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ABSTRACT

Three key challenges faced by the task of software effort esti-
mation (SEE) when using predictive models are: (1) in order
to support decision-making, software managers should have
access not only to the effort estimation given by the predic-
tive model, but also how confident this model is in estimat-
ing a given project and how likely other effort values could be
the real efforts required to develop this project, (2) SEE data
is likely to contain noise, due to the participation of humans
in the data collection, and this noise can hinder predictions if
not catered, and (3) data collection is an expensive task, and
guidelines on when new data need to be collected would be
helpful for reducing the cost associated with data collection.
However, even though SEE has been studied for decades
and many predictors have been proposed, few methods fo-
cus on these issues. In this work, we show that relevance
vector machine (RVM) is a promising predictive method for
addressing these three challenges. More specifically, it ex-
plicitly handles noise, it provides probabilistic predictions
of effort, and can be used to identify when the required
efforts of new projects should be collected for using them
as training examples. With that in mind, this work pro-
vides the first step in exploiting RVM’s potential for SEE
by validating both its point prediction and prediction inter-
vals. It then explains in detail future directions in terms
of how RVMs can be further exploited for addressing the
above mentioned challenges. Our systematic experiments
show that RVM is very competitive compared with state-
of-the-art SEE approaches, being usually ranked the first or
second in 7 across 11 data sets in terms of mean absolute
error. We also demonstrate how RVM can be used to judge
the amount of noise present in the data. In summary, we
show that RVM is a very promising predictor for SEE and
should be further exploited.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Cost esti-
mation; I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
Software effort estimation (SEE) is the process of pre-

dicting the effort (e.g., in person-month or person-hour) re-
quired to develop a software system. It often takes place in
the very early stage of software development and, based on
it, project managers make important decisions such as the
budget, the schedule of the project, and the bidding price
[4]. Though being investigated for decades, there are still
several problems hindering the practical use of SEE models.
Among all of them, we focus on three challenging problems,
as explained next.

First, most existing SEE methods produce merely point
estimations, i.e., they provide a single estimation of the ef-
fort required to develop a given project, rather than provid-
ing prediction intervals or the level of confidence associated
with the estimations. However, there are several sources of
uncertainty in the context of software estimation task [37,
18, 16]. Simply relying on a point estimation may ignore the
uncertain factors and may lead project managers to wrong
decision-making. Therefore, it is safer to produce interval
predictions along with a most likely point estimation for
practical purpose [37]. Moreover, interval predictions can
provide more flexibility to project managers. For instance, in
bidding process, if the competition is very fierce the project
manager can report a lower price within the interval to en-
hance the chances of winning; while, if the competition is
less fierce, he/she can propose a higher price for getting more
profit to the organization. In summary, it would be good to
have predictions intervals associated with confidence levels
in the context of SEE [13, 17].

Second, data quality is considered to be an important fac-
tor of prediction accuracy [10], and noise in effort is an im-
portant aspect of data quality. Effort noise is defined as the
difference between the real and the collected required effort.
It is usually immeasurable, as we usually do not know the
real required effort, only the collected one1. Unfortunately,

1Note that effort noise is different from absolute residual,
which is related to a specific SEE approach, and is defined
as the difference between the predicted and the collected
required efforts.
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the efforts collected by project managers are very likely to
contain noise due to the participation of humans. For in-
stance, some employees may work in more than one project
at the same time, and it may be difficult for the project man-
ager to clarify how much effort exactly they have devoted
to a specific project. So, SEE faces the challenge of achiev-
ing good performance in the presence of noise. As noise is
very likely to hinder the performance of classical predictive
models which rely on perfectly collected outputs (efforts), a
model able to deal with effort noise more effectively is nec-
essary. In addition, it would be good to have a method able
to detect the level of noise of a data set.
A third challenge of SEE task is the high cost associated

with data collection [10]. Though the collection of inde-
pendent features for completed projects is not very costly
with the assistance of automated metric extraction tools,
the collection of actual effort values is far more costly and
may require considerable amount of time and workload [20,
21]. Rather than collecting as many completed efforts as
possible, it is advised to collect the most ’relevant’ data,
i.e., the ones which are representative of the range of differ-
ent projects and have potential to improve the generaliza-
tion performance. Therefore, it is of great practical use to
propose guidelines to support project managers in deciding
whether or not to collect the effort associated with a new
project.
In this work, we aim to introduce a promising method,

Relevance Vector Machine (RVM) [39], which has the po-
tential to address these three challenges. We will show that
RVM explicitly models effort noise, and that the estimated
level of effort noise can be used to analyze the data set.
Following the Bayesian framework, RVM conducts a prob-
abilistic prediction for a new project, where each estimated
effort is associated with a probability. We will show that it
is possible to derive a prediction interval associated with a
confidence level based on this probabilistic prediction. More-
over, Automatic Relevance Determination (ARD) [30] used
by RVM can help us to decide whether the required effort
of a new project should be collected.
Before the attempts to address the three problems, the

first step is to investigate whether RVM can perform well
in comparison with state-of-the-art SEE approaches when
used as a point estimator. This is because if RVM per-
forms very badly for SEE, none of the conclusions based on
it are reliable. On the other hand, if RVM is competitive
against other SEE approaches, its conclusions are more reli-
able. Moreover, this would also mean that modifying RVM
to take into account specific features of SEE, such as non-
normal distribution of noise, is a promising area of research
which could improve SEE and its associated problems fur-
ther.
Our experiments show that RVM is very competitive com-

pared with state-of-the-art SEE approaches, being usually
ranked top two in 7 out of 11 data sets in terms of mean ab-
solute error, and behaving statistically similar to approaches
that have been showing to perform well in SEE. So, given
the potential of RVM to address the key challenges related
to SEE and its competitive performance, we encourage fu-
ture research in exploiting and improving RVM further in
order to fully address the three challenges described above.
The main aims of this paper are to validate RVM in terms

of its point estimation and prediction intervals in the context
of SEE, and to provide further detailed directions on how to

use RVM for addressing the challenges described above. In
summary, this paper investigates the following points:

P1 How well can RVM perform compared with other well-
established SEE predictors when used as a point esti-
mator? This, together with the potential of RVM in
dealing with the three challenges described above, al-
lows us to know how promising RVM is in the context
of SEE. It is worth noting here that our aim is not
to show that RVM is a supreme predictor which out-
performs all other existing SEE approaches, but to in-
vestigate whether it presents competitive performance
and should be investigated further, given its potential
to address the three challenges described above.

P2 How to provide prediction intervals associated with
confidence levels based on RVM? Does the proposed
method provide reasonable prediction intervals? This
allows us to know how well RVMs deal with the first
challenge described above.

P3 How to use RVM to detect the level of noise of SEE
data, which is one of the factors associated with data
quality in SEE? This provides detailed directions on
how to address the second challenge described above.

P4 How to use RVM to decide whether the required effort
of a new project should be collected, i.e., to guide data
collection? This provides detailed directions on how to
address the third challenge described above.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work on machine learning for SEE. In
section 3, we briefly introduce RVM and its usage in SEE.
After the experiment design in section 4, the performance
of RVM as a point estimator will be evaluated in section 5
(P1). In section 6, we propose a method for predicting an
interval associated with a confidence level, and its valida-
tion (P2). Section 7 shows our original solutions on how to
address (P3) and (P4). Threats of validity are discussed in
section 8. The paper is concluded in section 9.

2. RELATED WORK
In this section, we will discuss some related literature in

three subtopics as follows. It is worth noting that none of the
existing approaches is able to solve all the three problems
explained in section 1 simultaneously.

2.1 Machine Learning Techniques in SEE
Many machine learning (ML) algorithms have been pro-

posed for SEE in the past two decades. Among them, k-
Nearest Neighbor (k-NN), artificial neural networks (ANN),
and regression tree (RT) were three most frequently used
ones [40, 10].

Shepperd and Schofield (1997) [35]’s work was a landmark
study in SEE. They used k-NN, also known as analogy-based
estimation (ABE) or case-based reasoning (CBR), based on
normalized attributes and Euclidean distance as similarity
measure. Despite its simplicity, this method has remarkably
been shown to be competitive in terms of how frequently it
obtained the best Mean Absolute Error (MAE) compared
with other approaches. Nevertheless, when it is not among
the best approaches for a certain data set, it can perform
considerably worse than the best in terms of MAE [27].
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Regression tree is another popularly used SEE predictor
[8]. It is equipped with easy-to-understand structures such
as if-then rules to separate examples based on their feature
values. It was reported to perform well in comparison to
several other learning machines and can be a good choice of
base learner for ensemble approaches [27].
MultiLayer Perceeptron (MLP) is another widely used

machine learner in the scope of ANN techniques. It is com-
posed of at least three layers of neurons and the neurons of a
certain layer are connected to all neurons of the next layer.
Existing studies have been contradictory in their conclusions
on the usefulness of MLPs in SEE. A recent work [36] re-
vealed that MLPs can achieve competitive performance, but
only if their parameters are very well tuned. The high sen-
sitiveness of MLPs to parameter choices can be the reason
for the contradictory results in the literature.
Besides single SEE approaches, recent works have been

emphasizing the relatively good performance achieved by en-
semble techniques such as Bagging ensembles of RTs (Bag-
ging+RTs) and Bagging ensembles of MLPs (Bagging+
MLPs) [23, 25, 27, 28]. Ensembles are groups of learning
machines combined together with the aim of improving pre-
dictive performance. For instance, it was reported that Bag-
ging+RTs were the most frequently ranked the best and
when they were not the best, they rarely performed consid-
erable worse than the best approach in a study involving
three ensemble and three single learning machines [27].

2.2 Automatic Interval Prediction for SEE
So far, only a few studies considered the development of

automatic models providing uncertain predictions in SEE.
The work of Angelis and Stamelos in 2000 [2] was consid-

ered as the first attempt to suggest effort prediction inter-
vals. They presented a method to compute an interval pre-
diction by the use of the bootstrap mechanism with (para-
metric bootstrap) and without (non-parametric bootstrap
based on k-NN) the theoretical assumption on the popu-
lation distribution of the data set. As pointed out by the
authors, this method was not without problems. The quality
of interval prediction relied on the good quality of training
projects. In 2001, the same authors proposed similar interval
predictions but in project portfolio cost estimation problem
based on a bootstrap model.
Later in 2003, Jorgensen and Sjobergis presented and eval-

uated simple effort prediction interval approaches [17], based
on the assumption that the empirical distribution of estima-
tion accuracy was consistent between the historical and the
predicted data. Human judgement or more formal cluster
analysis may be required for identifying the projects with
the same expected degree of estimation uncertainty as the
predicting project.
In 2011, Klas et al. proposed the integration of bootstrap-

ping in the context of hybrid software estimation [19]. Their
empirical results showed improved and more realistic uncer-
tainty estimates.
Another work related to interval prediction was conducted

in 2005 by employing ordinal regression to classify a new
project to a predefined effort category (e.g., Low, Nominal,
High or Very high) [33]. The historical completed projects
with actual efforts were required to predefine the cost cat-
egories and build the model. The point estimation can be
obtained by using the mean or median value of the category
the predicted project falls in.

There were some approaches based upon Bayes’ Theorems
[9, 38, 31, 26] to infer the uncertain prediction for software
effort. For instance, in [9], human experts defined the struc-
ture of the model (COCOMO II) and the prior joint distri-
bution of the unknown parameters. Then, the posterior of
these parameters were calculated by Bayes’ theorem. Other
Bayesian-based SEE models [38, 31, 26] were represented by
Bayesian belief networks (BBNs), where the prediction mod-
els were designed as a structural causal model by humans.
One of the limitations of these Bayesian models is that they
require intensive expert participation to build a predefined
structural model for each organization or data set.

2.3 Data Analysis via Learning Machines
To the best of our knowledge, there has been no work in-

vestigating the distribution of label noise or providing guid-
ance for label collection via predictive models. Thus, in this
section, we review some of the works investigating the char-
acteristics of SEE data via effort estimators.

In 2001, Shepperd and Kadoda explored the relationship
between the characteristics of data sets and the performance
of three SEE approaches: stepwise regression (SWR), rule
induction (RI) and cased-based reasoning (CBR) in simu-
lated data sets (not real SEE data sets). It is believed that
this exploration between prediction accuracy of the estima-
tors and the characteristics of data sets can lead to a better
understanding of in which circumstances a particular tech-
nique is better.

Kocaguneli et.al [22] conducted instance selection to au-
tomatically prune irrelevant instances by a k-NN based al-
gorithm. Though their initial aim was to improve the pre-
diction performance using Cross-Company (CC) data, their
mechanism disclosed the relevant SEE data for the used ap-
proach indirectly. Another work of the same authors also
contribute to this issue. In [24], they employed a k-NN
based method, called QUICK, to characterize the essential
content of SEE data. QUICK calculates the Euclidean dis-
tance between rows (instances) and columns (features) of
SEE data and prunes similar features and distant instances
(outliers). The remaining content is considered as essential.
Their results showed that the essential content of SEE data
was usually small.

Minku and Yao [27] analyzed regression trees to deter-
mine the most important input features of SEE data sets.
In another study [29], they presented a ML-based data anal-
ysis to provide insight into the behaviour of a company in
comparison with other companies over time, helping project
managers to (1) decide if and when new policies to improve
a given company’s productivity are necessary, (2) monitor
the results of adopting new policies, and (3) decide how to
improve productivity.

3. RELEVANCE VECTOR MACHINE
In this section, we will briefly introduce Relevance Vec-

tor Machine (RVM) (Tipping,2001) [39]. For simplicity and
better understanding, we deliberately omit many details.
Please refer to Chapter 7.2 of [5] and papers [39, 11] for
further information.

RVM is a typical linear model, and can be represented for
output y given input vector X as

y = θ
TΦ(X) + ǫ (1)

θ are the model parameters, ǫ represents the probability dis-
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tribution of effort noise, Φ are known as the basis functions
that give linear regression substantial flexibility for model-
ing cases where y and X are non-linearly related. In the
case of RVM, each basis function associates with a sepa-
rate training sample, measuring the distance of this training
sample to the predicted project. There are several possible
choices for the basis functions. In this work, we employ non-

normalized Gaussian kernel φj(x) = exp{−
(x−µj)

2

2s2
} as our

basis function, where µj is the j-th training sample, and s
controls their spatial scale. This function was chosen for its
simplicity and localization [27]. It is also noteworthy that s
is the only tuned parameter.
From the linear model, we can see that RVM explicitly

encodes the effort noise (ǫ). Ideally, the distribution of ef-
fort noise should be proposed by carefully investigating the
residues between the real and the collected required efforts
reported from the training samples. However, this is usu-
ally impossible since the real required efforts exempted from
noise are not known in reality. Among a range of proba-
bility distributions, Gaussian distribution can often match
the actual distribution of the noise in real-world processes
reasonably well, and it is easy to deal with due to the well-
developed mathematical theory behind it [1]. Thus, in this
paper, we assume that label noise is normally distributed,
i.e., ǫ ∼ N (0, σ2). The linear model Eq. 1 will contribute to
a Gaussian likelihood with respect to model parameters θ.
Following the Bayesian framework, by introducing a proper

(Gaussian) prior to the model parameters θ, we can obtain
the posterior of θ as a Gaussian distribution proportional to
the product of the Gaussian prior of the parameters θ and
the Gaussian likelihood of all training samples, according to
Bayes’ Rules p(x|y) = p(x)p(y|x)/p(y). Therefore, the prob-
abilistic prediction of a new project is again Gaussian, and
can be derived by the convolution of the (Gaussian) poste-
rior of θ and Gaussian distribution of linear model Eq. 1
(i.e., the prior of a project effort). As pointed out in Sec. 6,
for a new project, we use the mean as a point estimation
because it is the most likely value the predicted effort can
achieve.
Here, the probabilistic effort prediction is caused by the

Gaussian assumption of effort noise, and requires no fur-
ther assumption upon itself. It is also noteworthy that the
Gaussian effort prediction relates to but does not equal to
Gaussian effort noise. In Bayesian terms, the assumption
of Gaussian effort noise provides a prior knowledge for a
project effort before any training sample is observed, which
is the case that project effort following σ2-Gaussian distri-
bution with its mean value defined by (1); in contrast, the
Gaussian prediction of a new project is a posterior estima-
tion after training samples are observed and used to train
the model.
A key characteristic of RVM is that people introduce a

separate hyperparameter for each of the model parameters
θi instead of a single shared hyperparamter as in classical
Bayesian linear regression [5]. This mechanism results in
sparsity, for which a large subset of model parameters θ will
be driven to zero with the corresponding training samples
pruned [11]. This formulation of prior is a type of auto-
matic relevance determination (ARD) prior [39, 30]. It is
worthwhile to emphasize that with the mechanism ARD,
RVM can automatically choose ’relevant’ projects, namely
relevance vectors, from training samples, which can capture
the major structure of the training space [39]. And, based

Table 1: Data Sets
Repository Name #(Project) #(Feature)

PROMISE

Maxwell 62 23
Kitchenham 145 3
Cocomo81 63 17
Nasa93 93 17

ISBSG

Org1 76 3
Org2 32 3
Org3 162 3
Org4 122 3
Org5 21 3
Org6 22 3
Org7 21 3

on this fact, we can introduce our guidance on whether or
not the effort of a new project should be collected, given
that RVM is applied. For instance, if a new project falls in
a region of the input space where several training projects
were pruned in the process of ARD, this indicates that some
relevance vectors outside this region are capable of captur-
ing the structure of this region. Thus it is suggested not
to collect the required effort of this project for reducing the
cost associated with data collection. More guidance will be
discussed in Sec. 7.2.

4. EXPERIMENT DESIGN

4.1 Data Sets and Performance Measurement
The discussions presented in this paper are based on sev-

eral data sets from the PRedictOr Models In Software Engi-
neering Software (PROMISE) Repository [32] and from the
International Software Benchmarking Standards Group (IS-
BSG) Repository [15] Release 10. Table 1 contains a basic
description of the used data sets. For further preprocessing
procedures and project IDs used in this paper, please refer
to [27, 36] except that outliers are not removed in this work.

We apply 10 times 10-fold Cross-Validation (CV) to val-
idate the performance of the investigated SEE approaches.
The procedure is to repeatedly run ten times of 10-fold CV
with different sample orders each time, in order to cancel out
the impact of project order. We used 10-fold CV because
SEE data sets are usually small, which may cause high bias
if using small k (k = 2 in k-fold) due to the lack of training
data; whereas large k, such as leave-one-out with k equal
to the size of the data set, may result in high variance [14].
We performed preliminary experiments using 5 times 2-fold
CV, leave-one-out and 10 times 10-fold CV. The results also
showed this tendency. Therefore, we consider 10-fold CV as
a suitable choice.

The performance was measured by the Mean Absolute

Error (MAE) over the prediction defined as
∑N

i=1
|yi−ŷi|

N
.

MAE was chosen for being a symmetric measure not biased
towards under or overestimation [34]. We did not use Mean
Magnitude of Relative Error (MMRE) because it was shown
to be a biased measurement [12] and we do not want to
include a misleading measurement in our results.

4.2 Learning Machines Investigated
To evaluate the relative performance of RVM, we com-

pare the point estimations of RVM with the following five
approaches: k-NN, RTs, MLPs, Bagging+RTs, and Bag-
ging+MLPs. We do not investigate Bagging+k-NN because
Bagging is known to improve accuracy for unstable pro-
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cedures2 such as MLPs and RTs, whilst it may slight de-
grade the performance of stable procedures such as k-NN [7].
WEKA is used to implement these five approaches: k-NN
was based on IBK with normalized attributes and Euclidean
distance, RTs was based on REPTree without pruning, and
the others were based on the corresponding classes with the
same name. MLPs were set to automatically normalize de-
pendent and independent variables and to use the nominal
to binary filter. RVM was implemented in MATLAB due to
its advantage in matrix computation and the absence of the
implementation in WEKA.
RTs, Bagging+RTs and Bagging+MLPs were chosen due

to their good performance in comparison to several other
ML approaches in SEE [27]. k-NN is among the simplest
SEE approaches, and shown to perform frequently well [35].
MLPs have not been shown to perform well in SEE; how-
ever, a recent study showed that after finely tuned they
can achieve competitive performance compared with the ap-
proaches investigated in [36]. In summary the main reason
for including these five approaches is their relatively good
performance reported by current literature. To better ac-
knowledge the performance of RVM as a point estimator,
we should compare it with the well-performing algorithms.

4.3 Parameter Settings Investigated
The parameter values of the approaches investigated in

this paper are shown in Table 2. Their default values are
emphasized with bold and correspond to the default values
of WEKA. For RTs, the maximum depth of −1 means un-
limited depth. For MLPs, the default value a in #(hidden
nodes) represents: a = [#(attributes) + 1]/2. For RVM,
0.1 : 1.0 : 15 denotes the values counting from 0.1 to 15 with
step = 1.0.
All approaches except RVM and k-NN have more than

one tuned parameter, and parameter settings are consisted
by enumerating all values for each parameter with all the
others set to the default ones. It is noteworthy that, like k-
NN, RVM is easy to be tuned for only having one unknown
(kernel) parameter.
Our analyses of all approaches are based on the perfor-

mance with the best parameter settings. The best parame-
ter setting (for each approach independently) is chosen from
all the parameter settings shown in table 2, and is the one
under which this approach can achieve the best performance
by averaging the MAEs over the 10 runs of 10-fold CVs.
When data sets are large enough, it is recommended to use

the CV procedure for building models and choosing param-
eters, and a separate test set not used by the CV procedure
to evaluate the ML approaches. By using this scheme, the
parameters leading to the model with the best validation
error according to the CV procedure should be chosen to
be further evaluated on the separate test set for compar-
ing different approaches. However, in SEE, the data sets
are too small. Using a separate test set would lead to two
serious problems: (1) the number of examples for training
and validation would be even smaller and (2) the test set
itself would be very small, possibly leading to an invalid
model evaluation for not representing the whole space well.
So, we have opted not to use a separate test set, and to
use CV both for choosing parameters and evaluating ap-
proaches. This reveals the potential performance achievable

2Unstable here means when small changes in the training
sample can result in large changes in the model.

Table 2: Parameter Values
Approach Parameters

k-NN k(#neighbours)={1,3,5,7,9,11,13}

RTs

M(mim.#instance/leaf)={1,2,3,6,12,20}
V(mim.varience for split)=

{0.0001,0.001,0.01,0.1,10}
L(max.tree depth)={-1,2,6,10,15,20}

MLPs

L(Learning rate)={0.1, 0.2, 0.3, 0.4, 0.5}
M(Momentum)={0.1,0.2,0.3,0.4,0.5}
N(#epochs)={100,500,1000}
H(#hidden nodes)={a,1,3,5,9}

Bagging
I(iteration for Bagging)={5,10,25,50,75}
All the possible parameters of the adopted

base learners, as shown above.
RVM One parameter in basis function = 0.1 : 1.0 : 15

by different approaches given a good parameters choice. A
separate analysis of the sensitivity of approaches to differ-
ent parameter choices can be performed to further reveal
the impact of different parameter choices in each approach’s
performance.

5. PERFORMANCE COMPARISON
This section mainly aims at accomplishing P1: How well

can RVM perform compared with other well-established SEE
predictors when used as a point estimator? For a new project,
we employ the mean of the predicted distribution of RVM
as the point estimation, so that RVM can be compared with
other state-of-the-art effort predictors. We use the mean
because it is the most likely estimated effort.

Table 3 shows the performance of all investigated ap-
proaches in 11 data sets measured in MAE. The integers
in the parentheses are the ranks of the corresponding ap-
proach compared with others. We can observe that RVM
and k-NN rank the second right after Bagging+RTs that is
the best estimator on average. This indicates a competitive
performance of RVM. Next, we conduct statistical test for a
more thorough understanding of the performance compari-
son.

By Friedman test with significance level at 0.05, we re-
jected null hypothesis (H0), which states that all algorithms
are equivalent. The Friedman value is 4.35 which is much
larger compared with critical value of 2.40. Post-hoc tests
with Holm-Bonferroni corrections detect statistically signif-
icant difference between RVM and MLPs with p-value of
0.00142, indicating a better performance of RVMs compared
with MLPs in SEE. However, Post-hoc tests with Holm-
Bonferroni corrections cannot detect statistically significant
differences between RVM and all the other approaches, which
have been showing to perform well in SEE [27]. So, besides
having potential to deal with the SEE challenges described
in section 1, RVM has competitive performance in SEE.
Therefore, RVM is a promising SEE estimator and should
be further investigated. In particular, RVM may perform
even better after adjusting it to adopt assumptions that are
more specific to the context of SEE.

6. PREDICTION INTERVAL

6.1 Prediction Interval of RVM
The uncertainty of effort estimations can be character-

ized through effort prediction intervals (PIs). An effort PI
comprises a minimum and maximum effort values associated
with a stated confidence level (CL). For instance, a project
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Table 3: Performance of all Investigated Approaches. Performance is measured by MAE. The ranks of
predictors are in the parentheses. Ave(Rank) denotes the average rank of each approach across all data sets.

Data Set RVM RTs Bagging+RTs MLPs Bagging+MLPs k-NN
Maxwell 4192.40(2) 4881.22(4) 4181.26(1) 5057.00(5) 10284.98(6) 4501.18(3)

Kitchenham 1701.00(1) 2202.64(6) 1963.32(4) 2182.23(5) 1899.25(3) 1804.88(2)
Cocomo81 591.21(4) 573.09(1) 588.29(3) 654.73(5) 582.25(2) 666.27(6)
Nasa93 359.30(2) 393.40(3) 357.04(1) 664.38(6) 456.23(5) 448.87(4)
Org1 3235.50(2) 3641.39(5) 3068.28(1) 4356.59(6) 3523.73(4) 3274.68(3)
Org2 1829.00(1) 2130.05(4) 2112.60(3) 2637.30(6) 2150.11(5) 1983.81(2)
Org3 1007.29(2) 1011.94(3) 1012.59(4) 1215.63(6) 1058.60(5) 986.51(1)
Org4 3579.10(1) 4374.10(4) 4300.92(3) 4997.01(6) 4554.39(5) 4019.28(2)
Org5 5938.10(6) 5353.56(5) 5154.14(2) 5181.34(3) 4958.01(1) 5351.23(4)
Org6 2811.20(6) 2806.88(5) 2615.18(2) 2707.65(4) 2640.45(3) 2432.00(1)
Org7 4915.00(3) 4809.73(1) 5114.43(5) 5134.44(6) 4939.80(4) 4874.32(2)

Ave(Rank) 2.73 3.73 2.64 5.27 3.91 2.73

Table 4: Prediction Interval Derived by RVM in All Data Sets. The median values of actual efforts, PIs with
CL0.6827 and CL0.9545 across each data set, and the estimated standard deviations are listed in the table. The
median values of PIs are computed by picking the median lower/upper bound across all lower/upper bounds
of the predicted projects.

.

Data Set Actual effort PI (CL0.6827) PI (CL0.9545) Estimated std
Maxwell 5190 [3177, 7339] [1170, 9379] 2128

Kitchenham 1557 [0, 4107] [0, 6407] 1784
Cocomo81 98 [81, 237] [21, 312] 70
Nasa93 252 [0, 492] [0, 755] 250
Org1 1213 [0, 3536] [0, 5861] 2465
Org2 2045 [1185, 2116] [694, 2564] 439
Org3 1090 [0, 3278] [0, 5119] 1779
Org4 3520 [0, 8382] [0, 12624] 4360
Org5 5506 [307, 12257] [0, 18645] 5281
Org6 2943 [0, 8024] [0, 12530] 4453
Org7 4456 [897, 12664] [0, 18569] 5904

manager may be 95% certain that the predicted effort of
a project falls between 500 and 2500 person-hour with the
most likely effort value at 1500. PI should not be confused
with another uncertain concept - confidence intervals (CIs).
An important difference between them is that CI usually
refers to the uncertainty associated with the unknown pa-
rameters of models, e.g., the the uncertainty of the mean
value of an unknown distribution; whereas PI with a certain
CL refers to the case that the real value is within the PI
with the level of CL [3, pp.761-824].
In fact, based on the properties of the Gaussian distribu-

tion of effort prediction derived by RVM, we can present PI
with any confidence level α% by use of cumulative distribu-
tion function (CDF) of (Gaussian) effort estimation, F , as
follows:

PIα = [max(0,F−1(
1− α

2
)),F−1(

1 + α

2
)] (2)

F−1(β) represents the effort value located on the β per-
centile of Gaussian CDF. This defined PI is reasonable be-
cause according to the symmetry of Gaussian probability
density function (PDF), the proportion of PDF between 1−α

2

and 1+α
2

equals to α which is just the CL, and this can be
easily calculated by Gaussian CDF. Moreover, in fact ef-
fort is non-negative, so we confine the non-negative value
for the left-hand-side. A point estimation can also be eas-
ily obtained by being assigned to the mean of the Gaussian
predicted distribution, since it is the most likely effort value.
The most commonly used CL for PI in SEE was 0.90

(CL0.9) [19]. However, several studies both in industry and
academia indicated that there existed strong bias towards
over-confidence for the effort PIs; i.e., the estimated effort
PIs were too narrow to reflect its corresponding CL [18, 19].

Also, Jorgensen suggested the use of PIs with a lower CI
[16]. Thus, we also suggest to use PIs with lower CL, say
CL60, which allows on average only two projects whose re-
quired efforts exceed the upper bound and only two projects
whose required efforts fall below the lower bound.

In the rest of this section, we will introduce an easier
method to derive the PIs of specific CLs, which are CL0.6827

and CL0.9545, and present the statistical description (e.g.,
median) of PIs for all the investigate data sets.

Based on “68-95-99.7” rule of Gaussian distribution [41],
the prediction intervals with CL0.6827 and CL0.9545 can be
derived as follows:

[max(0, t̂− iσ̂), t̂+ iσ̂] (3)

where t̂ is the predicted mean effort, σ̂ is the variance of
predicted probability derived by RVM, and i equals to 1 or
2 for CL0.6827 or CL0.9545, respectively. It is worth noting
that it is possible to derive PIs with CL0.6827 and CL0.9545

according to Eq. 2, but it is easier to derive by Eq. 3.
Besides the fact that the PIs with these two CLs can be

obtained easily by adopting Eq. 3 rather than Eq. 2, the
reasons why we specialized PIs with CL0.6827 and CL0.9545

are as follows: (1) A CL0.6827 is more or less sufficient in
practical usage as usually only three of ten projects may go
below the lower bound or exceed the upper bound. (2) The
presence of CL0.9545 is to have an insight of the higher CL
that how well the PIs derived by RVM can achieve when
considering a very strict, high CL. The reason with 99.70%
excluded is because it is too strict requiring not even a mere
violation in 100 PI predictions.

Table 4 lists RVM’s the median values of actual efforts, the
most likely point efforts and PIs with CL0.6827 and CL0.9545
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Table 5: HitRate with CL0.6827 and CL0.9545. HitRate
that is much smaller than the corresponding confi-
dence level are in yellow (light grey).

Data Set HitRate1(%) HitRate2(%)
Maxwell 44.61 74.84

Kitchenham 85.31 95.24
Cocomo81 30.79 53.17
Nasa93 68.60 82.15
Org1 86.84 91.97
Org2 33.13 56.25
Org3 83.83 95.12
Org4 76.07 90.16
Org5 74.76 86.67
Org6 90.91 95.46
Org7 79.05 89.52

for each data set. The median values of PIs are computed by
picking the median of lower / upper bound across all lower
/ upper bounds of the predicted projects. The aim is to
illustrate an ordinary impression of the proposed prediction
interval.
As showed in table 4, the actual efforts fall within the PIs

with CL0.6827 and CL0.9545 in all data sets. As these results
come from the median values, they indicate the validation
of the derived PIs in ordinary cases.
Another observation is that, for the first 7 data sets, both

PIs can be considered informative, i.e., the PIs are narrow
enough to have practical usage. Taking Maxwell as an exam-
ple, a project manager would have 68.27% confidence that
the actual effort will fall into the interval [3177, 7339]. In
view of the fact that the best approach among the investi-
gated SEE estimators (Bagging+RTs, see table 3) has MAE
around 4000, which approximately equals to the width of PI
with CL0.6827, we consider that the derived PI is of prac-
tical use. But the PIs of Org.4 - Org.7 are very wide and
not very informative. Further study found that the pre-
dicted standard deviations (stds) of these 4 data sets were
much larger than others, all greater than 4000. The large
predicted stds directly caused the wide PIs. More investi-
gation on the characteristics of these four data sets will be
conducted as a future work.
In the case of wide PIs, we suggest to present a PI with a

lower CL, say CL0.60, for getting a more informative PI with
an acceptable CL. A quick look at table 5 indicates that PIs
behave better with CL0.6827 than with CL0.9545, that has a
narrower PI and higher chance to pass the validation.

6.2 Validation of Prediction Interval
The most commonly used evaluation method for PIs is

the hit rate (HitRate) [19, 16]. The underlying idea is that,
if PIs with CLα are estimated for n software projects, it
is expected that around α projects whose actual efforts fall
inside the corresponding estimated intervals. HitRate can be
calculated by first counting the number of projects whose
efforts are within the PIs, and then dividing that by the
total number of projects. If the estimated PIs with certain
CLα are realistic, the obtained HitRate should be around
the chosen confidence level CLα. If the HitRate is higher,
the estimated PIs are too wide; otherwise, the estimated PIs
are too narrow.
We can validate the PIs with any CL by the method de-

scribed in Eq. 2. Since in Sec. 6.1 we focused on PIs with
CL0.6827 and CL0.9545, for consistency we validate the PIs
with the same CLs in this section.

Table 6: Effort Noise. ’stdnoise’ represents the aver-
age standard deviation of (Gaussian) effort noise;
’predEffort’ denotes the average predicted effort;
’ratio’ denotes the ratio between average standard
deviation of effort noise and average predicted ef-
fort, measuring the level of label noise, and larger
value indicates higher level of effort noise.

Data Set stdnoise predEffort ratio
Maxwell 1849.84 7388.53 0.25

Kitchenham 1683.86 2458.87 0.68
Cocomo81 68.87 349.12 0.20
Nasa93 228.54 491.66 0.46
Org1 2259.19 2119.31 1.07
Org2 505.16 2091.64 0.24
Org3 1690.67 1962.29 0.86
Org4 4256.43 5449.54 0.78
Org5 4498.61 6368.12 0.71
Org6 2167.67 3787.19 0.57
Org7 4571.36 6824.44 0.67

We formalize the validation process of PIs with CL0.6827

and CL0.9545 as follows:
Suppose {ti}

N
i=1 are the actual efforts of testing projects,

{t̂i}
N
i=1 and {σ̂2

i}
N
i=1 are the predicted means and variances.

Set function fs:

fs(ti) =

{
1 for |ti − t̂i| < s ∗ σ̂i

0 otherwise

where s ∈ {1, 2}. Then define the ratio
∑

N

i=1
fs(ti)

N
as our

HitRate with CL0.6827 and CL0.9545. If {HitRates}s∈{1,2}

satisfies the criteria: HitRate1 ≥ 68.27% or HitRate2 ≥
95.45%, we conclude that the PIs of RVM pass the PI vali-
dation with CL0.6827 or CL0.9545.

Table 5 lists the HitRate with confidence levels of CL0.6827

and CL0.9545. As shown in the table, three (in yellow /
light grey) PIs of CL0.6827 and CL0.9545 cannot pass the
validation, i.e., it is overconfident to these estimated PIs
of CLs, which commonly happens in effort estimated PIs.
Nevertheless, in more cases, our estimated effort PIs are not
narrow enough for CL0.6827. This indicates that there exists
improvement space for the PIs derived from RVM.

One possible reason may be that the Gaussian distribu-
tion cannot capture the uncertainty in the predicted effort
perfectly. If so, it suggests that the Gaussian effort noise
assumption may not perfectly match the context of SEE,
because the predicted effort distribution is directly caused
by the Gaussian noise assumption. Given that RVM was
competitive against other approaches and that the derived
PIs are, though not perfect, acceptable, we consider that
the proposed PIs are of practical use. However, changing
the effort noise assumption to a more adequate one in the
context of SEE may improve both point estimations and the
performance of PI further.

7. FURTHER STUDIES OF RVM IN SEE
This section proposes initial answers to P3 (estimating

effort noise) and P4 (guidance on whether or not the required
effort of a new project should be collected).

7.1 Effort Noise Estimation of SEE Data Sets
In the model construction of RVM for SEE, addictive noise

inherent in the actual effort is assumed to be Gaussian with
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zero mean, because Gaussian distribution often matches the
actual distribution of noise in real-world processes reason-
ably well [1]. The reason for assuming zero mean of Gaussian
is that we expect there exist no inherent bias in the effort
noise. The variance of effort noise can be derived during
the training process along with the unknown parameters of
RVM model; i.e., in a data set, once the model of RVM is
established, the variance of Gaussian noise within the efforts
of this data set can be determined, and therefore the effort
noise of this data set is obtained. We can further use the
standard deviation (std) of the Gaussian effort noise as an
indicator of the quality of this data set: larger std indicates
a worse data quality because of a larger level of noise in the
efforts, and smaller std suggests a better quality.
In each data set, we use 10 times 10-fold CV to obtain the

point prediction and the performance of the derived PIs,
and thus we obtain 100 (10 times 10) gauges for effort noise.
Each gauge relates with a subset of the entire data set, i.e.,
9/10 of the data set is used as the training data and the noise
estimation is only related with this subset. For assessing the
effort noise of the entire data set, we adopt the mean value
of the 100 gauges, and report the mean of the effort noise
across 100 subsets in table 6.
Since different data sets have different scales of quantity of

the project effort values, the mere value of estimated effort
noise cannot reflect the level of effort noise very well, and
cannot, therefore, reflect the quality of data set in terms of
effort noise very well. For instance, if the predicted efforts in
data sets D1 and D2 are around 2000 and 7000 respectively,
and the standard deviations of effort noise in D1 and D2
are around 1000, then it is reasonable to consider that D1
is suffering heavier effort noise than D2. Thus, we use the
ratios of average effort noise std to the average predicted
effort to measure the effort noise of a data set, indicating the
level of effort noise per magnitude of effort. The ‘average
predicted effort’ is computed based on the following: for
each running of 10-fold CV, all projects will obtain their
predicted efforts; after 10 runs we will have ten predictions
for each project, and thus the average predicted effort can
be computed by averaging ten effort estimations.
We use the average predicted effort rather than the aver-

age actual effort for the following reason: like effort noise,
predicted efforts are derived from RVM; by calculating the
ratio of the two items, the impact of the predictor (e.g., dif-
ferent parameter settings) may be eliminated and the real
levels of effort noise may be revealed. By contrast, the actual
effort is independent of the predictor, thus the ratio between
effort noise and the actual effort is likely to be impacted by
different parameter settings of RVM.
As shown in table 6, different data sets have different levels

of effort noise. For instance, Maxwell, Cocoma81 and Org2
show lower levels of effort noise in comparison to Org1, Org3,
Org4 and Org5 which are much higher.
To some extent, the levels of effort noise can indicate the

quality of a data set: the data sets with lower level of ef-
fort noise are of higher quality compared with higher level
of effort noise with respect to the quality of actual effort
collection. This can further impact our choices of data sets
in empirical experiments. For instance, it may be prefer-
able to conduct SEE studies, such as the comparison of two
non-robust approaches or the analysis of the importance of
different SEE attributes, on data sets with low levels of ef-
fort noise, where there is less influence from misleading effort

noise. Moreover, the quantification of effort noise can pro-
vide an extra priority of a data set when researchers aim to
improve the quality of data sets.

It is worth noting that effort noise is not the only criteria
to justify the quality of SEE data set. Other factors such as
highly predictive SEE features, lower level of feature noise,
etc., can also contribute to a higher quality. However, we
consider the effort noise as an important measurement of
quality, which can be dealt with by RVM easily.

7.2 Empirical Guidance for Data Collection
As emphasized in section 3, by using ARD, RVM can au-

tomatically choose ‘relevant’ projects from training samples,
which can capture the major structure of the training space
[39]. Based on this fact, we empirically identify three types
of regions in SEE input attribute space, and further intro-
duce three guidances on whether the effort of a new project
should be collected given that RVM is applied.

There are three types of local regions: (1) regions with
isolated relevance vector (RV); (2) regions with condensed
RVs; and (3) regions with few RVs in comparison to the
number of samples which are not relevance vectors.

For case (1): if only one isolated RV locates in a region of
the input space, it indicates insufficient description for this
region (only one) and this point cannot be represented by
the relevance vectors in the nearby regions. Therefore, it is
suggested to collect more data to further verify whether this
case will change to case (2) or case (3).

For case (2): if many RVs squeeze in a region, it indicates
a rapid change in this region, and a majority of data have
to be RVs to capture the severe change. Therefore, it is
suggested to collect more data in this region.

For case (3): if in a region that has had several data points
discarded by the RVM, it indicates a gentle change in this
region, and it is likely that the chosen RVs are capable of
capturing the major structure of this region. Therefore, it
is suggested that data collection is not necessary.

Based on the above description, our empirical guidances
on whether the required effort should be collected for a new
project are summarized as follows: given that RVM is used,
if the practitioners find that the new project fell in a region
of cases (1) or (2), it is suggested to collect the required
effort of this project; in contrast, if a new project fell in a
region of case (3), it is suggested not to collect its effort.

For practical use, we present a step-by-step procedure to
use this empirical guideline to guide the collection of a new
project: (i) Identify its k nearest neighbours with the short-
est distance denoted by dmin. Here, k is a predefined integer
depending on the size of data set, and we suggest larger k
for bigger data set. The distance can be Euclidean. (ii) d
is a predefined, upper bound of the distance between this
project and its nearest neighbor. d depends on the spread
of the data set: if the data spread largely across the input
space, it is suggested to set a larger d; if otherwise, better
to choose a smaller d. Verify whether dmin ≥ d, if ’yes’, we
arrive at case (1), and it is suggested to collect this project;
if ’no’, continue to the third step. (iii) If the majority of
the included training samples are chosen as RVs, then we
fall into case (2), and it is suggested to collect this project;
if only a few included training samples are chosen as RVs,
then we reach case (3), and it is suggested not to collect this
project; if the portion of RVs is around half, we should go
through step (i) - (iii) with smaller/larger k′ depending on
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the original value of k.
As we can see, these guidances are empirical because of

the need to set the values k, d and k′. To better define their
values, we suggest to use Multidimensional Scaling (MDS)
[6] to reduce the input space to a lower dimension, i.e., 3-D
or 2-D, and then draw a 3-D/2-D surface with all training
samples and the new project. From this approximating visu-
alization of input space for all projects, we can have a gross
impression about the local region where this new project
locates, and choose these predefined values accordingly.
It is noteworthy that there may be some situations beyond

our provided guidance, and further investigation is needed
to improve these guidelines. However, as an initial attempt
and encouragement for future studies, we believe that, based
on ARD, the proposed guidelines address the problem of
whether to collect the required effort to a good extent. Our
guidelines can also be used together with other general data
quality guidelines for SEE.
The essential idea for data collection discussed in this sec-

tion is easy and also suitable for other SEE predictors, but
the (three) proposed rules are specific to RVM due to the
usage of RVs rather than the entire training data to guide
data collection. One benefit of using RVs instead of the en-
tire data is that RVs can reflect rate of change of a small
region; e.g., by analyzing RVs in a region, we can distinguish
between cases (2) and (3). For instance, in a small region
where there are many training data already, people might
suggest not to collect the effort of a new project if they were
analysing all training data instead of the RVs, because they
may think that there are enough training data already in
this region. However if the case is that all the training data
in this region are chosen as RVs, this indicates that there are
severe changes in this region and that it is better to collect
more labelled data.

8. THREATS TO VALIDITY AND FUTURE

WORK
One potential threat to validity is that effort noise is as-

sumed to be Gaussian in line with the assumptions for noise
in many practical situations. However, the real effort noise
in SEE may not be normally distributed. Since we do not
have access to the noise-free efforts, it is nearly impossible
to directly validate whether or not the Gaussian assumption
perfectly fits software effort noise issue, or to build up a more
suitable model. One possible way to identify a better distri-
bution involves the help from practitioners. For instance, if
people tend to report more effort than they actually used,
then the model of effort noise may be better assumed as a
skewed distribution towards the positive rather than a sym-
metric Gaussian distribution. However, we do not consider
it to be a very serious threat to this study, because RVM’s
performance as a point estimator was competitive against
other approaches that have been doing well for SEE, and its
PIs with CL0.6827 and CL0.9545 were adequate in the major-
ity of the cases. They indicate that the Gaussian assumption
can catch the major structure of the real effort noise to some
extent, and that the real effort noise distribution is perhaps
not too far away from Gaussian distribution. Further in-
vestigation of different assumptions of effort noise can be
considered as a good research direction.
Another potential threat to validity is the performance

measurement. Our analysis were based on MAE, because it
is symmetric and unbiased, being recommended in the con-

text of SEE [34]. However, this measure can be influenced
by project size. As a future work, we will computer more
performance measurements such as Logarithmic Standard
Deviation [12] and MAE in the log-scale to further validate
RVM based on measures independent of project size.

In our next step, we will also compare RVM with other ef-
fort predictions, including support vector regression (SVR),
to further verify its good performance. The comparison be-
tween our prediction intervals and other approaches will also
be conducted in the future work.

9. CONCLUSIONS
In this paper, we studied three challenges of software ef-

fort estimation problem: (1) uncertain prediction, (2) effort
noise, and (3) collection of required effort for a new project.
We found that relevance vector machine (RVM) has the po-
tential to address these three challenges simultaneously.

First, when used as a point estimator, our systematic ex-
periments show that RVM is very competitive compared
with state-of-the-art effort approaches, being usually ranked
top 2 in 7 across 11 data sets, and behaving statistically sim-
ilar to SEE predictors that have been showing to perform
well.

We then presented how to decide the prediction interval
(PI) with a certain confidence level (CL) for a new project,
and validated PIs under two specific cases with CL0.6827 and
CL0.9545. We found that even though the PIs with CL0.6827

and CL0.9545 are not perfect in terms of (i) informativeness
and (ii) passing the validation, in the majority of the data
sets, they are still acceptable and of practical use. And we
believe that better performance can be achieved by further
investigation on the effort noise assumption.

Furthermore, we present our attempt to address chal-
lenges 2 and 3 by using RVM. In summary, by using RVM,
we can analyze the quality of data in terms of the level of
noise in required efforts based on the Gaussian effort noise
assumption. By exploiting the automatic relevance deter-
mination (ARD) used by RVM, we identified three special
cases and proposed guidelines on whether the required effort
should be collected for a new project.

Based on the studies above, we showed that RVM is a
very promising predictor for SEE and should be further in-
vestigated and exploited.
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