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Abstract

Tight junctions (TJs) link adjacent cells and are critical for maintenance of apical-

basolateral polarity in epithelial monolayers. The TJ protein occludin functions in

disparate processes, including wound healing and Hepatitis C Virus infection. Little

is known about steady-state occludin trafficking into and out of the plasma

membrane. Therefore, we determined the mechanisms responsible for occludin

turnover in confluent Madin-Darby canine kidney (MDCK) epithelial monolayers.

Using various biotin-based trafficking assays we observed continuous and rapid

endocytosis of plasma membrane localised occludin (the majority internalised

within 30 minutes). By 120 minutes a significant reduction in internalised occludin

was observed. Inhibition of lysosomal function attenuated the reduction in occludin

signal post-endocytosis and promoted co-localisation with the late endocytic

system. Using a similar method we demonstrated that ,20% of internalised

occludin was transported back to the cell surface. Consistent with these findings,

significant co-localisation between internalised occludin and recycling endosomal

compartments was observed. We then quantified the extent to which occludin

synthesis and transport to the plasma membrane contributes to plasma membrane

occludin homeostasis, identifying inhibition of protein synthesis led to decreased

plasma membrane localised occludin. Significant co-localisation between occludin

and the biosynthetic secretory pathway was demonstrated. Thus, under steady-

state conditions occludin undergoes turnover via a continuous cycle of endocytosis,

recycling and degradation, with degradation compensated for by biosynthetic
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exocytic trafficking. We developed a mathematical model to describe the

endocytosis, recycling and degradation of occludin, utilising experimental data to

provide quantitative estimates for the rates of these processes.

Introduction

Tight Junctions (TJs) provide structural support to epithelial monolayers, regulate

paracellular permeability and serve as a barrier to plasma membrane protein

diffusion, maintaining apical-basolateral polarity [1, 2]. Numerous human

diseases, such as cystic fibrosis and polycystic kidney disease have been

demonstrated to involve loss of epithelial polarity [3]. The TJ protein occludin

forms homotypic linkages with occludin present in the lateral plasma membrane

of adjacent cells [1, 2]. Although occludin is a core member of the TJ complex that

links together neighbouring epithelial cells and regulates cell polarity, occludin has

also been shown to modulate signal transduction, function as a co-receptor for the

Hepatitis C Virus (HCV), and play functional roles during epithelial wound

healing [4–7]. Our recent work has demonstrated that immediately following

monolayer wounding, occludin at the wound edge is rapidly internalised by

clathrin-mediated endocytosis within minutes [4]. Other work performed in the

same epithelial model has demonstrated that hours following wounding, occludin

can be observed at the very leading edge of the migrating front, where it plays an

essential role by regulating the localisation of the Par3-aPKC polarity complex [6].

Although occludin is a key regulator of epithelial function and wound healing, the

trafficking of occludin has not been well characterised, either in the context of

apical-basolateral polarity, or during epithelial wound healing.

Different pathways have been demonstrated to regulate occludin trafficking,

potentially based upon the model system analysed [8–11]. Additionally, most of

the work focusing on the endocytic trafficking of occludin has employed stimuli

such as calcium depletion or acute growth factor treatment to induce endocytosis

of occludin and loss of epithelial barrier function [9, 11–13]. Although there has

not been much work performed examining steady-state occludin trafficking, the

work that has been performed has been contradictory. Studies by Morimoto et al,

2005 suggest that internalised occludin is predominantly recycled to the cell

surface in a Rab13 dependent manner [14], while earlier work indicates occludin

is a protein which undergoes rapid lysosomal degradation [15]. Clearly, to further

understand the contribution of occludin trafficking to disease pathogenesis,

detailed understanding of the mechanisms which regulate occludin localisation at

the plasma membrane under basal conditions is required.

We have taken cultured monolayers of Madin-Darby canine kidney (MDCK)

cells and employed biotin-based biochemical assays and imaging studies to

evaluate occludin trafficking. We specifically focused on trafficking of endogenous

occludin during the initial stages of epithelial polarisation in serum-starved steady
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state conditions. Our results demonstrate that occludin undergoes continuous

endocytosis, with the majority of occludin internalised from the plasma

membrane within 30 minutes. Following internalisation, intracellular occludin is

subsequently lost from detection. We investigated two hypotheses for this loss of

intracellular occludin signal: 1) lysosomal degradation, 2) recycling and return to

the plasma membrane. Our analyses have demonstrated that this loss of

internalised occludin is primarily due to lysosomal degradation, but approxi-

mately 20% is returned back to the plasma membrane via recycling endosomes.

Although low level occludin recycling has been demonstrated, a compensatory

mechanism must exist in order to replace degraded occludin and maintain

occludin homeostasis. Our studies have demonstrated that this loss of occludin is

compensated for with newly synthesised occludin which enters the plasma

membrane after production. Thus, these results indicate that at steady-state,

occludin has only a brief cell surface half-life and that occludin undergoes a

constant cycle of endocytic degradative, low-level recycling and biosynthetic

secretory trafficking.

Given the experimental data, it is possible to use a dynamical mathematical

model coupled with statistical inference techniques to estimate the rates of the

molecular processes [16]. We have used such a model to estimate the rates of

endocytosis, recycling and degradation of occludin from the experimental data.

Moreover, the model predicts that these rates are likely to have slowed

considerably as a result of the experimental procedures. However, the rates then

recover during the course of the experiment. Thus, together our results represent

the first systematic understanding of steady-state occludin trafficking and provide

a dynamical mathematical model that will be useful in the understanding of

occludin trafficking in polarised cells and during disease processes.

Experimental

Cell culture

MDCK (CCL-34 ATCC) epithelial cells were cultured and maintained in DMEM

supplemented with 10% Foetal Bovine Serum (FBS), 1% Pen/Strep (both Lonza)

in humid conditions at 37 C̊ with 5% CO2.

Cell surface biotinylation

Assay 1 - occludin internalisation

MDCK cells were plated into a 6 well plate and 24 hour post-plating the confluent

monolayer was serum starved for 1 hour in serum free DMEM in the presence of

either DMSO (control) or 250 nM Bafilomycin A (BafA), in humid conditions at

37 C̊ with 5% CO2. All reagents were prepared according to the manufacturer’s

instructions (Pierce). After serum starvation, the cells were washed in ice cold PBS

(Lonza) at 4 C̊. The cells were incubated with Biotin solution at 4 C̊ for 1 hour.

Cells were washed in PBS, transferred to serum free DMEM pre-warmed to 37 C̊
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containing either 250 nM BafA (Calbiochem) or DMSO (Sigma) incubated in

humid conditions at 37 C̊ with 5% CO2 for 0, 5, 15, 30, 60 or 120 minutes. After

the designated time-points the cells were washed in ice cold PBS, followed by

washes with pH 8.6 biotinylation wash buffer (0.5M Tris pH 7.5 (Fisher

Scientific), 0.1 M NaCl (Sigma)). Biotin was removed from cell surface proteins

by a 30 minute incubation at 4 C̊ with reducing buffer (0.5M Tris pH 7.5, 0.1M

NaCl, 15 mM NaOH (Sigma) and 0.1M Sodium 2-mercaptoethanesulfonate

(MESNA) (Sigma)). The total amount of plasma membrane localised biotinylated

occludin was measured using 2 dishes which were kept on ice post biotinylation,

undergoing neither the internalisation period nor cell surface reduction. All dishes

were washed in PBS, the cells lysed in 1% Triton-X100 plus Complete Mini-

cocktail protease inhibitor (Roche) for 1 hour on ice. Lysates were incubated

overnight in spin columns with NeutrAvidin beads (Pierce). Beads were washed in

wash buffer plus protease inhibitor, then incubated with 36 Laemmli sample

buffer plus 50 mM DTT, for 1 hour and the eluate collected and boiled at 95 C̊

for 15 minutes.

Assay 2 - occludin recycling

Cells were biotin labelled as described previously after serum starvation in serum

free DMEM. Cells were washed in PBS, transferred to serum free DMEM pre-

warmed to 37 C̊ and incubated at 37 C̊ in previously described conditions for a

30 minute internalisation period. Post-internalisation, all but 2 wells underwent

biotin removal from cell surface proteins by the previously described reduction

step. These wells were then quenched with 20 mM iodacetamide (Sigma)

(dissolved in PBS) at 4 C̊ for 30 minutes. Two of these wells were lysed as

described previously to enable us to quantify the intracellular biotinylated

occludin pool after 30 minutes internalisation. In the two remaining non-reduced

wells, cells were quenched as before then lysed to measure total biotinylated

occludin (plasma membrane and intracellular biotinylated occludin). The

remaining dishes were incubated at 37 C̊ in the previously described conditions

for 5, 15, 30 or 60 minutes. After each time-point two dishes were reduced and

quenched (to measure the intracellular biotinylated occludin pool) while two

dishes were quenched (to measure the total biotinylated occludin pool). Dishes

were lysed, the biotinylated proteins were pulled down with NeutrAvidin beads

and the proteins eluted from the beads and prepared as described previously.

Assay 3 - occludin degradation

All reagents were made up as described previously. MDCK cells were plated into a

6 well plate, 24 hour post-plating cells were washed in PBS, and then incubated

for 0, 30, 60, 120 or 240 minutes in serum free DMEM containing either DMSO

(control) or 10 mM cycloheximide (CHX). In treatments 0, 30 and 60 minutes the

cells were pre-incubated in serum free DMEM, so that in these conditions 2 hours

serum starvation occurred before biotinylation. Cell surface proteins were biotin

labelled as described previously. Cells were quenched in quenching buffer (Pierce),
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lysed, incubated with NeutrAvidin, and the biotinylated protein removed from

the NeutrAvidin beads and treated as described previously.

Western blot analysis

Samples from biotin-based recycling assays were run on SDS-PAGE followed by

Western blot analysis. For cell surface biotinylation assays 1 and 3, Western Blots

were performed as follows: PVDF membranes were probed with rabbit anti-

occludin (Invitrogen) primary antibody (1:500), followed by incubation with goat

anti-rabbit IgG horseradish peroxidase conjugated secondary antibody (Thermo

Fisher Scientific Inc; 1:10,000 dilution) and scanned using a CURIX 60 XoGraph

machine (AGFA). For cell surface biotinylation assay 2, proteins were transferred

onto Odyssey membrane, probed (1:500 dilution) rabbit anti-occludin (H-279,

Santa Cruz Biotechnology) and 1:10,000 donkey anti-rabbit IRDye 800CW (LI-

COR). Western Blots were scanned and the lower band corresponding to occludin

was quantified using an Odyssey Infrared Imaging system and software (LI-COR).

For film analysis, films were scanned then quantified using NIS Elements.

Alterations in antibodies and western blot visualisation technique arose due to an

Invitrogen anti-occludin batch difference rendering the antibody incapable of

recognising endogenous canine occludin. Thus we validated a Santa-Cruz anti-

occludin antibody. This antibody gave high background signal in HRP/Film

systems affecting densitometry results; switching to the LI-COR system abrogated

background noise.

In both systems, the ROI selection tool a box was drawn around the largest

band and the average intensity was measured. This box was used to measure the

average band intensity of other bands. Background intensity was measured using

the same ROI box moved to a non-band region in the same lane as the band

measured. These values were logged to Excel, the average band value was then

subtracted from the average background value. For the cell surface biotinylation

assay 1 the band intensity value was normalised against the average value for the

total plasma membrane biotinylated occludin sample. While in cell surface

biotinylation assay 2 the band intensity values for both the total occludin and

internalised occludin pools were normalised against the internalised pool value

after the initial 30 minutes internalisation period. In the cell surface biotinylation

assay 3, the band intensity value was normalised against the time 0 band intensity

for either the control or CHX treated cells. The values were obtained from 3

separate experiments and a Student’s t-test was performed to determine statistical

significance.

Immunocytochemistry, imaging and co-localisation analysis

MDCK cells were plated onto glass coverslips in 6 well plates. Cells were

transfected with CD63-GFP DNA, NPY-mRFP (gifts from Dr Jyoti Jaiswal,

George Washington University, Washington D.C., USA) or Rab11-GFP (kindly

given by Dr J. Norman, The Beatson Institute of Cancer research, Glasgow, U.K.)
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using Lipofectamine 2000 (Invitrogen) (4 mg DNA and 20 ml Lipofectamine 2000;

incubated as manufacturer recommends). 24 hours post-transfection the

confluent monolayer was incubated in DMEM supplemented with 10% FBS, 1%

Pen/Strep containing (for experiments examining co-localisation with lysosomal

compartments cells were incubated in serum free DMEM containing either

250 nM BafA (Calbiochem) or as a control DMSO for 3 hours in humid

conditions at 37 C̊ with 5% CO2 prior to fixation). Cells expressing NPY-mRFP,

CD63-GFP or Rab11-GFP were washed in PBS (Lonza), fixed in 4% PFA

(Electron Microscopy Sciences) and permeabilised with 0.1% Triton-X100

(Sigma). Cells were blocked in PBS plus 10% Normal goat serum (Gibco) and

0.5% BSA (Sigma). Cells were then incubated with mouse anti-occludin

(Invitrogen), 1:100 dilution in block media, for 1 h. Following PBS washes, cells

were incubated with goat anti-mouse-AlexaFluor488 (in cells transfected with

NPY-mRFP) or donkey anti-mouse-AlexaFluor568 (Invitrogen) (in cells trans-

fected with Rab11-GFP or CD63-GFP), diluted 1:100 for 1 hour. Post-staining,

cells were washed in PBS and mounted onto glass slides using Vectashield with

DAPI (Vector Labs). BafA inhibition of lysosomal acidification: MDCK cells were

plated into 35 mm MatTek dishes, 24 hours post-plating media was removed and

replaced with 2 mls cell culture media plus 75 nM LysoTracker Red DND-99 and

either 250 nM BafA or DMSO. The cells were incubated for 2 hours in humid

conditions at 37 C̊ with 5% CO2. The media was removed and the cells washed in

37 C̊ pre-warmed imaging media (5% FBS in 10 mM HEPES–Hank’s balanced

salt solution (Sigma) pH 7.4). During imaging cells were maintained at 37 C̊.

Imaging

Cells were imaged using a Nikon A1R inverted confocal microscope using the

microscope objective (CFL Plan Apo 606 NA 1.49, Nikon). In all studies a Z-

stack with 500 nm increments was performed on each cell imaged, and the images

with most intracellular punctate occludin staining selected for analysis. GFP

constructs and AlexaFluor488 conjugated secondary antibodies were imaged

following excitation with the 488 nm line of an Argon-Ion laser 457–514 nM,

mRFP constructs, LysoTracker Red DND-99 and AlexaFluor568 conjugated

secondary antibodies were imaged after excitation with Green Diode 561 nm

laser. The camera utilised to acquire images was a 12-bit CCD (Ixon 1M EMCCD

camera controlled by NIS Elements AR version 3.1/3.2/4).

The system was controlled by Nikon Elements. Analysis of time lapse sequences

and still frames was completed using NIS-Elements AR version 3.1, 3.2 or 4

(Nikon). Data was logged into Excel (Microscoft).

Co-localisation analysis

Occludin co-localisation with CD63-GFP

The entire cytosol excluding cell-cell junction staining was selected. Subsequently

a Pearson’s coefficient comparing the CD63-GFP and occludin signals in the

region were obtained. A total of 19 cells were analysed from 3 independent

Analysis of Occludin Trafficking
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experiments. Pearson’s correlation values during control or BafA treatment were

compared using a Student’s t-test.

Occludin co-localisation with Rab11-GFP

Co-localisation analysis for Rab11-GFP was performed by drawing a square ROI

within the boundaries of the cell in the occludin image and measuring the

Pearson’s correlation co-efficient between intracellular occludin and Rab11-GFP

structures, to control for random alignment the occludin image was flipped

horizontally while the Rab11-GFP image remained in the same position and the

Pearson’s correlation coefficient repeated. 12 cells from 3 independent experi-

ments were analysed. Control and experiment Pearson’s correlation values were

analysed for statistical significance using a Student’s t-test.

Occludin co-localisation with NPY-mRFP

20 intracellular punctate structures per cell in the NPY-mRFP channel were

selected using the ROI function and superimposed over the occludin image. The

number of NPY-mRFP outlines which co-localise with occludin positive regions

were counted. For the control, these regions were moved from NPY-mRFP puncta

and again co-localisation with occludin was counted. 13 cells were measured from

3 independent experiments. The number of NPY-mRFP and occludin co-

localising vesicle for control and experiment were compared using a Student’s t-

test.

Parameter inference methodology

The inference of parameters of the dynamical model was carried out using a

Markov Chain Monte Carlo (MCMC) approach, by embedding the mathematical

model and experimental data in the inference framework. Specifically, we used

Delayed Rejection and Adaptive Metropolis (DRAM) method (described in

[17, 18]) and implemented as a MATLAB toolbox (http://helios.fmi.fi/,lainema/

mcmc/).

The experimental data under consideration comprise the above experiments

quantifying the processes of endocytosis, degradation, and recycling of occludin.

Given the experimental data and parameter values (in the vector h), we define

the likelihood function in eq. (1), assuming Gaussian noise. Here Y is the data and

Ŷ is the model output. A sub-routine, calculating the sum of squares term in eq.

(1) is fed into the DRAM method.

L h Yjð Þ~Pn
i~1

1
ffiffiffiffiffiffiffiffi

2ps
p e

{ 1
2s2(Yi{Ŷi)

2
ð1:1Þ

The range for parameters gmax and rmax was defined as [0, 10], for r as [0, 1] while

for a, and c as [0, 0.5]. Initial proposal covariance matrix was defined as I(5)*0.1,

where I(5) is a 565 identity matrix. With suitable initial values, we ran the

DRAM method for 30000 iterations, 2000 burn-ins, and initial s2 as 0.1 with

corresponding weight N0 (see [18] for definition) as 10. Adaptation was

Analysis of Occludin Trafficking

PLOS ONE | DOI:10.1371/journal.pone.0111176 November 25, 2014 7 / 23

http://helios.fmi.fi/&sim;lainema/mcmc/
http://helios.fmi.fi/&sim;lainema/mcmc/


performed every tenth iteration. All other parameters of DRAM have their default

values.

Results

In order to analyse the potential for endocytosis of occludin during the initial

stages of epithelial polarisation, we have made use of a powerful biochemical

endocytic trafficking assay [19, 20]. The application of biotin-conjugated NHS

esters to cells at 4 C̊ selectively biotinylates lysine residues on the extracellular

domains of membrane proteins. When cells are re-incubated at 37 C̊ these

membrane proteins can undergo endocytosis and will be transported into the cell.

If a biotinylation reagent is used that includes a disulfide bond between the biotin

and the NHS group, then biotin linked to proteins remaining in the plasma

membrane can be removed by addition of a reducing agent. If the reducing agent

is not membrane permeant, then the biotinylated proteins that have been

internalised through endocytosis will be ‘‘protected’’ from reduction, and will be

retained and available for precipitation with NeutrAvidin beads.

As depicted in Figure 1, in confluent monolayers of MDCK cells in culture

occludin undergoes continuous steady-state endocytosis. Depicted on a

representative blot (Figure 1A) and quantification of 3 experiments (Figure 1B)

the internalised intracellular occludin signal rises and subsequently falls. The

halftime for internalisation in this study is approximately 15 minutes and nearly

all of the occludin present at the plasma membrane undergoes endocytosis within

approximately 30 minutes. Extending the time of our analyses beyond this point

revealed that the amount of biotinylated occludin present inside the cell post-

internalisation subsequently decreased. This decrease in intracellular occludin

signal at later time-points indicates a reduction in the level of intracellular

occludin following internalisation. There are two hypotheses that could explain

the loss of occludin signal subsequent to endocytosis, either the occludin could be

recycled back to plasma membrane or undergo degradation.

To determine if the decrease in intracellular occludin signal observed following

endocytosis was due to degradation we treated cells with BafA, which inhibits

lysosomal acidification and function (Figure S1) [21]. As shown in Figure 1, BafA

significantly attenuated the decrease in occludin signal between 30 and

120 minutes approximately 3 fold. Therefore, the majority of occludin loss

following endocytosis appears to be due to lysosomal degradation.

As a means of further testing this hypothesis, we performed a series of

microscopy studies to determine the intracellular localisation of occludin. We

employed CD63-GFP (validated by co-localisation with LysoTracker in Figure S2)

as a marker of the late endocytic/lysosomal compartment and tested the extent to

which occludin was observed to be coincident with CD63 [22]. When

immunocytochemistry for occludin was performed in control cells, a very small

degree of co-localisation with CD63 was observed (Figure 2A,B). However, the

juxtanuclear CD63 positive compartment (in yellow in Figure 2A), was observed

Analysis of Occludin Trafficking
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Figure 1. Steady-state endocytosis and degradative trafficking of occludin. A confluent monolayer of
MDCK cells were serum starved in the presence of either DMSO or 250 nm BafA. Cell surface proteins were
biotinylated and trafficking allowed to recommence for designated time-points in the presence of DMSO or
BafA. Cell surface biotinylated proteins were reduced, thus only internalised proteins remain biotinylated.
Biotinylated proteins were pulled down with NeutrAvidin beads. Protein abundance was quantified by western
blot analysis. (A) Treatment with BafA (inhibitor of lysosomal degradation), attenuates the decrease in
occludin signal following endocytosis observed in DMSO treated control cells. (B) Quantification of 3 repeats
of the experiments shown in (A). (C) Quantification of the decrease in occludin signal between 30 and
120 minutes comparing control to BafA treatment. * p#0.05.

doi:10.1371/journal.pone.0111176.g001
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to greatly increase with occludin staining following incubation in BafA. Thus,

consistent with our above biochemical analyses, BafA treatment resulted in

increased co-localisation of occludin to late endosomal/lysosomal compartments (

Figure 2A,B). As a very small amount of occludin will be undergoing degradation

at any single point, and localisation with degradative compartments could render

the protein undetectable by immunostaining, it is not surprising that there is little

occludin signal co-localising with CD63 prior to BafA treatment. However, these

Figure 2. Co-localisation between internalised occludin and late endosome/lysosomal compartments
increases after BafA treatment. Incubation with BafA increases co-localisation between occludin and CD63-
GFP in comparison to control treated cells. A confluent monolayer of MDCK cells transiently expressing
CD63-GFP were incubated with DMSO or 250 nm BafA for 2 hours prior to fixation and immuno-localisation
with mouse anti-occludin (1:100). Cells were imaged by confocal microscopy. (A) Confocal image showing co-
localisation between occludin and CD63-GFP in the presence of DMSO or BafA. (B) Quantification of 3
repeats of the experiments shown in (A) with a minimum of 19 cells analysed of each condition. *** p#0.001.

doi:10.1371/journal.pone.0111176.g002
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results confirm our previous observations and demonstrate that occludin

undergoes continuous endocytosis and a high level of degradation.

After examining the role of the degradatory pathway in regulation of occludin

localisation at the plasma membrane, it was noted that in BafA treated cells there

is still a modest reduction in the amount of internalised intracellular occludin

from time 30 minutes to 120 minutes, despite inhibition of lysosomal compart-

ment acidification. This could indicate that a small percentage of internalised

occludin is being recycled back to the plasma membrane. We investigated this

hypothesis using a more complex biotin-based recycling assay which enabled us to

quantify the amount of internalised occludin remaining within the cell and the

amount returned to the plasma membrane (the intracellular occludin pool

subtracted from the total occludin pool) at various time-points after an initial

30 minute internalisation period. As demonstrated in Figure 3, there are higher

occludin levels in the total occludin pool samples than in the internalised samples

suggesting that post-internalisation occludin is being returned back to the plasma

membrane. This was quantified in figure 3B, where occludin levels have been

expressed as a percentage of the total amount of occludin internalised (lane

Time50 Intracellular occludin Figure 3A). Figure 3B demonstrates a steady

decrease in both the total occludin pool and the intracellular occludin pool

consistent with earlier findings that occludin undergoes a high level of

degradation. We also observed a general increase in the ratio of internalised

biotinylated occludin to total biotinylated occludin as time increases (Figure S3)

with approximately 20% of the internalised occludin being recycled at each time-

point.

This data has led us to conclude that occludin undergoes low level recycling.

We tested this hypothesis further using co-localisation analysis between a marker

of the recycling pathway (Rab11-GFP) [23] and endogenous occludin. Co-

localisation was identified between exogenous Rab11 and occludin at peripheral

punctate structures (Figure 4a), co-localisation analysis demonstrates this level of

co-localisation to be statistically significant (Figure 4b). Interestingly, when co-

localisation analysis was performed between Rab4-GFP and occludin, no

significant level of co-localisation was observed (data not shown). Therefore, this

data suggests internalised occludin undergoes recycling back to the plasma

membrane via Rab11 positive endosomal compartments alongside degradation.

Our above results suggest that endocytic recycling may only play a minor role

in the trafficking of occludin in this system and that a large proportion of

occludin is subject to lysosomal degradation, therefore the next question to

address was how the occludin at the plasma membrane lost to degradation is

being replaced. We tested the hypothesis that the occludin entering the plasma

membrane at steady-state to replenish that lost by endocytosis and degradation

originates from the biosynthetic pathway. Thus, our next step was to perform cell

surface biotinylation to determine the plasma membrane levels of occludin

following incubation in the protein synthesis inhibitor CHX [24]. Importantly

these were not assays of occludin trafficking directly, but a measure of the amount

of occludin present in the plasma membrane after incubation in CHX for different
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periods of time. This is because if endocytosis and degradation continue and

occludin is undergoing constant biosynthetic trafficking into the plasma

membrane, CHX treatment will result in an eventual loss of occludin from the

plasma membrane.

As demonstrated in Figure 5, following incubation in CHX the amount of

occludin observed available for biotinylation in the plasma membrane (

Figure 5A,C) and in whole cell lysates (Figure 5B) are both greatly reduced.

Figure 3. Endocytic occludin recycling. A confluent monolayer of serum starved MDCK cells were
biotinylated then warmed to induce occludin internalisation for 30 minutes followed by biotin removal from
plasma membrane proteins. Trafficking was allowed to recommence for various timescales and at each time-
point the total occludin pool (plasma membrane (PM)+intracellular occludin pool) and the intracellular occludin
pool were quantified by additional reduction/quenching steps. Biotinylated proteins were pulled down with
NeutrAvidin beads. Occludin abundance was quantified by Western blot analysis. (A) Western blot analysis
demonstrating both the total and intracellular occludin pool at various time-points (after a 30 minute
internalisation period). (B) Quantification of 3 repeats of the experiments shown in (A) measuring the total
occludin levels and the intracellular occludin levels expressed as a percentage of the intracellular pool post-
internalisation.

doi:10.1371/journal.pone.0111176.g003
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Quantification demonstrated that CHX treatment for 4 hours reduced the cell

surface levels of occludin by approximately 50%, while control cells showed no

alteration in the amount of plasma membrane occludin. Therefore, these

observations suggest that at serum-starved steady state new occludin trafficked

through the biosynthetic system replenishes that lost by endocytosis and

degradation.

In order to further test this hypothesis we evaluated whether occludin co-

localises with a marker for the biosynthetic secretory pathway, Neuropeptide Y

(NPY) [25]. As depicted in Figure 6 significant co-localisation between occludin

and NPY was observed. When controlled for random co-localisation approxi-

mately 50% of NPY labelled secretory vesicles were positive for occludin. Thus,

this confirms the biosynthetic trafficking of occludin at serum-starved steady

state, and taken together these observations demonstrate that occludin undergoes

a continuous cycle of biosynthetic exocytic and degradative endocytic trafficking,

with a small amount of recycling.

Figure 4. Co-localisation between internalised occludin and recycling endosome markers. A confluent
monolayer of MDCK cells transiently expressing Rab11-GFP were fixed and immuno-localisation with mouse
anti-occludin (1:100) was performed. Cells were imaged by confocal microscopy. (A) Confocal image showing
co-localisation between occludin and Rab11-GFP. (B) Quantification of 3 repeats of the experiments shown in
(A) with a minimum of 12 cells analysed of each condition. *** p#0.001.

doi:10.1371/journal.pone.0111176.g004

Analysis of Occludin Trafficking

PLOS ONE | DOI:10.1371/journal.pone.0111176 November 25, 2014 13 / 23



The mathematical model consists of two equations, one for the membrane-

bound occludin (M) and one for internal occludin (I) (Figure 7). The model

includes the processes of endocytosis, recycling and degradation of occludin. The

model also includes a slowing of the endocytosis and recycling pathways due to

the cooling of the cells as part of the experiment, and the recovery of these

processes once the cells have been returned to 37 C̊.

The model shows an excellent fit to the majority of the data (Figure 7), with

only one data point lying outside the region of certainty of the model fits. Thus

Figure 5. Inhibition of protein synthesis reduces the amount of plasma membrane localised occludin.
Serum starved MDCK cells were incubated with serum free DMEM plus DMSO (control) or 10 mM CHX for
varying time-points. Cell surface proteins were then biotinylated and pulled down with NeutrAvidin beads.
Plasma membrane abundance of occludin was quantified by Western blot analysis. (A) Incubation with CHX
reduces both whole cell lysate and plasma membrane occludin levels. (B) Quantification of 3 independent
experiments measuring whole cell lysate levels of occludin 4 hours post-CHX treatment normalised to Time 0.
(C) Quantification of 3 independent experiments measuring plasma membrane levels of occludin 4 hours
post-CHX treatment normalised to Time 0. p#0.05 and ** p#0.01.

doi:10.1371/journal.pone.0111176.g005

Analysis of Occludin Trafficking

PLOS ONE | DOI:10.1371/journal.pone.0111176 November 25, 2014 14 / 23



the model description and parameters are consistent with the experimental data.

According to the model fit, the rates of endocytosis and recycling are appreciably

impacted by the cooling of the cells, so that at the start of the experiment, the rates

of these processes are only 2% of their maximal values. The rates recover to their

maximal value with half-life of 32 minutes (as can be calculated from the

parameter values given in Figure 7). The maximal rates of endocytosis and

recycling both have half-times of under 1 minute – so these are very rapid –

although immediately following cooling these are predicted to be slower at

7.5 minutes and 11.4 minutes respectively. The rate of degradation of occludin

(assumed to be constant) is predicted to be considerably slower, with a half-time

of 53 minutes.

Figure 6. Co-localisation between internalised occludin and markers of the biosynthetic secretory
pathway. A confluent monolayer of MDCK cells transiently expressing NPY-mRFP were fixed and immuno-
localisation with mouse anti-occludin (1:100) was performed. Cells were imaged by confocal microscopy. (A)
Confocal image showing co-localisation between occludin and NPY-mRFP. (B) Quantification of 3 repeats of
the experiments shown in (A) with a minimum of 13 cells analysed of each condition. *** p#0.001.

doi:10.1371/journal.pone.0111176.g006
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This model has been compared with a simpler model that does not consider the

impact of cooling on the endocytosis and recycling pathways. Such a model is

unable to fit the data (Figure 8) because it cannot reconcile the different time

scales observed in the experimental data.

Discussion

TJs are essential to epithelial polarity and together have been implicated in both

genetic and infectious diseases [1–3, 7]. In particular occludin is emerging as a

regulator of numerous physiological and pathological processes both within the

TJ complex and through other mechanisms [4–7]. Thus, both the steady state and

regulated trafficking of occludin and other TJ proteins have been the subject of a

great deal of recent interest [9, 11–13, 26–29]. However, a detailed understanding

of the trafficking pathways that regulate occludin localisation has yet to emerge.

Thus, we performed a series of biochemical and microscopy studies to determine

Figure 7. Model (red lines) comparison with experimental data (blue lines). The grey spreads illustrate the model output obtained using 50 random
values of parameters from the posterior distribution. The model consists of two variables: M(t) (membrane occludin) and I(t) (internal occludin). Occludin is
assumed to undergo endocytosis, recycling and degradation at rates g(t), r(t) and c respectively. The resulting equations are dM/dt52g(t)M+r(t)I, dI/
dt5g(t)M2(r(t)+c)I. g and r are taken to be time-dependent following our finding that a linear version of the model cannot fit the data (Figure 8). We conclude
that the experimental procedure that cells be cooled negatively impacts on these processes, which eventually return to maximal rates during the recovery
period when cells are warmed. To represent this we use logistic functions: g(t)5gmaxg0e

rt/(gmax+g0(e
rt21)), and likewise for r(t). g0 and r0 represent the rates

of endocytosis and recycling immediately following cooling and are assumed to be a fraction of the maximal rates, i.e. g05agmax and r05armax where
0,a,1 and r is the rate of recovery of these processes. (A) and (B) correspond with the data in Figure 1B (steady-state endocytosis and degradative
trafficking of occludin) and (C) and (D) to those ofFigure 3B (endocytic occludin recycling). In (A) and (B) all occludin is initially on the membrane (M(0)5100,
I(0)50) and in (B) degradation is inhibited via addition of BafA, hence c50. In (C) and (D) all occludin is initially internal (M(0)50, I(0)5100). Note that, to
correspond with our experimental data, in (C) total occludin is plotted (i.e. membrane and internal occludin), while in (D) only internal occludin is shown.
Parameters are estimated to be gmax54.64(¡2.1) min21, rmax53.05(¡1.56) min21, r50.12(¡0.15) min21, a50.02(¡0.05) and c50.013(¡0.002) min21,
where the standard deviations are calculated from the marginal posterior distributions for each parameter.

doi:10.1371/journal.pone.0111176.g007
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the mechanisms that regulate the presence of occludin in the plasma membrane of

MDCK cells, a very well characterised epithelial model [30–32].

First we analysed endocytosis of occludin using a biotinylation based

biochemical assay [19, 20]. The results of these studies identified a continuous and

rapid endocytosis of occludin at serum-starved steady state. Subsequently the

internalised occludin was lost from detection. We then demonstrated through

pharmacological inhibition studies that the decrease in occludin signal following

endocytosis was due to lysosomal degradation. This hypothesis was confirmed

through both biochemical studies, as well as co-localisation analyses with a marker

of the late endocytic system, CD63 [22]. This is consistent with evidence from

previous studies where occludin has been suggested to undergo post-translational

modifications such as ubiquitination and phosphorylation, increasing interactions

with degradatory pathway trafficking proteins such as the E3 ubiquitin ligase itch,

epsin and epidermal growth factor receptor pathway substrate clone 15 (Eps15)

[33].

Although our data indicate that a high level of internalised occludin is

degraded, we also investigated the potential for occludin recycling after

internalisation. A complex biotin-based recycling assay was employed to examine

the role of recycling in regulation of occludin at the plasma membrane. Again we

Figure 8. Linear model (red lines) comparison with the experimental data (blue lines). The grey spreads illustrate the model output obtained using 50
random values of parameters from the posterior distribution. (A) and (B) use data taken from the steady-state endocytosis and degradative trafficking of
occludin experiment (M(0)5100, I(0)50), see Figure 1B, both representing internal occludin with no degradation occurring in (B) (c50). Data in (C) and (D)
are both obtained from the endocytic occludin recycling experiment (M(0)50, I(0)5100), see Figure 3B, the first being the total occludin (M(t)+I(t)), and the
second internal occludin. The model equations are given by dM/dt52gM+rI, dI/dt5gM2(r+c)I, i.e. the only change from the model in the main text is that
the rates of endocytosis and recycling are constant. For all high likelihood parameter values, the initial rise of internalized occludin in the trafficking
experiments is considerably faster than experimentally observed. This suggests the necessity of a slower time scale, which is included in the main model as
the rate of recovery from cooling.

doi:10.1371/journal.pone.0111176.g008
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observed a high level of internalised occludin undergoing degradation. We also

identified that approximately 20% of internalised occludin was recycled back to

the plasma membrane. This was further confirmed in co-localisation studies

where we saw a statistically significant co-localisation between the recycling

endosome marker Rab11-GFP [23] and endogenous internalised occludin.

Some previous analyses of the continuous constitutive trafficking of TJ proteins

have identified a role for endocytic recycling in maintaining plasma membrane

levels following endocytosis. However, although both the ESCRT complex and in

particular PIKfyve have been implicated in the recycling of claudin, occludin

localisation was unaffected by inhibiting these proteins [26, 27]. Interestingly, one

study suggested that Rab13 dependant occludin recycling could occur in MTD-1A

cells, albeit with a small percentage of total cell surface occludin [28]. Thus, our

results are consistent with previous findings suggesting occludin undergoes

recycling back to the plasma membrane, however only a small proportion of that

which is internalised makes it back to the plasma membrane.

Together, these data demonstrate occludin has a short cell surface half-life and

undergoes a continuous process of endocytosis coupled to degradation and low-

level recycling during the initial stages of cell polarisation. However, if the

majority of internalised occludin is subject to degradation, then it must be

replenished through some mechanism.

Our next step was to determine if biosynthetic trafficking might be responsible

for compensating for the loss of plasma membrane occludin due to endocytosis

and degradation. We then demonstrated that if we inhibited protein synthesis

with CHX and endocytosis and degradation continued, the amount of occludin

present in the plasma membrane decreased. Further in support of our conclusion

that biosynthetic trafficking accounts for the exocytic replenishment of occludin

following endocytosis, we observed significant co-localisation of occludin with the

marker of the secretory pathway NPY. Therefore, taken together, our results

demonstrate that at serum-starved steady state occludin undergoes a continuous

cycle of endocytosis, low-level recycling and degradation which is matched by

biosynthetic exocytic trafficking (Figure 9).

The mathematical model has made quantitative predictions for the rates of

endocytosis and recycling. These predictions suggest that these rates are very

rapid, and that some of the slower time scales observed in the experimental data

may be due to a slowing of these pathways due to the cooling regime used to

generate the experimental data. This is consistent with previous studies as it is well

know that incubation of cells at 4 C̊ inhibits endocytosis [34], and a recovery

period to allow trafficking to recommence following re-warming is not at all

surprising.

However, it is also important to take into account the level of uncertainty

associated with the parameter estimations. The approach we have taken to model

fitting is a Bayesian approach that produces what is known as ‘‘posterior

distributions’’ for each parameter (Figure 10). These represent our level of

knowledge about the parameter values given the experimental data and the model.

The posterior distributions for the occludin degradation rate, the rate of recovery
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from cold, and the impact of the cold show clearly defined peaks with a tight

distribution about optimal values. On the other hand, the distributions for the

maximal rates of endocytosis and recycling are considerably broader, indicating

less certainty in our knowledge of these rates. Put another way, these distributions

Figure 9. Diagram demonstrating occludin trafficking under steady-state conditions. During the initial
stages of MDCK cell polarisation occludin undergoes endocytosis followed by lysosomal degradation and
low-level recycling. This is coupled to occludin biosynthesis in order to maintain plasma membrane occludin
homeostasis.

doi:10.1371/journal.pone.0111176.g009

Figure 10. Posterior distributions of the estimated parameters. c, a and r display particularly tight distributions around their means, the implication being
that their estimates are relatively reliable. gmax and rmax (the maximal rates of endocytosis and recycling), on the other hand, display a much broader
distribution, meaning that our knowledge of these parameters given the experimental data is less certain.

doi:10.1371/journal.pone.0111176.g010
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indicate that there are other combinations of parameter values for the maximal

rates that fit the data almost as well. Better estimates for these rates would require

higher resolution time courses for longer periods of time.

There are two data points that the model does not fit especially well. The first of

these is the very high level of internalized occludin observed after 30 minutes in

the DMSO internalization experiment. This may be due to temperature effects on

lysosomal degradative trafficking similar to that observed in endocytosis studies.

Previous studies have demonstrated a temperature reduction to 20 C̊ led to

decreased lysosomal degradation and accumulation of internalised dextran in late

endosomal compartments [35]. These decreased degradation kinetics will be

slower in comparison to the prediction of the model. However, degradative

trafficking post-endocytosis is complex, involving multiple pathways. Thus

incorporation of a recovery period into the degradative trafficking model would

not be as straightforward as an endocytosis delay. The second is the lower level of

internalized occludin observed after 120 minutes following the addition of BafA.

This could be modelled with a partial, rather than total, inhibition of degradation

in the presence of BafA. In each case, however, in order to fit these data, the model

would require modifications to include extra parameters. It would not be possible

to estimate these parameters in a statistically valid way, as each such parameter

would depend on only a single data point.

Our detailed mechanistic analysis of occludin trafficking at serum-starved

steady state is relevant for many reasons. TJ are critical in the connections between

cells and the maintenance of apical basolateral polarity [1, 2]. Although regulated

trafficking of TJ proteins has been the subject of several recent investigations,

constitutive trafficking has not been as well studied [9, 11–13, 36]. Thus, these

results are important for two key reasons: serum-starved steady state trafficking is

the baseline upon which physiologically relevant alterations and perturbations

must be built. Furthermore, occludin has already been shown to function beyond

a role in TJ formation [4–7]. Therefore, the analysis and modelling of the serum-

state steady state trafficking of occludin represents a key step in understanding the

roles of this interesting and important protein in numerous physiological and

pathological contexts.

Supporting Information

Figure S1. BafA treatment inhibits lysosomal acidification and retention of

LysoTracker in lysosomal compartments. A confluent monolayer of MDCK cells

were incubated in culture media plus 75 nM LysoTracker Red DND-99 and either

250 nM BafA or DMSO for 2 hours. Live cells were imaged by confocal

microscopy. A) Confocal image showing LysoTracker staining in MDCK cells

treated with either DMSO or BafA. (B) Quantification of 3 repeats of the

experiments shown in (A) with average intensities quantified from a minimum of

20 cells analysed per experiment.

doi:10.1371/journal.pone.0111176.s001 (TIF)
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Figure S2. LysoTracker Red DND-99 co-localises with CD63-GFP. A confluent

monolayer of MDCK cells transiently expressing CD63-GFP were incubated with

75 nM LysoTracker Red DND-99 for 2 hours. Live cells were imaged using

confocal microscopy. A high level of co-localisation was observed between CD63-

GFP and LysoTracker positive structures (n51).

doi:10.1371/journal.pone.0111176.s002 (TIF)

Figure S3. Increased ratio between internal levels of biotinylated occludin and

total levels of biotinylated occludin was observed over time. A confluent

monolayer of serum starved MDCK cells were biotinylated then warmed to induce

occludin internalisation for 30 minutes followed by biotin removal from plasma

membrane proteins. Trafficking was allowed to recommence for various

timescales and at each time-point the total occludin pool (plasma membrane

(PM)+intracellular occludin pool) and the intracellular occludin pool were

quantified by additional reduction/quenching steps. Biotinylated proteins were

pulled down with NeutrAvidin beads. Occludin abundance was quantified by

Western blot analysis. Ratio demonstrated the intracellular biotinylated

intracellular occludin divided by the total biotinylated occludin levels.

Quantification of 3 repeats of experiments.

doi:10.1371/journal.pone.0111176.s003 (TIF)
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