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Abstract 

The present study examined neural activity differences between previously determined 

blunted (N = 9) and exaggerated (N = 8) cardiac stress reactors using fMRI and examining 

reactions to well-established stress and control task conditions. Exaggerated cardiac reactors 

exhibited significant increases in heart rate from control to stress, whereas blunted reactors 

showed no reaction.  Blunted cardiac reactors displayed blunted activation in the anterior 

midcingulate cortex (aMCC) and insula compared to exaggerated cardiac reactors during the 

stress phase, and a greater deactivation in the amygdala. The biological differences between 

groups in response to the stress task could not be explained by subjective measures of 

engagement, stressfulness, or difficulty. This study supports the notion that blunted peripheral 

physiological stress reactivity may be a marker of some form of biological disengagement in 

brain areas supporting motivated behaviour.  

 

Descriptors: heart rate, stress reactivity, fMRI    
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There is cumulative and consistent epidemiological evidence (Chida & Steptoe, 2010; 

Gerin et al. 2000; Schwartz et al., 2003; Taylor, Kamarck, & Dianzumba, 2003; Treiber et al., 

2003) indicating that individuals who exhibit large magnitude or ‘exaggerated’ 

cardiovascular reactions to acute psychological stress exposures are at increased risk for 

clinical hypertension and premature elevations in blood pressure (Carroll, Ring, Hunt, Ford, 

& Macintyre, 2003; Carroll, Smith, Sheffield, Shipley, & Marmot, 1995; Carroll et al., 2001; 

Everson, Kaplan, Goldberg, & Salonen, 1996; Markovitz, Raczynski, Wallace, Chettur, & 

Chesney, 1998; Matthews, Woodall, & Allen, 1993; Newman, McGarvey, & Steele, 1999; 

Treiber, Turner, Davis, & Strong, 1997), markers of  systemic atherosclerosis (Barnett, 

Spence, Manuck, & Jennings, 1997; Everson et al., 1997; Lynch, Everson, Kaplan, Salonen, 

& Salonen, 1998; Matthews et al., 1998), ventricular hypertrophy (Georgiades, Lemne, de 

Faire, Lindvall, & Fredrikson, 1997; Kapuku et al., 1999; Murdison et al., 1998), preclinical 

and clinical cerebrovascular disease (Everson et al., 2001; Waldstein et al., 2004), and are at 

increased risk of dying from cardiovascular disease (Carroll et al., in press). 

Based on this body of evidence, it has long been presumed that individuals who 

exhibit smaller magnitude or ‘blunted’ cardiovascular reactions to acute psychological stress 

are at decreased risk for poor cardiovascular health, as compared with their more reactive 

counterparts.  Contrary to this presumption, however, emerging evidence suggests that 

blunted cardiovascular stress reactions relate to unfavourable physical health outcomes and 

behavioural phenotypes that engender disease risk.  For example, blunted cardiovascular, and 

cortisol, reactions to acute psychological stress characterize both smokers (al'Absi, Wittmers, 

Erickson, Hatsukami, & Crouse, 2003; Kirschbaum, Strasburger, & Langkrar, 1993; Phillips, 

Der, Hunt, & Carroll, 2009) and those with alcohol and other substance addictions (Lovallo, 

Dickensheets, Myers, Thomas, & Nixon, 2000; Panknin, Dickensheets, Nixon, & Lovallo, 

2002).  Indeed, blunted physiological stress reactions predict relapse in smokers who have 
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quit (al'Absi et al., 2006; al'Absi, Hatsukami, & Davis, 2005) and are also evident among 

adolescent offspring of alcoholic parents (Moss, Vanyukov, Yao, & Kirillova, 1999; Sorocco, 

Lovallo, Vincent, & Collins, 2006).  Additionally, blunted cardiovascular stress reactions are 

associated with symptoms of bulimia (Ginty, Phillips, Higgs, Heaney, & Carroll, 2012a) and 

exercise addiction (Heaney, Ginty, Carroll, & Phillips, 2011). Further, blunted cardiovascular 

stress reactivity has been linked in epidemiological studies to obesity, depressive 

symptomatology, and poorer self-reported health, both cross-sectionally and prospectively 

(Carroll, Phillips, & Der, 2008;  Carroll, Phillips, Hunt, & Der, 2007; De Rooij, Schene, 

Phillips, & Roseboom, 2010; Phillips, Hunt, Der, & Carroll, 2011; De Rooij & Roseboom, 

2010; Phillips, Der, & Carroll, 2009). In sum, such emerging evidence suggests that blunted 

physiological stress reactivity may have prognostic value for health and behaviour that is less 

favourable than previously assumed. 

 Although it may be premature to fully integrate the varied correlates of blunted 

physiological reactivity under a unified theoretical model, it appears that the existing 

correlates of blunted reactivity may commonly reflect problems in goal-directed behaviour 

and motivation.  Accordingly, it has been proposed that blunted physiological stress reactivity 

may be a peripheral marker of central motivational dysregulation (Carroll, Lovallo, & 

Phillips, 2009; Carroll, Phillips, & Lovallo, 2011; Lovallo, 2011).  In this regard, central 

motivational dysregulation refers to the suboptimal functioning prefrontal and limbic brain 

systems that jointly support motivated and goal-directed behaviour, as well as peripheral 

physiological control processes. Hence, the behavioural and health correlates of blunted 

stress reactivity may be characterized by ‘hypoactivation’ of these brain systems.  In apparent 

support of this conjecture, there is functional magnetic resonance imaging (fMRI) evidence 

of reduced activation in frontal and subcortical limbic regions during inhibitory control tasks 

that engage executive function processes and emotional perception tasks that engage 
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motivational and behavioural salience processes in participants at risk for (Mannie, Taylor, 

Harmer, Cowen, & Norbury, 2011) and diagnosed with depression (Holsen et al., 2011), at 

risk for (Andrews et al., 2011; Glahn, Lovallo, & Fox, 2007) and diagnosed with alcoholism 

(Beck et al., 2009), and those diagnosed with bulimia (Joos et al., in press; Marsh et al., 

2011).  Hypoactivation of prefrontal and limbic regions has also been observed among obese 

individuals (Stice, Spoor, Bohon, Veldhuizen, & Small, 2008), individuals showing an 

accelerated gain in weight over time (Stice, Yokum, Blum, & Bohon, 2010) and among those 

with a higher body mass index (Batterink, Yokum, & Stice, 2010).  

To date, however, there has been scant research addressing the question of whether 

reduced neural activity in prefrontal or limbic brain regions relates directly to the phenotype 

of blunted physiological reactivity among individuals. Previously, lower levels of regional 

cerebral blood flow within orbital and ventral areas of the prefrontal cortex have been shown 

to correlate across individuals with smaller changes in salivary-cortisol and heart rate to a 

mental arithmetic task (Wang et al., 2005).  Reduced neural activity in the pregenual region 

of the anterior cingulate cortex has also been shown to relate to smaller heart rate reactions 

evoked by social evaluative stress (Wager et al., 2009a).  Finally, smaller blood pressure 

stress reactions have been associated with reduced neural activity in pregenual and mid-

anterior regions of cingulate cortex and insula (Gianaros, Derbyshire, May, Siegle,, Gamalo, 

& Jennings, 2005), the posterior cingulate cortex (Gianaros, May, Siegle, & Jennings, 2005), 

and the amygdala (Gianaros et al., 2008).  Importantly, across these prior studies theoretical 

interest was almost exclusively directed at characterising the neural correlates of exaggerated 

peripheral stress responses, presumably because of their epidemiological association with 

markers of disease risk (Gianaros and Sheu, 2009).  As a result, little attention has been 

directed at characterizing and interpreting the neural correlates of blunted stress reactivity, 
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particularly within an individual difference framework emphasizing central motivational 

dysregulation. 

Thus, given the paucity of research characterizing the specific neural correlates of 

blunted physiological reactivity, the present study tested the hypothesis that individuals who 

exhibit one form of blunted physiological reactivity, namely reduced cardiac reactivity 

determined by Doppler echocardiography, to standard laboratory stress tasks would also 

exhibit reduced activation in prefrontal and limbic regions of the brain.  To test this 

hypothesis fMRI scanning was undertaken while administering a behaviourally-demanding 

task that involves executive function, reliably evokes individual differences in cardiovascular 

reactivity, and engages the cingulate, insula, and amygdala areas of the brain that are 

involved in peripheral physiological regulation, goal-directed behaviour, and motivational 

salience processing (Bush et al., 2008; Bush & Shin, 2006; Sheu, Jennings, & Gianaros, 

2012). 

Methods 

Participants  

Twenty-two healthy male undergraduate and postgraduate students (11 exaggerated 

and 11 blunted cardiac reactors) were recruited.  Their mean (SD) age was 20.9 (1.56) years 

and their mean (SD) body mass index was 23.0 (1.52) kg/m2.  The high and low reactors did 

not differ in terms of age (p = .96) or BMI (p = .40).  None of the participants smoked, and 

none had a history of cardiovascular disease, a current endocrine or immune disorder, an 

acute infection or other chronic illness, nor were any of the participants taking prescribed 

medication.  All participants provided informed consent and the study was approved by the 

University of Birmingham Ethics Committee and conducted in accordance with the 

Declaration of Helsinki.    

Selection of participants  
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Ten (4 exaggerated and 6 blunted reactors) participants were selected from a temporal 

stability study in which cardiac reactions to a mental stress task, a 10-minute version of the 

paced auditory serial arithmetic test (PASAT; Gronwall, 1977), were measured using 

Doppler Echocardiography and electrocardiography on four separate occasions.  A full 

description of the version of the PASAT used is provided elsewhere (Ginty et al., 2012).  

Briefly, participants were presented with a series of single digit numbers and required, in 

each case, to add any given number to the number previously presented and call out the 

answer. The intervals between the numbers were 4.5 seconds for the first 2 minutes and 

shortened by .5 seconds every subsequent 2 minutes.  The task also involved elements of 

competition, harassment, and social evaluation.  As can be seen in Figure 7.1a and 7.1b, the 

exaggerated cardiac output and heart rate reactors, although showing some adaptation of 

response over sessions, remained high reactors throughout; the blunted reactors continued 

throughout to show low cardiac responses.     

 Ten further participants (5 exaggerated and 5 blunted cardiac reactors) were recruited 

from a study examining the inter-task consistency of cardiac stress responses, using the same 

measurement techniques as above.  Since the PASAT is unsuitable for the fMRI part of the 

study, cardiac reactions to the PASAT were compared to reactions to a fMRI compatible task, 

the modified Multi Source Interference Task (MSIT; see later for description).  The cardiac 

reactions of 48 participants were examined to the PASAT and MSIT, presented in a counter-

balanced order. Although the PASAT elicited stronger reactions than the MSIT, t (47) = 5.03, 

p < .001 and t (47) = 6.26, p < .001, for cardiac output and heart rate reactivity respectively, 

reactions to the two tasks were highly correlated: r (46) = .61, p < .001 and r (46) = .56, p < 

.001, for cardiac output and heart rate reactivity respectively.  The remaining two participants 

(2 exaggerated reactors) were recruited from a heart rate reactivity study conducted by 
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colleagues.  The HR reactions to the PASAT of these two participants were 45 and 33 beats 

per minute.   

[Insert Figure 1a and 1b. about here] 

Multi source interference task  

The MSIT (Bush & Shin, 2006; Gianaros et al., 2009) was comprised of two 

conditions: a congruent condition and an incongruent condition.  The two conditions, each 

lasting 52-60 seconds were administered in a blocked design, and each was preceded by a 10-

17 second rest period where participants fixated on a crosshair.  In both MSIT task conditions 

participants were presented with three numbers in single trials; one number was different 

from the other two, which were identical.  Participants selected the different number by 

pressing one of three buttons on an fMRI compatible response box.  For all trials in the 

congruent condition, the different number in the display appeared in a location that was 

aligned with its spatial position on the response box.  Thus, there was a one-to-one 

correspondence between the stimulus position and the correct response option.  For the 

incongruent trials, the different number, was incongruent its spatial location on the response 

box, such that there was now no alignment between the stimulus position and the correct 

response option.  In this condition, performance was titrated and maintained at circa 60% 

correct by adjusting the inter-trial intervals.  For each of three trials, the incongruent and 

congruent conditions were each presented four times in an alternating order, separated by the 

resting crosshair condition; the incongruent condition always preceded the congruent 

condition.  In all, the task lasted 9 minutes and 20 seconds.  A fuller description of this task is 

provided elsewhere (Gianaros et al., 2009; Gianaros, Onyewuenyi, Sheu, Christie, & 

Critchley, 2012).   

Procedure  
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Blunted and exaggerated reactors were required to abstain: from alcohol 12 h, 

vigorous exercise 12 h, caffeine 2 h, and food and drink other than water 1 hour before fMRI 

testing.  Participants were tested between 11am and 3pm at the Birmingham University 

Imaging Centre.  On arrival at the imaging centre, they were provided with a description of 

the experiment and familiarized with the fMRI equipment.  Participants were instrumented 

for the non-invasive measurement of heart rate using a MRI compatible pulse oximeter 

(InVivo 4500 MRI; Invivo Research Corp., Orlando, FL, USA) which was recorded 

throughout.  As indicated above, participants were studied in the fMRI under three 

conditions: rest, congruent MSIT, and incongruent MSI.  The first of these conditions 

allowed the acquisition of structural MRI images (for approximately 8 minutes).  The last of 

these conditions served as the stress task exposure whereas the congruent version of the 

MSIT served as the non-stress control.  At the end of the fMRI session, participants 

completed a brief questionnaire rating how difficult, stressful, and engaging they found the 

stress task, as well as how well they thought they performed on the task and how stressful 

they found being in the fMRI scanner; responses were made on a 7-point Likert scale in 

which 0 indicated “not at all” and 6 indicated “extremely.”  

Structural and functional magnetic resonance imaging acquisition  

Neuroimaging data were acquired using a Philips 3 T Achieva system.  Structural 

images were acquired using TITFE technique (TR=8.4, FoV=232 mm, flip angle=60° 

288x288 matrix, 175 slices).  Blood oxygenated level dependent (BOLD) contrast weighted 

echoplanar images (EPI) were generated (repetition time TR=3000 ms, echo time TE=3500 

ms, FoV=220mm, 52 slices, 3.0 isotropic voxels) during functional scans.  Participants 

completed the MSIT during functional scans as detailed above.  

Data pre-processing  
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The object of the analysis was to describe BOLD response in the high and low 

reactors and compare differences in BOLD response between the exaggerated and blunted 

reactors during performance of the MSIT. To these ends, the following pre-processing 

procedures were performed using statistical parametric mapping software (SPM8; Wellcome 

Trust Centre for the Study of Cognitive Neurology, www.fil.ion.ucl.ac.uk/spm).  Slice timing 

correction was used to correct for the time difference in slice acquisition.  Head movement 

between scans was corrected by aligning all subsequent scans with the first and an unwarp 

function applied to minimise artifacts from the head motion.  Each realigned set of scans 

from every subject was co-registered with their own hi-res structural MRI image and then 

reoriented into the standardized anatomical space of the average brain provided by the 

Montreal Neurological Institute.  To increase the signal to noise ratio and accommodate 

variability in functional anatomy, each image was smoothed in X, Y, and Z dimensions with 

a Gaussian filter of 8 mm (FWHM).  

Data analyses 

Group (exaggerated and blunted cardiac reactors) differences in self report were 

examined using one-way ANOVAs.  To provide summary heart rate data for analyses, heart 

rate values were averaged separately for each of the three conditions across the first two 

trials.  The averages generated were then subject to a 2 groups (exaggerated and blunted 

reactors) x 3 conditions (rest, congruent, incongruent) ANOVA.  Group by condition 

interactions were followed up with simple effects tests and pairwise comparisons between 

conditions for each group.   

Assessment of regional brain activation  

For each subject, a boxcar model with a hemodynamic delay function was fitted to 

each voxel to contrast the incongruent with congruent conditions and generate a statistical 

parametric map. Baseline drifts were removed by applying a high-pass filter. Contrast images 
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for each individual subject were then combined at the second level to generate maps 

indicating within and between group effects. This random effects implementation corrects for 

variability between subjects so that outlying subjects cannot drive the result. A whole brain 

grey matter mask was applied using WFU Pickatlas to exclude white matter and ventricles 

from the analysis. Brain regions with a large statistic correspond to structures whose BOLD 

response shares a substantial amount of variance with the conditions of interest. Images were 

thresholded at p < 0.001 with an extent threshold of 50 contiguous voxels, which provides a 

reasonable balance of protection against false-positives, without artificially concealing the 

real profile of activation. A priori analyses of hypothesis-driven regions of interest (ROIs) 

involved examination of the insula and amygdala regions (Critchley et al., 2005; Gianaros et 

al., 2005), thresholds were set at p < .05 with an extent threshold of 10 contiguous voxels.   

Results 

Self-report and cardiac stress responses  

Three exaggerated cardiac reactors and two blunted cardiac reactors data were 

excluded because of excessive movement artifacts in their functional neuroimaging data; 

thus, the final analyses included 17 participants (8 exaggerated reactors and 9 blunted 

reactors).  There were no significant differences between high and low reactors in how 

difficult (p = .39), stressful (p = .45), or how engaging (p = .45) they found the MSIT task.  

There were also no group differences in how well they thought they performed (p = .39) or 

how stressful they found being in the scanner (p = .53).  With regard to heart rate during the 

session, there was a significant main effect of condition (baseline, congruent, incongruent), F 

(2, 30) = 13.45, p = .001, pη2 = .473, and a significant main effect of group, F (1, 15) = 12.38, 

p = .003, pη2 = .452.  There was also a significant group x condition interaction, F (2, 30) = 

11.66, p = .002, pη2 = .437.  Pairwise comparisons revealed that high reactors increased 

slightly between baseline and the congruent (p = .051), and increased significantly between 
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baseline and incongruent (p  = .001) and between congruent and incongruent (p < .001).  In 

contrast, the heart rate of low reactors did not change significantly between baseline and 

congruent, baseline and incongruent , and between congruent and incongruent (p > 0.10 in all 

cases).  Figure 7.2 displays each group’s average change from baseline to the congruent and 

incongruent conditions. 

[Insert Figure 2. about here] 

Exaggerated cardiac reactors condition-related brain activation and deactivation 

BOLD signal increases and decreases during the incongruent (stress) condition 

compared to the congruent (control) condition for exaggerated cardiac responders are shown 

in Table 7.1 and Table 7.2, respectively.  During the stress condition, exaggerated cardiac 

responders had significantly greater BOLD activation in the occipital and parietal lobe; these 

analyses survived family wise error corrections.  There were significantly greater BOLD 

activation responses in several other areas including the brainstem, cerebellum, anterior 

midcingulate cortex (aMCC), caudate, and inferior frontal gyrus.  Exaggerated cardiac 

responders had significantly less BOLD activation during the stress condition compared to 

the control condition in the superior frontal gyrus, an effect which survived family wise error 

correction, and in the posterior cingulate cortex; thus, these areas showed evidence of de-

activation during stress exposure.  In addition to Tables 7.1 and 7.2, the outcomes for 

exaggerated cardiac reactors are illustrated in Figures 7.3 and 7.4.  

Blunted cardiac reactors condition-related brain activation and deactivation  

  BOLD signal increases and decreases during the incongruent (stress) condition 

compared to the congruent (control) condition for blunted cardiac reactors are shown in 

Tables 7.1 and 7.2, respectively.  BOLD increases were seen in the occipital and parietal 

lobes, and parahippocampal gyrus during the stress condition compared to the control 

condition, and the effects again survived family wise error correction.  Additionally, there 
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were significantly greater BOLD responses in other areas of the brain including the frontal 

lobe and the posterior cingulate cortex.  There were several areas of the brain where blunted 

cardiac responders displayed decreases in BOLD responses to stress, i.e., greater activation 

during the control condition relative to the stress condition.  Deactivation, surviving family 

wise error correction, was seen in the parietal and temporal lobes, and in the hippocampus.  

Deactivation also occurred in the amygdala, posterior cingulate cortex, superior frontal gyrus, 

and anterior cingulate.  The outcomes are illustrated in Figure 7.3 and 7.4. 

[Insert Tables 1 and 2 and Figures 3 and 4 about here] 

Group differences in condition-related regional brain activity  

  A whole-brain ANOVA showed that exaggerated cardiac reactors also expressed 

greater activation of the aMCC (BA 24) during the incongruent compared with the congruent 

condition, group x condition cluster F (1, 15) = 33.96, p < .001, voxel contiguity threshold = 

50 voxels (Figure 7.5).  A priori analyses of ROIs revealed significant group x condition 

differences for the amygdala F (1, 15) = 11.66, p = .004 and for the insula F (1, 15) = 11.37, p 

= .004.  Blunted cardiac reactors exhibited greater deactivation in the amygdala and 

exaggerated reactors had greater activation during the incongruent compared with the 

congruent condition. 

[Insert Figure 5. about here] 

Discussion 

The present study compared neural activation differences in pre-established 

exaggerated and blunted cardiac reactors.  This is the first fMRI study to screen and select 

extreme cardiac reactors using Doppler echocardiography for cardiovascular measurements.  

As expected, during the fMRI testing session, exaggerated cardiac reactors displayed 

significant increases in HR during the stress task compared to resting baseline, while low 

reactors’ HR did not change with stress exposure.  There were no significant differences 
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between exaggerated and blunted reactors in how difficult, stressful, or engaging they found 

the task or in their subjective assessment of their performance of the task.  This indicates that 

differences in HR reactivity and any potential differences in neural activation could not be 

attributed to simple expedients such as group differences in task involvement.  Participants in 

the high and low reactor groups also did not differ in age or BMI. 

 

The most notable difference between groups in neural activation during the stress task 

compared to the control condition was in the aMCC; exaggerated reactors exhibited an 

increase in aMCC activation during the stress task while blunted reactors did not.  There were 

also group differences in insula and amygdala responses to stress, confirming a priori 

hypotheses.  Exaggerated reactors had greater activation in the insula during stress and in 

comparison blunted reactors exhibited hypo-activation.  Blunted reactors also showed 

deactivation of the amygdala during stress, i.e., they showed greater activity in the amygdala 

during rest than during the stress task.  Separate analyses examining the neural reactivity of 

each group separately demonstrated more widespread and intense activation in the 

exaggerated reactors during stress in the brain stem and cerebellum which blunted reactors 

did not show.  Both groups showed similar activation in the occipital and parietal lobes.   

The results from the whole brain analyses are different than a previous study examining 

neural responses of high and low systolic blood pressure reactors during stress exposure 

(Gianaros et al., 2005), which found group differences in posterior cingulate activity.  High 

reactors exhibited increases in activation in the posterior cingulate during stress exposure 

whereas low reactors showed decreases in the posterior cingulate.  In the present study, there 

were no differences between exaggerated and blunted cardiac reactors in the posterior 

cingulate during stress exposure.  A potential explanation could reside in the selection of high 

and low reactors; Gianaros and colleagues selected extreme reactors based on systolic blood 
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pressure, while the present study used CO and HR reactivity as selection criteria and used a 

stricter cut-off to identify extreme reactors.  Additionally, participants in the present study 

were all relatively young compared with the participants in the previous study.  It should be 

noted that despite the differences seen in group comparisons, overall the stress task elicited 

responses in similar areas of the brain (Gianaros et al., 2005).   

 

A priori predictions regarding differential activation of the insula and amygdala during stress 

between the groups were confirmed.  Evidence implicates the insula in cardiovascular 

regulation (Allen, Saper, Hurley, & Cechetto, 1991; Cechetto, 1994; Cechetto & Chen, 1990; 

Cechetto & Shoemaker, 2009; Oppenheimer, 1993; Ruggiero, Mraovitch, Granata, Anwar, & 

Reis, 1987; Verberne and Owens, 1998; Yasui, Breder, Saper, & Cechetto, 1991) and a recent 

meta-analysis consisting of cardiovascular stress reactivity neuroimaging studies identified 

the insula as one of three key regions associated with individual differences in stress-evoked 

cardiovascular reactions (Gianaros & Sheu, 2009).  Group differences in the amygdala are 

also in line with previous studies which have demonstrated a relationship between the 

amygdala and cardiovascular control (Gianaros et al., 2008) and sympathetic arousal 

(Critchley, 2005; Bechara, Damasio, Damasio, & Lee, 1999).  Additionally, fMRI studies 

have shown hypoactivation in the amygdala in individuals with depression (Holson et al., 

2011) and at risk for alcoholism (Glahn et al., 2007), both of which have been related to 

blunted physiological reactions to stress (Carroll et al., 2007; Moss et al., 1999; Phillips et al., 

2011; de Rooij et al., 2010; Salomon, Clift, Karslsdottir, & Rottenberg, 2009; Schwerdtfeger, 

& Rosenkaimer, 2011; Sorocco et al., 2006).  What is most notable about the current results 

is that blunted cardiac reactors showed less activity in the amygdala during stress than during 

baseline.  It would appear that individuals who show blunted peripheral stress reactivity are 

also unresponsive in a key neural component of emotion.  It is worth noting that individuals 
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with a damaged amygdala are emotionally unresponsive (Adolphs et al., 2005; Buchanan, 

Etzel, Adolphs, & Tranel, 2006) and have impaired decision making and lower sympathetic 

reactivity when thinking about risky behaviour (Bechara et al., 1999).  Blunted physiological 

reactions have been related to risky behaviours, such as addiction (Lovallo et al., 2000; 

Pankin et al., 2002) and impaired decision making such as reoffending among delinquent 

adolescents (de Vries-Bouw et al., 2011).  The amygdala effects were modest, but 

nevertheless statistically significant.  Research shows that tasks which involve non-emotional 

stimuli, such as the MSIT, show a stronger relationship between the anterior cingulate and 

sympathetic arousal than between the amygdala and sympathetic arousal (Bush et al., 2008; 

Bush & Shin, 2006; Critchley, Corfield, Chandler, Mathias, & Dolan, 2000; Critchley et al., 

2003).   

The most robust group differences were in the anterior cingulate, specifically the 

aMCC, which has also been related to cardiovascular activation in response to stress 

(Critchley et al., 2000; Critchley et al., 2003); higher cardiovascular reactors have been found 

by others to have greater aMCC activation during stress (Gianaros et al., 2005a).  Just as high 

reactivity to stress has been related to cardiovascular disease, greater activation of the aMCC 

has been found in patients with cardiovascular disease (Soufer et al., 1998).  Thus, it is 

perhaps not unexpected that exaggerated reactors in the present study displayed greater 

activation in the aMCC during stress than blunted reactors.  That blunted cardiac reactors 

failed to show activation in the aMCC during stress compared to the control condition is in 

line with a previous studies reporting that patients with damage to their anterior cingulate 

cortex displayed blunted autonomic arousal to cognitive and motor tasks (Critchely et al., 

2003).  Hypo-activation of the anterior cingulate has also been related to depression (Holson 

et al., 2011) and bulimia (Marsh et al., 2011; Joos et al., 2011), both of which are associated 

with blunted physiological reactions to stress (Carroll et al., 2007; Ginty et al., 2012; Koo-
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Loeb, Pederson, & Carroll, 1998; Moss et al., 1999; Phillips et al., 2011; de Rooij et al., 

2010; Salomon et al., 2009; Schwerdtfeger, & Rosenkaimer, 2011; Sorocco et al., 2006).   

The aMCC has also been implicated in higher cognitive functions such as cognitive 

information processing and executive function (Bush, Luu, & Posner, 2000; Bush et al., 

2008; Bush et al., 2002; Critchley, 2003; Williams et al., 1998; Shima & Tanji, 1998; Paus, 

2001).  Recent studies indicate a link between poor cognitive ability and blunted peripheral 

physiological stress reactivity (Ginty, Phillips, Der, Deary, & Carroll, 2011a, Ginty, Phillips, 

Der, Deary, & Carroll, 2011b; Ginty, Phillips, Roseboom, Carroll, & de Rooij, 2012b).  One 

of the measures of cognitive ability, choice reaction time, involves both cognitive processing 

and executive functioning and has been regarded as a marker of cognitive aging (Nettelbeck 

& Rabbitt, 1992).  Results showed that blunted cardiac reactions to stress predicted a decline 

in choice reaction time amongst the oldest participants in the study over a seven year period 

(Ginty et al., 2011a).  Evidence from the present study suggests that blunted neural activation 

to stress may also be related to cognitive ability and that some sort of biological 

disengagement is occurring across multiple systems in blunted reactors when confronted by a 

stressful and cognitively challenging stimulus.   

 It is widely accepted that the amygdala, insula, and anterior cingulate work together 

as a network to evaluate and process the motivational and emotional aspects of 

psychologically stressful stimuli in the environment (e.g. aversive stimuli; uncontrollable 

stimuli); they then interact to elicit appropriate cardiovascular and motor responses 

(Bennarroch, 1997; Bush et al., 2000; Cechetto, 1994; Ongur & Price, 2000; Barbas, Saha, 

Rempel-Clower, & Ghashghaei, 2003; Gianaros et al., in press; Gianaros & Sheu, 2009; 

Hagemann, Waldstein, & Thayer, 2003; Koski & Paus, 2000; Resstel & Correa, 2006; 

Thayer, & Lane, 2000; Wager et al., 2009b).  This network is vital for motivated behavioural 

responses and adaptations to the threat or challenge (Gianaros et al., 2012; Dampney, 1994; 
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Dampney et al., 2002).  In the present study, participants with blunted cardiovascular 

reactions to stress displayed either blunted responses or deactivation in these areas of the 

brain when exposed to psychologically stressful stimuli.  The current findings offer support to 

the hypothesis that blunted peripheral physiological reactions to acute psychological stress 

may be a peripheral marker for some form of dysregulation in those areas of the brain that are 

associated with motivation (Carroll et al., 2009; Carroll et al., 2011; Lovallo, 2011).  Further, 

this biological disengagement may contribute to outcomes such as obesity, addiction (al’ 

Absi et al., 2003; Lovallo et al., 2000), depression (Salomon et al., 2009; de Rooij et al., 

2010), and other adverse behaviours (Ginty et al., 2012a).  It is also worth noting that this 

biological disengagement is independent of participants’ ratings of engagement with the 

stress task; such independence of self-report and biological measures has been observed 

previously (Ginty et al., 2012a; Heaney et al., 2011).   

The present study is not without limitations.  First, all of the participants tested were 

males.  However, there is no reason to believe the results would be any different if female 

participants were included (Balanos et al., 2010; Carroll, Turner, Lee, & Stephenson, 1984; 

Gianaros et al., 2005).  Second, only HR was measured during the fMRI protocol.  However, 

participants were initially selected using both CO and HR using Doppler echocardiography, a 

highly sensitive and clinically accepted device (Balanos et al., 2010; Fellahi et al., 2009).  

Additionally, HR was recorded continuously throughout the scanning session which allows 

for a more definitive assessment of the relationship between neural and cardiac responses 

(Gianaros et al., 2005).  Third, it could be argued that individual differences in cardiac 

reactivity is not stable over time and, accordingly, the present findings may not be truly 

representative.  However, the temporal stability of exaggerated and blunted reactivity was 

tested prior to fMRI testing, providing further evidence for the temporal stability of cardiac 

reactivity (Carroll et al., 1984) and the stability of both cardiovascular and neural reactions to 
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the MSIT task (Sheu, Jennings, & Gianaros, 2012).  Lastly, the sample size was relatively 

small.  However, extreme groups were being examined and a large number of participants 

were screened to select these groups.  In addition the sample size was similar in magnitude to 

other studies of this nature (Gianaros et al., 2005).   

 In summary, extreme blunted cardiac reactors displayed blunted activation in the 

aMCC and insula compared to exaggerated cardiac reactors during an acute stress task, and a 

deactivation in the amygdala. The biological differences between groups in response to stress 

task could not be explained by subjective measures of engagement, stressfulness, or 

difficulty.  This study supports the notion that blunted peripheral physiological stress 

reactivity may be a marker of some form of biological disengagement in those areas of the 

brain that support motivated behaviour.   

  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

References 

Adolphs, R., Gosselin, F., Buchanan, T.W., Tranel, D., Schyns, P., & Damasio, A.R. (2005). 

A mechanism for impaired fear recognition after amygdala damage. Nature, 433, 68-

72.  

al'Absi, M., Devereux, R. B., Rao, D. C., Kitzman, D., Oberman, A., Hopkins, P., et al. 

(2006). Blood pressure stress reactivity and left ventricular mass in a random 

community sample of African-American and caucasian men and women. The 

American Journal of Cardiology, 97, 240-244. 

al'Absi, M., Hatsukami, D., & Davis, G. L. (2005). Attenuated adrenocorticotropic responses 

to psychological stress are associated with early smoking relapse. 

Psychopharmacology (Berl), 181, 107-117. 

al'Absi, M., Wittmers, L. E., Erickson, J., Hatsukami, D., & Crouse, B. (2003). Attenuated 

adrenocortical and blood pressure responses to psychological stress in ad libitum and 

abstinent smokers. Pharmacology, Biochemistry, and Behavior, 74, 401-410. 

Allen, G.V., Saper, C.B., Hurley, K.M., & Cechetto, D.F. (1991). Organization of visceral 

and limbic connections in the insula cortex of the rat. The Journal of Comparative 

Neurology, 311, 1-16.  

Andrews, M. M., Meda, S. A., Thomas, A. D., Potenza, M. N., Krystal, J. H., Worhunsky, P., 

et al. (2011). Individuals family history positive for alcoholism show functional 

magnetic resonance imaging differences in reward sensitivity that are related to 

impulsivity factors. Biological Psychiatry, 69, 675-683. 

Balanos, G.M., Phillips, A.C., Frenneaux, M.P., McIntyre, D., Lykidis,C., Griffin, H.S., & 

Carroll, D. (2010). Metabolically exaggerated cardiac reactions to acute psychological 

stress: the effects of resting blood pressure status and possible underlying 

mechanisms. Biological Psychology, 85, 104-111.  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Barbas, H., Saha, S., Rempel-Clower, N., & Ghashghaei, T. (2003). Serial pathways from 

primate prefrontal cortex to autonomic areas may influence emotional expression. 

BMC Neuroscience, 4, 25-37.  

Barnett, P. A., Spence, J. D., Manuck, S. B., & Jennings, J. R. (1997). Psychological stress 

and the progression of carotid artery disease. Journal of Hypertension, 15, 49-55. 

Batterink, L., Yokum, S., & Stice, E. (2010). Body mass correlates inversely with inhibitory 

control in response to food among adolescent girls: an fMRI study. Neuroimage, 52, 

1696-1703. 

Bechara, A., Damasio, H., Damasio, A.R., & Lee, G.P. (1999). Different contributions of the 

human amygdala and ventromedial prefrontal cortex to decision-making. Journal of 

Neuroscience, 19, 5473-5481.  

Beck, A., Schlagenhauf, F., Wustenberg, T., Hein, J., Kienast, T., Kahnt, T., et al. (2009). 

Ventral striatal activation during reward anticipation correlates with impulsivity in 

alcoholics. Biol Psychiatry, 66, 734-742. 

Bennarroch, E.E. (1997). Central autonomic network: functional organization and clinical 

correlations. Armonk, NY: Futura Publishing Company.  

Buchanan, T.W., Etzel, J.A., Adolphs, R., & Tranel, D. (2006). The influence of autonomic 

arousal and semantic relatedness on memory for emotional words.  International 

Journal of Psychophysiology, 61, 26-33.  

Bush, G., Luu, P., & Posner, M.I. (2000). Cognitive and emotional influences in anterior 

cingulate cortex. Trends in Cognitive Science, 4, 215-222.  

Bush, G. & Shin, L.M. (2006). The Multi-Source Interference Task: An fMRI task that 

reliably activates the cingulo-frontal-parietal cognitive/attention network. Nature 

Protocols, 1, 308-313.  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Bush, G., Spencer, T.J., Holmes, J., Shin, L.M., Valera, E.M., Seidman, L.J.et al. (2008). 

Functional magnetic resonance imaging of methylphenidate and placebo in attention-

deficit/hyperactivity disorder during the multi-source interference task. Archives of 

General Psychiatry, 65, 102-114.  

Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A., & Rosen, B.R. 

(2002). Dorsal anterior cingulate cortex: a role in reward based decision making. 

Proceedings of the National Academy of Science of the United States of America, 99, 

523-529.  

Carroll, D., Ginty, A. T., Der, G., Hunt, K., Benzeval, M., & Phillips, A. C. (in press). 

Increased blood pressure reactions to acute mental stress are associated with 16-year 

cardiovascular disease mortality. Psychophysiology.  

Carroll, D., Lovallo, W.R., & Phillips, A.C. (2009). Are large physiological reactions to acute 

psychological stress always bad for health. Social and Personality Psychology 

Compass, 3, 725-743.  

Carroll, D., Phillips, A.C., Der, G. (2008). Body mass index, abdominal adiposity, obesity 

and cardiovascular reactions to psychological stress in a large community sample. 

Psychosomatic Medicine, 70, 653-660.  

Carroll, D., Phillips, A.C., Hunt, K., & Der, G. (2007). Symptoms of depression and 

cardiovascular reactions to acute psychological stress: Evidence from a population 

study. Biological Psychology, 75, 68-74.  

Carroll, D., Phillips, A.C., & Lovallo, W.R. (2011). The behavioural and health corollaries of 

blunted physiological reactions to acute psychological stress: revising the reactivity 

hypothesis. In Wright, R.A., Gendolla, G.H.E. (Eds.), Motivation Perspectives of 

Cardiovascular Response. APA Press, Washington, DC, pp.243-263.  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Carroll, D., Ring, C., Hunt, K., Ford, G., & Macintyre, S. (2003). Blood pressure reactions to 

stress and the prediction of future blood pressure: effects of sex, age, and 

socioeconomic position. Psychosomatic Medicine, 65, 1058-1064. 

Carroll, D., Smith, G. D., Sheffield, D., Shipley, M. J., & Marmot, M. G. (1995). Pressor 

reactions to psychological stress and prediction of future blood pressure: data from the 

Whitehall II Study. British Medical Journal, 310, 771-776. 

Carroll, D., Smith, G. D., Shipley, M. J., Steptoe, A., Brunner, E. J., & Marmot, M. G. 

(2001). Blood pressure reactions to acute psychological stress and future blood 

pressure status: a 10-year follow-up of men in the Whitehall II study. Psychosomatic 

Medicine, 63, 737-743. 

Carroll, D., Turner, J.R., Lee, H.J., & Stephenson, J. (1984). Temporal consistency of 

individual differences in cardiac response to a video game. Biological Psychology, 19, 

81-93.  

Cechetto, D.F. (1994). Identification of a cortical site for stress-induced cardiovascular 

dysfunction. Integrative Physiological and Behavioral Science, 29, 362-373.  

Cechetto, D.F. & Chen, S.J. (1990). Subcortical sites mediating sympathetic responses from 

insula cortex in rats. American Journal of Physiology, 258, R245-R255.  

Cechetto, D.F. & Shoemaker, J.K. (2009). Functional neuroanatomy of autonomic regulation. 

NeuroImage, 47, 795-803.  

Chida, Y., & Steptoe, A. (2010). Greater Cardiovascular Responses to Laboratory Mental 

Stress Are Associated With Poor Subsequent Cardiovascular Risk Status. 

Hypertension, 55, 1026-1032. 

Critchley, H.D., Corfield, D.R., Chandler, M.P., Mathias, C.J., & Dolan, R.J. (2000). 

Cerebral correlates of autonomic cardiovascular arousal: A functional neuroimaging 

investigation in humans. Journal of Phsyiology, 15, 259-270.  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Critchley, H.D., Mathias, C.J., Josephs, O., O’Doherty, J., Zanini, S., Dewar, B.K., Cipolotti, 

L., et al. (2003). Human cingulate cortex and autonomic control: converging 

neuroimaging and clnical evidence. Brain, 126, 2139-2152.  

Critchley, H.D., Rotshtein, P., Nagai, Y., O’Doherty, J., Mathias, C.J., & Dolan, R.J. (2005) 

Activity in the human brain predicting differential heart rate responses to emotional 

facial expressions, NeuroImage, 24, 751-762.  

Dampney, R.A. (1994). Functional organization of central pathways regulating the 

cardiovascular system. Physiology Review, 74, 323-364.  

Dampney, R.A., Coleman, M.J., Fontes, M.A., Hirooka, Y., Horiuchi, J. (2003). Functional 

organization of brain pathways subserving the baroreceptor reflex: Studies in 

conscious animals using immediate early gene expression. Cellular and Molecular 

Neruobiology, 23, 597-616.  

de Rooij, S. R., & Roseboom, T. J. (2010). Further evidence for an association between self-

reported health and cardiovascular as well as cortisol reactions to acute psychological 

stress. Psychophysiology, 47, 1172-1175. 

de Rooij, S.R., Schene, A.H., Phillips, D.I., & Roseboom, T.J. Depression and anxiety: 

Associations with biological and perceived stress reactivity to a psychological stress 

protocol in a middle-aged population. Psychoneuroendocrinology, 35, 866-877.  

de Vries-Bouw, M., Popma, A., Vermeiren, R., Doreleijers, T.A., van de Ven, P.M., & 

Jansen, L.M. (2011). Psychophysiology, 48, 1597-1604.  

Everson, S. A., Kaplan, G. A., Goldberg, D. E., & Salonen, J. T. (1996). Anticipatory blood 

pressure response to exercise predicts future high blood pressure in middle-aged men. 

Hypertension, 27, 1059-1064. 

Everson, S. A., Lynch, J. W., Chesney, M. A., Kaplan, G. A., Goldberg, D. E., Shade, S. B., 

et al. (1997). Interaction of workplace demands and cardiovascular reactivity in 



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

progression of carotid atherosclerosis: population based study. British Medical 

Journal, 314, 553-558. 

Everson, S. A., Lynch, J. W., Kaplan, G. A., Lakka, T. A., Sivenius, J., & Salonen, J. T. 

(2001). Stress-induced blood pressure reactivity and incident stroke in middle-aged 

men. Stroke, 32, 1263-1270.   

Fellahi, J., Caille, V., Charron, C., Deschamps-Berger, P., & Vieillard-Baron, A. (2009). 

Noninvasive assessment of cardiac index in healthy volunteers: a comparison between 

thoracic impedance cardiography and Doppler echocardiography. Anesthesia and 

Analgesia, 108, 1553-1559.  

Georgiades, A., Lemne, C., de Faire, U., Lindvall, K., & Fredrikson, M. (1997). Stress-

induced blood pressure measurements predict left ventricular mass over three years 

among borderline hypertensive men. European Journal of Clinical Investigation, 27, 

733-739. 

Gerin, W., Pickering, T. G., Glynn, L., Christenfeld, N., Schwartz, A., Carroll, D., & 

Davidson, K. (2000). An historical context for behavioral models of hypertension. 

Journal of Psychosomatic Research, 48, 369-377. 

Gianaros, P. J., Derbyshire, S. W., May, J. C., Siegle, G. J., Gamalo, M. A., & Jennings, J. R. 

(2005a). Anterior cingulate activity correlates with blood pressure during stress. 

Psychophysiology, 42, 627-635. 

Gianaros, P. J., May, J. C., Siegle, G. J., & Jennings, J. R. (2005b). Is there a functional 

neural correlate of individual differences in cardiovascular reactivity? Psychosomatic 

Medicine, 67, 31-39. 

Gianaros, P.J., Onyewuenyi, I.C., Sheu, L.K., Christie, I.C., & Critchley, H.D. (in press). 

Brain systems for baroreflex supression during stress in humans. Human Brain 

Mapping, 33, 1700-1706. 



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Gianaros, P.J. & Sheu, L.K. (2009). A review of neuroimaging studies of stressor-evoked 

blood pressure reactivity: Emerging evidence for a brain-body pathway to coronary 

heart disease risk. NeuroImage, 47, 922-936.  

Gianaros, P. J., Sheu, L. K., Matthews, K. A., Jennings, J. R., Manuck, S. B., & Hariri, A. R. 

(2008). Individual differences in stressor-evoked blood pressure reactivity vary with 

activation, volume, and functional connectivity of the amygdala. Journal of 

Neuroscience, 28, 990-999. 

Gianaros, P.J., Sheu, L.K., Remo, A.M., Christie, I.C., Critchley, H.D., & Wang, J. (2009). 

Heightened resting neural activity predictes exaggerated stressor-evoked blood 

pressure reactivity. Hypertension, 53, 819-825.  

Ginty, A.T., Phillips, A.C., Roseboom, T.J., Carroll, D., & de Rooij, S.R. (2012). 

Cardiovascular and cortisol reactions to acute psychological stress and cognitive 

ability in the Dutch Famine Birth Cohort Study. Psychophysiology, 49, 391-400.  

Ginty, A.T., Phillips, A.C., Der, G., Deary, I.J., & Carroll, D. (2011a). Heart rate reactivity is 

associated with future cognitive ability and cognitive change in a large community 

sample. International Journal of Psychophysiology, 82, 167-174.  

Ginty, A.T., Phillips, A.C., Der, G., Deary, I.J., & Carroll, D. (2011b). Cognitive ability and 

simple reaction time predict cardiac reactivity in the West of Scotland Twenty-07 

Study. Psychophysiology, 48, 1022-1027.  

Ginty, A. T., Phillips, A. C., Higgs, S., Heaney, J. L. J., & Carroll, D. (2012). Disordered 

eating behaviour is associated with blunted cortisol and cardiovascular reactions to 

acute psychologyical stress. Psychoneuroendocrinology, 37, 715-724.  

Glahn, D. C., Lovallo, W. R., & Fox, P. T. (2007). Reduced amygdala activation in young 

adults at high risk of alcoholism: studies from the Oklahoma family health patterns 

project. Biol Psychiatry, 61, 1306-1309. 



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Grownwall, D. (1977). Paced audiotry serial-addition task: a measure of recovery from 

concussion. Perceptual and Motor Skills, 44, 367-373.  

Hagemann, D., Waldstein, S.R., & Thayer, J.F. (2003). Central autonomic nervous system 

integration in emotion. Brain and Cognition, 52, 78-87.  

Heaney, J. L., Ginty, A. T., Carroll, D., & Phillips, A. C. (2011). Preliminary evidence that 

exercise dependence is associated with blunted cardiac and cortisol reactions to acute 

psychological stress. International Journal of Psychophysiology, 79, 323-329. 

Holsen, L. M., Spaeth, S. B., Lee, J.-H., Ogden, L. A., Klibanski, A., Whitfield-Gabrieli, S., 

et al. (2011). Stress response circuitry hypoactivation related to hormonal dysfunction 

in women with major depression. Journal of Affective Disorders, 131, 379-387. 

Joos, A. A., Saum, B., Zeeck, A., Perlov, E., Glauche, V., Hartmann, A., et al. (in press). 

Frontocingular Dysfunction in Bulimia Nervosa when Confronted with Disease-

specific Stimuli. European Eating Disorders Review.  

Kapuku, G. K., Treiber, F. A., Davis, H. C., Harshfield, G. A., Cook, B. B., & Mensah, G. A. 

(1999). Hemodynamic function at rest, during acute stress, and in the field: predictors 

of cardiac structure and function 2 years later in youth. Hypertension, 34, 1026-1031. 

Kirschbaum, C., Strasburger, C. J., & Langkrar, J. (1993). Attenuated cortisol response to 

psychological stress but not to CRH or ergometry in young habitual smokers. 

Pharmacology, Biochemistry, and Behavior, 44, 527-531. 

Koo-Loeb, J.H., Pedersen, C., & Girdler, S.S. (1998). Blunted cardiovascular and 

catecholamine stress reactivity in women with bulima nervosa. Psychiatry Research, 

80, 13-27.  

Koski, L. & Paus, T. (2000). Functional connectivity of the anterior cingulate cortex within 

the human frontal lobe: a brain mappint meta-analysis. Experimental Brain Research, 

133, 55-65.  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Lovallo, W.R. (2011). Do low levels of stress reactivity signal poor states of health? (2011). 

Biological Psychology, 86, 121-128.  

Lovallo, W. R., Dickensheets, S. L., Myers, D. A., Thomas, T. L., & Nixon, S. J. (2000). 

Blunted stress cortisol response in abstinent alcoholic and polysubstance-abusing 

men. Alcoholosim, Clininical and Experimental Research, 24, 651-658. 

Lynch, J. W., Everson, S. A., Kaplan, G. A., Salonen, R., & Salonen, J. T. (1998). Does low 

socioeconomic status potentiate the effects of heightened cardiovascular responses to 

stress on the progression of carotid atherosclerosis? American Journal of Public 

Health, 88, 389-394. 

Mannie, Z. N., Taylor, M. J., Harmer, C. J., Cowen, P. J., & Norbury, R. (2011). 

Frontolimbic responses to emotional faces in young people at familial risk of 

depression. Journal of Affective Disorders, 130, 127-132. 

Markovitz, J. H., Raczynski, J. M., Wallace, D., Chettur, V., & Chesney, M. A. (1998). 

Cardiovascular reactivity to video game predicts subsequent blood pressure increases 

in young men: The CARDIA study. Psychosomatic Medicine, 60, 186-191. 

Marsh, R., Horga, G., Wang, Z., Wang, P., Klahr, K. W., Berner, L. A., et al. (2011). An 

fMRI Study of Self-Regulatory Control and Conflict Resolution in Adolescents With 

Bulimia Nervosa. American Journal of Psychiatry, 168, 1210-1220.  

Matthews, K. A., Owens, J. F., Kuller, L. H., Sutton-Tyrrell, K., Lassila, H. C., & Wolfson, 

S. K. (1998). Stress-induced pulse pressure change predicts women's carotid 

atherosclerosis. Stroke, 29, 1525-1530. 

Matthews, K. A., Woodall, K. L., & Allen, M. T. (1993). Cardiovascular reactivity to stress 

predicts future blood pressure status. Hypertension, 22, 479-485. 



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Moss, H. B., Vanyukov, M., Yao, J. K., & Kirillova, G. P. (1999). Salivary cortisol responses 

in prepubertal boys: the effects of parental substance abuse and association with drug 

use behavior during adolescence. Biological Psychiatry, 45, 1293-1299. 

Murdison, K. A., Treiber, F. A., Mensah, G., Davis, H., Thompson, W., & Strong, W. B. 

(1998). Prediction of left ventricular mass in youth with family histories of essential 

hypertension. The American Journal of the Medical Sciences, 315, 118-123. 

Nettelbeck, T. & Rabbitt, P.M. (1992). Aging, cognitive performance, and mental speed. 

Intelligence, 16, 189-205.  

Newman, J. D., McGarvey, S. T., & Steele, M. S. (1999). Longitudinal association of 

cardiovascular reactivity and blood pressure in Samoan adolescents. Psychosomatic 

Medicine, 61, 243-249. 

Ongur, D. & Price, J.L. The organization of networks within the orbital and medial prefrontal 

cortex of rats, monkeys, and humans. Cerebral Cortex, 10, 206-219.  

Oppenheimer, S. (1993). The anatomy and physiology of cortical mechanisms of cardiac 

control. Stroke, 24, I3-I5.  

Paus, T. (2001). Primate anterior cingulate cortex: where motor control, drive, and cognition 

interfance. Nature Reviews Neuroscience, 2, 417-424.  

Panknin, T. L., Dickensheets, S. L., Nixon, S. J., & Lovallo, W. R. (2002). Attenuated heart 

rate responses to public speaking in individuals with alcohol dependence. 

Alcoholosim, Clinical and Experimental Research, 26, 841-847. 

Phillips, A. C., Der, G., & Carroll, D. (2009). Self-reported health and cardiovascular 

reactions to psychological stress in a large community sample. Psychophysiology, 46, 

1020-1027. 



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Phillips, A. C., Der, G., Hunt, K., & Carroll, D. (2009). Haemodynamic reactions to acute 

psychological stress and smoking status in a large community sample. International 

Journal of Psychophysiology, 73, 273-278. 

Phillips, A.C., Hunt, K., Der, G., & Carroll, D. (2011). Blunted cardiac reactions to acute 

psychological stress predict symptoms of depression five years later: Evidence from a 

large community study. Psychophysiology, 48, 1469-8986.  

Resstel, L.B. & Correa, F.M. (2006). Involvement of the medial prefrontal cortex in central 

cardiovacsular modulation in the rat. Auton Neuroscience, 126, 130-138.  

Ruggiero, D.A., Mraovitch, S., Granata, A.R., Anwar, M., & Reis, D.J. (1987). A role in the 

insula cortex in cardiovascular function. Journal of Comparative Neurology, 257, 

189-207.  

Salomon, K., Clift, A., Karlsdottir, M., & Rottenberg, J. (2009). Major depressive disorder is 

associated with attenuated cardiovascular reactivity and impaired recovery among 

those free of cardiovascular disease. Health Psychology, 28, 157-165.  

Schwartz, A. R., Gerin, W., Davidson, K. W., Pickering, T. G., Brosschot, J. F., Thayer, J. F., 

et al. (2003). Toward a Causal Model of Cardiovascular Responses to Stress and the 

Development of Cardiovascular Disease. Psychosomatic Medicine, 65, 22-35. 

Schwerdtfeger, A. & Rosenkaimer, A.K. (2011). Depressive symptoms and attenuated 

physiological reactivity to laboratory stressors. Biological Psychology, 87, 430-438.  

Shima, K. & Tanji, J. (1998) Role for cingulate motor area cells in voluntary movement 

selection based on reward. Science, 282, 1335-1338.  

Sheu, L.K., Jennings, J.R., & Gianaros, P.J. (2012). Test-retest reliability of an fMRI 

paradigm for studies of cardiovascular reactivity. Psychophysiology, 49, 873-884.  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Sorocco, K. H., Lovallo, W. R., Vincent, A. S., & Collins, F. L. (2006). Blunted 

hypothalamic-pituitary-adrenocortical axis responsivity to stress in persons with a 

family history of alcoholism. International Journal of Psychophysiology, 59, 210-217. 

Soufer, R., Bremner, J.D., Arrighi, J.A., Cohen, I., Zaret, B.L., Burg, M.M., & Goldman-

Rakic, P. (1998). Cerebral cortical hyperactivation in response to mental stress in 

patients with coronary artery disease. Proceedings of the National Academy of 

Sciences of the United States of America, 95, 6454-6459.  

Stice, E., Spoor, S., Bohon, C., Veldhuizen, M. G., & Small, D. M. (2008). Relation of 

reward from food intake and anticipated food intake to obesity: a functional magnetic 

resonance imaging study. Journal of Abnormal Psychology, 117, 924-935. 

Stice, E., Yokum, S., Blum, K., & Bohon, C. (2010). Weight gain is associated with reduced 

striatal response to palatable food. Journal of Neuroscience, 30, 13105-13109. 

Taylor, T. R., Kamarck, T. W., & Dianzumba, S. (2003). Cardiovascular reactivity and left 

ventricular mass: an integrative review. Annals of Behavioral Medicine, 26, 182-193. 

Thayer, J.F. & Lane, R.D. (2009). Claude Bernard and the heart-brain connection: Further 

eleaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral 

Reviews, 33, 81-88.  

Treiber, F. A., Kamarck, T., Schneiderman, N., Sheffield, D., Kapuku, G., & Taylor, T. 

(2003). Cardiovascular Reactivity and Development of Preclinical and Clinical 

Disease States. Psychosomatic Medicine, 65, 46-62. 

Treiber, F. A., Turner, J. R., Davis, H., & Strong, W. B. (1997). Prediction of resting 

cardiovascular functioning in youth with family histories of essential hypertension: a 

5-year follow-up. International Journal of Behavioral Medicine, 4, 278-291. 

Verberne, A.J.M & Owens, N.C. (1998). Cortical modulation of the cardiovascular system. 

Progress in Neurobiology, 54, 149-158.  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

Wager, T., van Ast V., Huges, B., Davidson, M., Lindquist, M., & Ochsner, K. (2009b). 

Brain mediators of cardiovascular responses to social threat. II. Prefrontal-subcortical 

pathways and relationship with anxiety. NeuroImage, 47, 836-851.  

Wager, T. D., Waugh, C. E., Lindquist, M., Noll, D. C., Fredrickson, B. L., & Taylor, S. F. 

(2009a). Brain mediators of cardiovascular responses to social threat, Part I: 

Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-

rate reactivity. NeuroImage, 47, 821-835.  

Waldstein, S. R., Siegel, E. L., Lefkowitz, D., Maier, K. J., Brown, J. R., Obuchowski, A. M., 

Katzel, L. I. (2004). Sturess-induced blood pressure reactivity and silent 

cerebrovascular disease. Stroke, 35, 1294-1298.  

Wang, J., Rao, H., Wetmore, G. S., Furlan, P. M., Korczkowski, M., Dinges, D. F., & Detre, 

J.A. (2005). Perfusion functional MRI reveals cerebral blood flow pattern under 

psychological stress. PNAS, 102, 17804-17809.  

Williams, Z.M., Bush, G., Rauch, S.L., Cosgrove, G.R., & Eskandar, E.N. (2004). Human 

anterior cingulate neurons and the integration of monetary reward with motor 

responses. Nature Neuroscience, 7, 1370-1375.  

Yasui, Y., Breder, C.D., Saper, C.B., Cechetto, D.F. (1991). Autonomic responses and 

efferent patheways from the insula cortex in the rat.  Journal of Comparative 

Neurology, 303, 355-374.  

  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates 
to neural hypoactivation. Psychophysiology, 50, 219–229. DOI: 10.1111/psyp.12017 
 

 
 

Table 1. Significant BOLD activation during incongruent (stress) compared to congruent (control) for exaggerated and blunted cardiac reactors, 

threshold p < .001, extent threshold 50 contiguous voxels. 

   Exaggerated reactors  Blunted reactors 

Figure 
label  Side Brain area  (x, y, z coordinates) 

region  
Cluster 

size 
t value  (x, y, z coordinates) 

region   
Cluster 

size 
t value 

1 R Medial premotor 
cortex  

(6, 14, 58) BA 6  488 13.41  (36, 6, 58) BA 6  66 6.47 

 L (-32, -4, 66) BA 6 75 6.87  ___ ___ ___ 

2 L Anterior mid 
cingulate cortex 
(aMCC)  

(0, 34, 26) BA 32 134 8.65  ___ ___ ___ 

 R (2, 18, 20)  134 5.12  ___ ___ ____ 

3 L Brainstem  (-12, 20, -4) 1554 9.87  ___ ___ ___ 

 R  (14, -18, -6) 1554 9.20  ___ ___ ___ 

4 R Thalamus  (-9, -12, -2)  1554 7.81  (18, -22, 8) 474 9.35 

5 R Caudate  (32, -34, 4)  50 9.96  ___ ___ ___ 

6 L Posterior 
Cingulate Cortex ___ ___ ___  (-6, -24, 28) BA 23 133 12.73 

 R  ___ ___ ___  (8, 10, 32) BA 23 641 10.66 

N/A R Insula  (38, 20, 16) BA 13 599 7.97  (44, 10, 16) BA 13 1452 10.91* 
* ROI analyses of the insula revealed greater activation in exaggerated cardiac reactors during stress compared to rest, despite the peak voxel 
being higher in the blunted cardiac reactors.  
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Table 2. Significant BOLD dectivation during incongruent (stress) compared to congruent (control) for exaggerated and blunted cardiac 

reactors, threshold p < .001, extent threshold 50 contiguous voxels. 

   High reactors  Low reactors 

Figure 
label  Side Brain area  

(x, y, z coordinates) 
region  

Cluster 
size  

t value  (x, y, z coordinates) 
region 

Cluster 
size 

t value 

7 L 
Ventral Posterior 
cingulate cortex 
(vPCC) 

(-4, -50, 18) BA 30 78 5.97  (-8, -42, 36) BA 30 504 8.18 

8 L Medial frontal cortex (-12, 58, 0) BA 10 482 5.96  (-10, 66, 26) BA 10  3207 11.34 

9    L 
Perigenual anterior 
cingulated cortex 
(pACC) 

____ ____ ____  (-16, 42, 2) BA 32 3207 9.42 

10 R Amygdala ____ ____ ____  (-28, -12, -16) 80 13.75* 

 L Amygdala ____ ____ ____  (20, -10,-10) 51 10.08 

11 L Temporal cortex ____ ____ ____  (-50, -66, 26) BA 39  533 17.98* 

 R  ____ ____ ____  
(36, 10, -36) BA  38 
(-58, -12, -8) BA 21 

131 
52 

11.00 
8.72 
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Figure Captions  

Figure 1a. Heart rate reactivity of extreme exaggerated and blunted reactors over four 

independent laboratory sessions.   

Figure 1b. Cardiac output reactivity of extreme exaggerated and blunted reactors over four 

independent laboratory sessions. 

Figure 2. Change in heart from baseline to the congruent and the incongruent conditions for 

the MSIT for exaggerated and blunted cardiac reactors. 

Figure 3. Sagittal slices showing BOLD activation (orange) and deactivation (blue) during 

the incongruent stress condition in comparison to the congruent control condition for both 

exaggerated and blunted cardiac reactors. Please refer to Tables 7.1 and 7.2 for figure labels.  

Figure 4. Coronal slices showing BOLD activation (orange) and deactivation (blue) during 

the incongruent stress condition in comparison to the congruent control condition for both 

exaggerated and blunted cardiac reactors.  Please refer to Tables 7.1 and 7.2 for figure labels.  

Figure 5. Group (Exaggerated, Blunted) x Condition (Incongruent, Congruent) BOLD 

activation differences using a whole brain exploratory analysis, threshold p < .001, extent 

threshold 50 contiguous voxels.  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

 

 

 

 

  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

 

  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

  



Post-print not final published version. Please cite this article as Ginty, A.T., Gianaros, P.J., Derbyshire, S.W.G., Phillips, 
A.C. & Carroll, D. (2013). Blunted cardiac stress reactivity relates to neural hypoactivation. Psychophysiology, 50, 219–
229. DOI: 10.1111/psyp.12017 
 

 
 

 


