation γn

±m,j, see [22,23].

Fig. 5 shows the bifurcation scheme of the families of nonlinear waves. Family
γ1
−1,1 bifurcates from the waveless flow at the neutral wavenumber as the first
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Fig. 6. Examples of waves belonging to the family γ1−1,1 at s = 0.019 (a), s = 0.7
(b) and s = 0.9632 (c). Panels (a), (b) and (c) correspond to the points A, B and
C, respectively, in Fig. 5.

(h(1))''

h(1)

(h
(1
) )
'

(h(1))'' (h(2))''

h(2)

(h
(2
) )
'

(h(2))''

Fig. 7. Projections of 6-dimensional phase trajectory of the family γ1−1,1 in 3-di-

mensional subspace

(
h(1),

(
h(1)

)′
,
(
h(1)

)′′)
(a) and

(
h(2),

(
h(2)

)′
,
(
h(2)

)′′)
(b) , at

s = 0.019, correspond to Fig. 6a.

harmonic, see Fig. 6c. As the wavenumber decreases, the surface wave ampli-
tude grows, see Fig. 6b, and then the wave takes on a solitary-like shape with
a long interval of constant thickness of the first layer and the film, see Fig. 6a.
The surface shape shown in Fig. 6a is typical for long waves of the so-called
first family [14] in a homogeneous film. We also note that the amplitude of
the interfacial wave is small in comparison with the surface wave amplitude.

In Fig. 7, projections in 3-dimensional subspaces
(
h(1),

(
h(1)

)′
,
(
h(1)

)′′)
and(

h(2),
(
h(2)

)′
,
(
h(2)

)′′)
of the 6-dimensional phase trajectory of the wave be-

longing to the family γ1
−1,1 are shown. It is seen that the projection shown in

Fig. 7b is a curve that is similar to the phase trajectory in 3D space of a long
periodic first family wave in the homogeneous film [25]. In the latter case a
phase trajectory of a long wave belongs to a neighborhood of the solitary wave
trajectory of the first family γ1

−1,1: the trajectory leaves a neighborhood of the
fixed point (1, 0, 0) along the unstable two-dimensional manifold and returns
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Fig. 8. Examples of waves belonging to the family γ2−2,1 at s = 0.018 (a), s = 0.4
(b) and s = 0.4616 (c). Panels (a), (b) and (c) correspond to the points D, E and
F, respectively, in Fig. 5.
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Fig. 9. Examples of waves belonging to the family γ3+1,1 at s = 0.074 (a), s = 0.25
(b) and s = 0.3125 (c). Panels (a), (b) and (c) correspond to the points G, H and
I, respectively, in Fig. 5.

to the same point along the stable one-dimensional manifold as η varies from
−∞ to +∞. It indicates that the extension of the phase space from 3 to 6

weakly affects the projection in
(
h(2),

(
h(2)

)′
,
(
h(2)

)′′)
. The projection shown

Fig. 7a demonstrates that there exists other stable and unstable manifolds in
the neighborhood of the fixed point (H, 0, 0, 1, 0, 0) in the 6-dimensional space.

Family γ2
−2,1, see Fig. 5, bifurcates from the first family. At the bifurcation

point, the wave is close to the second harmonic, see Fig. 8c. This regular wave
corresponds to a limit cycle in the 6-dimensional phase space

(
h(1),

(
h(1)

)′
,
(
h(1)

)′′
, h(2),

(
h(2)

)′
,
(
h(2)

)′′)
,

and Fig. 8c shows that this family bifurcates from the first family cycle as a
period-doubling limit cycle. As the wavenumber s decreases, the shape of the
family wave transforms to a solitary-like form, see Fig. 8b and a. Comparing
6a and 8a, we see additional oscillation in the trough of the wave in Fig. 8a.

Period-tripling bifurcation, see Fig. 9c, creates the wave family γ3
+1,1, see Fig. 5,

whose shape at small values of the wavenumber has a large hump (Fig. 9a) in
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(
h(1),

(
h(1)

)′
,
(
h(1)

)′′)
(panel (a)) and

(
h(2),

(
h(2)

)′
,
(
h(2)

)′′)
(panel (b)) at s = 0.074, correspond to the panel (a) in Fig. 9

contrast with the long waves of the families γ1
−1,1 and γ2

−2,1. This hump is also
observed in shape of intermediate waves of the family (Fig. 9b). We can also

analyze the projections in 3-dimensional subspaces
(
h(1),

(
h(1)

)′
,
(
h(1)

)′′)
and(

h(2),
(
h(2)

)′
,
(
h(2)

)′′)
of the trajectory of a long wave belonging to the family

γ3
+1,1, see Fig. 10. This projection is also similar to the corresponding solution

of the so-called second family in the homogeneous film, see [25].

In the shown results at H = 0.3 the amplitude of the interface waves is
respectively small in comparison with the wave amplitudes on the free surface.
It is consistent with the fact that these waves bifurcates from the waveless flow
similar to the waves in the homogeneous film, see Fig. 1 in [20]. To understand
the role of the parameterH, we demonstrate the bifurcation scheme atH = 0.7
in Fig. 11. Comparison with the case H = 0.3 (Fig. 5) shows that increasing
H leads to swapping their bifurcation points by the families γ−2,1 and γ+1,1,
and this effect is inherent for the wave families in film flows when a similarity
parameter varies. Detailed description of the swapping with variation of the
film parameter δ can be found in [21].

Examples of waves belonging to different families at H = 0.7 are shown in
Fig. 12. It is seen that in all cases the interface wave almost imitates the
surface wave, and their amplitudes are close. The projections of the phase
trajectories in 3D-subspaces confirm that the amplitudes of the pairs h(1) and

h(2),
(
h(1)

)′
and

(
h(2)

)′
, and

(
h(1)

)′′
and

(
h(2)

)′′
have the same order.

17



0 0.2 0.4 0.6 0.8 1

s

2

3

4

5

6

c

Fig. 11. Bifurcation scheme of the wave families at δ = 0.1 and H = 0.7.
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Fig. 12. Examples of waves belonging to the families γ1−1,1 (a), γ3−2,1 (b) and γ2+1,1

(c) at s = 0.2, δ = 0.1 and H = 0.7.
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4 Conclusions

Evolution equations to model a two-layer film flow have been derived. The
equations generalize the Kapitza-Shkadov model [14] for the homogeneous
film. The linear analysis has shown that the model is in a good agreement
with the full Navier-Stokes system.

For the first time, strongly nonlinear waves in a two-layer falling liquid film
have been calculated at real-life values of the similarity parameters. The bi-
furcation scheme of the wave families and wave shapes of the film surface are
typical for film flows. The first wave family γ1

−1,1 bifurcates from the waveless
solution, and other found families bifurcate from the first family as period-
doubling and period-tripling. Other bifurcating families at smaller wavenum-
bers can also be computed.

Non-uniqueness of solutions raises a question how to select solutions which
can be used for comparison with experimental data. For homogeneous films,
this problem has been investigated using two main approaches. The first ap-
proach was to investigate the linear stability of nonlinear steady-traveling
waves [16,17]. Another approach was used in [20,19] where transient numer-
ical computations were carried out to find attracting flow regimes, so-called
dominating waves. Both strategies can be applied in the considered case of
the two-layer film in the future.

In contrast to the case of homogeneous film flows, two-layer films also possess
the unstable interface mode whose domain of instability is localized at very
small values of the wavenumber, and we can expect that there exist other
families of steady-traveling waves. Since Kapitza & Kapitza’s experiments
[12] for homogeneous films it is known that it is impossible to observe steady-
traveling periodic waves whose wave lengths exceed some critical value, and
it was theoretically explained in [37]. In the case of the two-layer film, the
bifurcating scheme at small wavenumbers is more complicated, and attracting
regimes in this domain need a special study.

For many years the Kapitza-Shkadov model [14] has been the main tool to
explain experimental data and provides modeling the possible flow regimes
in homogeneous film flows despite deriving other models, for example [38,39],
and developing computer codes for the full Navier-Stokes problem [40]. We
expect that the generalized equations (7) for two-layer film flow will also be
widely used to model experimental data in the future.
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