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Impaired neutrophil directional
chemotactic accuracy in chronic
periodontitis patients
Roberts HM, Ling MR, Insall R, Kalna G, Spengler J, Grant MM, Chapple ILC.
Impaired neutrophil directional chemotactic accuracy in chronic periodontitis
patients. Journal of Clinical Periodontology 2015; 42: 1–11. doi: 10.1111/jcpe.12326.

Abstract
Aim: To investigate the chemotactic accuracy of peripheral blood neutrophils
from patients with chronic periodontitis compared with matched healthy controls,
before and after non-surgical periodontal therapy.
Material & Methods: Neutrophils were isolated from patients and controls
(n = 18) by density centrifugation. Using the Insall chamber and video micros-
copy, neutrophils were analysed for directional chemotaxis towards N-formyl-me-
thionyl-leucyl-phenylalanine [fMLP (10 nM), or CXCL8 (200 ng/ml)]. Circular
statistics were utilized for the analysis of cell movement.
Results: Prior to treatment, neutrophils from patients with chronic periodontitis
had significantly reduced speed, velocity and chemotactic accuracy compared to
healthy controls for both chemoattractants. Following periodontal treatment,
patient neutrophils continued to display reduced speed in response to both
chemoattractants. However, velocity and accuracy were normalized for the weak
chemoattractant CXCL8 while they remained significantly reduced for fMLP.
Conclusions: Chronic periodontitis is associated with reduced neutrophil chemo-
taxis, and this is only partially restored by successful treatment. Dysfunctional
neutrophil chemotaxis may predispose patients with periodontitis to their disease
by increasing tissue transit times, thus exacerbating neutrophil-mediated collateral
host tissue damage.
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Chronic periodontitis is a disease
that is initiated by the emergence of
a pathogenic biofilm and character-
ized by non-resolving inflammation

which leads to host-mediated tissue
damage and bone loss around the
teeth (Grossi et al. 1994). Chronic
periodontitis can itself be a risk fac-
tor for other inflammatory diseases
including type 2 diabetes (Chapple
et al. 2013), rheumatoid arthritis
(RA) (de Pablo et al. 2009) and
cardiovascular diseases (Dietrich
et al. 2013). The disease is character-
ized by a strong neutrophil tissue
infiltrate (Van Dyke 2009) and
tissue damage progresses as a
result of abnormal host inflamma-
tory-immune processes, eventually
resulting in bone resorption and a

receding gingival epithelial attach-
ment (Graves & Cochran 2003).

The oral tissues are constantly
exposed to foreign and potentially
harmful microorganisms, and in
order to combat potential infections
in this vulnerable area, immune sur-
veillance involves leucocyte infiltra-
tion into the tissues from the blood
stream in response to endogenous
and exogenous chemoattractants
(Gamonal et al. 2001). Immune cells,
including neutrophils, are recruited
to the site of infection by chemokin-
es such as CXCL8 (Interleukin-8)
and CCL3 (macrophage inhibitory
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protein-1alpha-MIP1a) and other in-
flammatory stimuli including the
bacteria-derived N-formyl-methionyl-
leucyl-phenylalanine (fMLP). The
ability of neutrophils to efficiently
reach the site of inflammation is cru-
cial in order to eliminate potentially
pathogenic agents, whilst minimizing
collateral host tissue damage. Patho-
gen-associated molecular patterns
(PAMPs), damage-associated molec-
ular patterns (DAMPs) and other
molecules with chemoattractive prop-
erties, which include complement pro-
teins such as C5a, and eicosanoids
(leukotriene B4) and platelet activat-
ing factor (PAF), have different
potencies, forming a chemical hierar-
chy that serves to recruit neutrophils
to the source of inflammation. Those
that elicit the strongest migration are
molecules that emerge from the
inflammation/infection source,
including bacterial products such as
fMLP.

Chemotaxis, the directional
movement of cells in response to
chemical gradients, is a highly
conserved process occurring in a
diverse number of organisms; in
particular, there are strong similari-
ties between cell movement in the
unicellular Dictyostelium discoideum
and neutrophils, both of which are
able to navigate along shallow
chemoattractant gradients (Van
Haastert & Devreotes 2004). In the
case of neutrophils, chemotaxis
allows the cell to reach the infected/
colonized area, in order to effect
phagocytosis and subsequent
destruction of the microorganisms
by reactive oxygen species (ROS)
and proteolytic enzymes, within the
safe confines of the phagolysosome
(Cooper et al. 2013). A number of
interacting processes must occur for
effective, coordinated cell move-
ment, including recognition of the
chemoattractant, internal signalling
to reach the cells motility centre
and gradient detection to influence
movement in a persistent direction
(Kolaczkowska & Kubes 2013).
Chemoattractant binding induces
polymerization of F-actin, the for-
mation of new pseudopods at the
leading edge and retraction at the
posterior edge of the cell (Andrew
& Insall 2007). In the absence of
chemoattractants, these protrusions
occur randomly at all edges of the
cell. However, when a chemoattrac-

tant is detected, the protrusions are
directed towards the source of the
chemoattractant, determining the
direction of migration (Andrew &
Insall 2007).

To recognize the chemoattractant
signal, neutrophils employ a number
of receptors that are members of the
transmembrane G-protein-coupled
receptor (GPCR) family, activation
of which triggers various signalling
cascades that enable movement in a
direction-specific manner. Both exog-
enous agents, such as bacteria-
derived products, and endogenous
factors, such as chemokines, activate
respective GPCRs resulting in inter-
nalization, chemokine degradation
and receptor recycling back to the
cell membrane (Samanta et al. 1990).
Downstream signalling (Fig. 1)
results in the activation of the cyto-
skeleton in order for the cell to

move. Receptor–ligand binding of
chemoattractants results in the acti-
vation of phosphatidylinositol 30-
kinases (PI3Ks), protein kinases C
(PKCs), tyrosine kinases, mitogen-
activated protein kinases (MAPKs)
and GTP binding proteins (Worthen
et al. 1994). GPCR stimulation also
induces intracellular calcium release
via the inositol triphosphate and
ryanodine receptors, which has been
shown to be important for cellular
chemotaxis (Berridge et al. 2003).
Another receptor, activating intracel-
lular calcium stores in neutrophils,
stimulated by fMLP is the CD38
membrane glycoprotein (Partida-
Sanchez et al. 2001). Intracellular
calcium is released via the ryanodine
receptor as a result of CD38 binding
(Kurihara et al. 1993), and PI3K
catalyses the formation of phosphati-
dylinositol 3,4,5-triphosphate (PIP3)

Fig. 1. Neutrophil recruitment to inflamed periodontal tissues. (a) The plaque biofilm
is formed of diverse species of bacteria. (b) During infection, bacteria and their prod-
ucts penetrate the tissues surrounding the tooth and bacterial degradation products,
such as fMLP, are released. fMLP is a potent chemoattractant. (c) After exposure to
bacteria, resident macrophages and epithelial cells secrete CXCL8, another potent
chemoattractant. (d) CXCL8 and fMLP attract circulating neutrophils, which leave
the blood supply and enter the tissues to combat bacterial invasion. (e) Schematic rep-
resentation of signalling events downstream of chemoattractant–receptor ligation.
Upon binding to GPCR G-proteins dissociate and activate various proteins eventually
resulting in movement of the cell via actin polymerization. Abbreviations: fMLP, for-
myl-methionyl-leucyl-phenylalanine; CXCL8, interleukin-8; PIP3, phosphatidylinositol
3,4,5-triphosphate; PIP2, phosphatidylinositol 4,5-biphosphate; PI3K, Phosphatidyl-
inositol 3-kinase; PAK, p21-activated kinase; Prex, phosphatidylinositol-3,4,5-trisphos-
phate-dependent Rac exchange factor; RyR, ryanodine receptor located on
intracellular calcium stores (e.g. endoplasmic reticulum); PLC, phospholipase C; PKC,
protein kinase C; PTEN, phosphatase and tensin homologue.
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from phosphatidylinositol 4,5-bi-
phosphate (PIP2). PIP3 acts as a sec-
ond messenger controlling cell
adhesion and cytoskeletal reorgani-
zation (Toker & Cantley 1997). In a
cell, responding to a chemoattractant
PIP3 is found at the leading edge of
the cell (Bagorda & Parent 2008).
Downstream of receptor signalling
the MAPK signalling pathway is
also activated (Tsai et al. 2013). At
the lagging end of the cell, retraction
of the cell membrane is mediated by
the phosphatase and tensin homo-
logue (PTEN).

In addition to being a powerful
microbicidal weapon employed by
neutrophils, reactive oxygen species
(ROS) produced by NADPH oxid-
ases are also generated by chemo-
attractant stimulation and have
been shown to play a role in signal
transduction of cell movement
(Dickinson & Chang 2011). Sakai
et al. 2012 demonstrated that ROS
produced by NADPH oxidase
activity could regulate pseudopod
formation and chemotactic migra-
tion in neutrophils via actin glu-
tathionylation and polymerization.
They also showed that inhibition of
NADPH oxidase-dependent ROS
formation within healthy neutroph-
ils led to diminished chemotaxis
efficiency when exposed to a
chemoattractive gradient. Hydrogen
peroxide, a membrane-permeable
ROS, was able to direct cell move-
ment in a gradient-driven manner
(Niethammer et al. 2009), a finding
supported by another study in
which ROS were found to deacti-
vate PTEN resulting in the build-
up of PIP3 at the leading edge of
the migrating cell, necessary for
chemotaxis (Kuiper et al. 2011).

Defective neutrophil chemotaxis
features in several diseases including
actin dysfunction syndrome, Chedi-
ak–Higashi syndrome, Crohn’s dis-
ease and localized aggressive
periodontitis (LAP) (Lakshman &
Finn 2001). Although some studies
have been published on neutrophil
migratory behaviour in periodontitis
(Clark et al. 1977, Van Dyke et al.
1980, Daniel et al. 1993), very few
have been dedicated to the study of
chronic periodontitis. In LAP, previ-
ously known as localized juvenile
periodontitis (LJP) (Kantarci et al.
2003), a significant number (65–
75%) of LAP sufferers have been

shown to exhibit defective neutrophil
chemotaxis (Lavine et al. 1979, Van
Dyke et al. 1980, 1987, Page et al.
1985). Chemotaxis studies using
Boyden chambers have reported
impairment of neutrophil movement
in chronic periodontitis relative to
control subjects (Kumar & Prakash
2012). However, there is no informa-
tion on visualization of chemotaxis
in patients with chronic periodonti-
tis; this measures the cell migration
path in more detail, recording the
direction, speed, velocity and mor-
phology of the cells undergoing che-
motaxis (Sackmann et al. 2014).

We have previously shown that
peripheral blood neutrophils isolated
from patients with chronic periodon-
titis display both a hyperactive phe-
notype (i.e. excess ROS production
when unstimulated) and a hyperreac-
tive phenotype (i.e. excess ROS pro-
duction upon stimulation) relative to
age- and gender-matched controls
(Matthews et al. 2007a,b). Here, in
order to expand on these findings
and to evaluate neutrophil chemo-
taxis, we characterize the chemotac-
tic response of peripheral neutrophils
from patients with chronic periodon-
titis, compared with age- and gen-
der-matched controls, prior to and
following non-surgical periodontal
therapy using advanced time-lapse
microscopy techniques developed to
study neutrophil movement in shal-
low chemoattractant gradients.

Materials and Methods

Study populations

Thirty-six volunteers were enrolled
into this intervention study, including
18 with chronic mild–moderate peri-
odontitis (eight females; 10 males;
age mean � standard deviation
46 � 7 years) and 18 gender- and
age-matched periodontally healthy
controls (46 � 8 years). All volun-
teers were never smokers and other-
wise in good general health, as
confirmed by a detailed medical his-
tory questionnaire. Chronic peri-
odontitis was defined as the presence
of at least two non-adjacent sites per
quadrant with probing pocket depths
>4 mm, which bled on probing and
which demonstrated radiographic
bone loss ≥30% of the root length
(non-first molar or incisor sites)
(Matthews et al. 2007a). Control

patients had no evidence of attach-
ment loss, no probing pocket depths
>4 mm and whole-mouth bleeding
scores <10%. Inclusion criteria were
the complete absence of vitamin sup-
plements, no use of anti-inflamma-
tory or antibiotic medication in the
previous 3 months, no pregnancy,
mouthwash use or special dietary
needs (Brock et al. 2004). All volun-
teers provided written informed con-
sent, and ethical approval for the
study was obtained from the West
Midlands Research Ethics Commit-
tee (number 10/H1208/48). After
enrolment, all volunteers were re-
appointed for collection of baseline
blood samples and clinical measures.
Patients received oral hygiene
instruction and conventional non-
surgical therapy, in the form of scal-
ing and root surface debridement
(RSD), performed under local anaes-
thesia on a quadrant-by-quadrant
basis within a maximum of 4 weeks.
Patients were recalled 3-months post-
therapy to provide a repeat blood
sample and clinical measures. A 3-
month recall was chosen to allow for
initial healing and to reduce the risk
of re-infection/disease re-activation
(Chapple et al. 2007a,b). Neutrophil
isolation and chemotaxis data were
obtained for volunteers following
treatment along with their matched
healthy controls. Clinical data for the
patients with periodontitis pre- and
post-treatment and for the healthy
volunteers is shown in Table 1.

Collection of blood and preparation of

neutrophils

Venous blood was collected from the
ante-cubital fossa into Vacutain-
erTM lithium heparin (17 IU/ml)
tubes, and neutrophils were isolated
using Percoll density gradients (GE
Healthcare) as previously described
(Matthews et al. 2007a). Briefly, two
discontinuous gradients, 1.079 and
1.098, were used for neutrophil isola-
tion with concomitant erythrocyte
lysis (0.83% NH4Cl containing 1%
KHCO3, 0.04% EDTA and 0.25%
BSA). Isolated cells were re-sus-
pended in PBS supplemented with
glucose (1 mM) and cations (1 mM
MgCl2, 1.5 mM CaCl2) at 1 9 106

cells/ml. Cell viability, typically
>98%, was determined by dye
exclusion (trypan blue). Cell purity
was determined by cytospin and

© 2014 The Authors Journal of Clinical Periodontology Published by John Wiley & Sons Ltd

Neutrophil chemotaxis in chronic periodontitis 3



fluorescence-activated cell sorting
(FACS) using CD15 and CD66 neu-
trophil surface markers.

Chemotaxis protocol

The Insall chamber was used to visu-
alize chemotaxis (Muinonen-Martin
et al. 2010). For each sample, iso-
lated neutrophils (400 ll in RPMI,
final density 1 9 106/ml) were added
to acid washed (0.2 M HCl), dried
and blocked (7.5%, BSA 400 ll,
Sigma) coverslips (22 mm, VWR
International), which were then incu-
bated at room temperature (approxi-
mately 23°C) for 30 min. to allow
the cells to adhere. The coverslip
was then inverted and placed at the
top of the chemotaxis chamber
ensuring that the chemoattractant
loading bays were exposed (Fig. 2).
The desired chemoattractant (80 µl,
fMLP (10 nM) or CXCL8 (used at
200 ng/ml after assessing a range of

concentrations) or control (RPMI
media) was injected into the chemo-
attractant channels. Cell movement
was analysed using a Zeiss Primovert
microscope (Carl Zeiss Imaging,
Thornwood, NY, USA) and Images
captured every 30 s for up to 40
frames per condition using a Q
Imaging Retiga 2000R camera
(Qimaging, Surry, Canada).

Image analysis

The images generated by video
microscopy were processed using Q
pro-imaging software (Surrey, Can-
ada) and analysed further using Ima-
geJ 1.45SR software (National
Institutes of Health, Bethesda,
USA). The manual tracking plug-in
(MtrackJ) was employed, and for
each set of images, 15 cells were cho-
sen at random and tracked through
the frames. The numerical data gen-
erated was used to calculate cell

speed, cell velocity and chemotactic
index (CI) per experiment. The
numerical data generated were then
used to calculate cell migration,
which was defined as follows:

1 Cell speed: the average speed of a
cell in any direction over the time
course.

2 Cell velocity: the average speed of
a cell in its most prominent direc-
tion over the time course.

3 Chemotactic Index: this is a mea-
sure of the directional accuracy of
chemotaxis. It is calculated as a
change in the angle of a cell along
the Y axis according to the cosine
plot (Andrew & Insall 2007).

Statistical analysis

XY coordinates of the cells were gen-
erated using the Manual tracking Plu-
gin and ImageJ software (Rasband,
W.S., ImageJ, U. S. National Insti-
tutes of Health, Bethesda, MD, USA)
and these were further analysed with
the circular statistics (CircStat) tool-
box from MATLAB (Mathworks,
Natick, MA, USA) software to ascer-
tain the significance of the cells’
movement over the time course. The
CircStat toolbox provides statistics
for directional data, including the
mean direction, known as the resul-
tant vector, the length of which indi-
cates the strength of the direction
taken by the cells. Results are repre-
sented as circular diagrams. Two rep-
resentations are shown (Figs 3 and
4): (1) resultant vector plots showing
the distribution of the final angle of
all cells in the experiment with a vec-
tor line showing the mean angle and
vector length, illustrating the strength
of the movement; and (2) rose plots
showing the proportion of cells in each

Table 1. Age, probing pocket depths, number of sites >4 mm, percentage sites with bleeding on probing, and gingival and plaque indices of
patient and healthy control volunteers

Patients with chronic periodontitis Healthy controls (n = 18)

Pre-treatment (n = 18) Post-treatment (n = 16)

Probing pocket depths (mean � SD) 3.0 � 0.9 (p < 0.001)* 2.2 � 0.6 (p < 0.001)# 1.6 � 0.4
Probing pocket depths >4 mm (median; range) 26.5 (5–91) (p < 0.001)* 7.5 (0–52) (p < 0.01)# 0 (0–4)
% bleeding on probing (median; range) 41.5 (16–87) (p < 0.001)* 14 (3–35) (p < 0.001)# 1.5 (0–39)
Gingival index (median; range) 2 (1–3) (p < 0.001)* 1 (0–1) (p < 0.01)# 1 (0–1)
Plaque index (median; range) 2 (1–3) (p < 0.01)* 1 (0–2) (p < 0.01)# 1 (0–2)

*p values in parenthesis are comparisons with controls.
#p values in parenthesis are comparisons with chronic periodontitis before treatment.

Fig. 2. Photograph of the Insall chamber. Large square illustrates position of the cov-
erslip with adhered neutrophils. Arrows show the application of the chemoattractant.
Small red rectangle shows the area visualized by video microscopy.

© 2014 The Authors Journal of Clinical Periodontology Published by John Wiley & Sons Ltd
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of 18 segments around the circle, the
larger the bar the greater proportion
of cells that moved in that direction.
Data were further summarized in box
and whisker plots, and statistical
analysis of these was performed by
Wilcoxon test using Prism 5.0 software
(GraphPad, San Diego, California
USA). Volunteer age was compared
by paired t-test and probing pocket
depths by repeated measures ANOVA

followed by Tukey–Kramer multiple
comparisons test. The number of
probing pocket depths >4 mm, per-
centage bleeding on probing, and gin-
gival and plaque indices were
compared using Friedman test fol-
lowed by Dunn’s multiple compari-
sons test.

Results

Clinical findings for patients and
their matched controls, pre- and
post-treatment, are shown in
Table 1. Figures 3 and 4 depict sum-
maries of all the data collected pre-
or post treatment, respectively. Each
dataset comprises three graphs: the
top image is a “spider plot” of indi-
vidual cell movement tracks towards
the “12.00 o’clock” position; the
lower left image is a rose plot that
clusters groups of cells according to
their direction of movement; and the
lower right image is a vector plot
that indicates the strength and angle
of movement. It is clear to see the
difference in the strength of the two
chemoattractants CXCL8 and

fMLP, with fMLP producing the
strongest response evidenced by
longer cell tracks in the spider dia-
grams. The control-treated cells
(RPMI), as anticipated, show very
little movement and no obvious
directionality of movement.

Statistical analyses of these data
(Figs 5 and 6) demonstrate that
before treatment, neutrophils from
patients with periodontitis have sig-
nificantly lower speed, velocity and
directional accuracy (chemotactic
index and resultant vector length)
than neutrophils from healthy con-
trols for both chemoattractants,
CXCL8 and fMLP. Following treat-
ment, they still display significantly
reduced speed, velocity and accu-
racy than neutrophils from healthy

Fig. 3. Summary of Pre-treatment results: arrows denote the origin of the chemoattractant, cells should be attracted towards the
arrow; spider diagrams show movement of all cells (um) from place of origin; left hand side vector plots show the proportion of
cells in each segment and the angle of the segment towards the arrow; right hand side rose plots show the strength of movement
and its directionality for the whole cohort of cells, the small red line shows the vector and the bounding dashed lines show the vari-
ation within the data. All diagrams are represented at the same scale to aid comparison.

© 2014 The Authors Journal of Clinical Periodontology Published by John Wiley & Sons Ltd
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control volunteers for fMLP; how-
ever, with the exception of speed,
the neutrophils from patients with
periodontitis were not significantly
different in their response to
CXCL8 following therapy, in com-
parison to neutrophils from healthy
volunteers. Patient and control pre-
and post-treatment results were
analysed separately because of the
high inter-individual variation that
arises when neutrophils are analysed
on different days. Therefore, patient
and control cells were analysed syn-
chronously at both baseline and
then again simultaneously following
therapy, but no attempt was made
to compare patients’ cells pre- and
post-treatment (or controls).

Discussion

This study has demonstrated for the
first time that neutrophils from
patients with chronic periodontitis

exhibit reduced chemotactic accuracy
compared to gender- and age-
matched controls. Patient neutroph-
ils were less responsive to the widely
used chemoattractants fMLP and
CXCL8 with regard to chemokinesis
and chemotaxis when compared to
respective controls.

Direct visualization chambers,
including the Zigmond, Dunn and
the Insall chambers (the latter was
used in this study) allow cells to be
observed migrating using time-lapse
video microscopy in real time (Wells
2000). Bridge chambers provide a
visualization platform for observing
the behaviour of cells between two
wells. These chambers provide gradi-
ents for the cells to accelerate
towards rather than exposure to
absolute concentrations alone. The
majority of studies examining the
defects in neutrophil chemotaxis
over the last 30 years used the
Boyden chamber (and its derivatives)

to study chemotaxis (Clark et al.
1977, Van Dyke et al. 1980, 1987,
Offenbacher et al. 1987, Daniel et al.
1993, Yagi et al. 2009). Other studies
(Henry et al. 1984) employed the
checkerboard assay described by
Zigmond & Hirsch (1973). The use
of the Insall chamber has recently
expanded (Phillips & Gomer 2012,
Choi et al. 2013, Herlihy et al.
2013a,b, Kaul et al. 2013) and
opened up new research questions,
which informed the present study.
Here, we report on speed, velocity
and chemotactic accuracy. Chemo-
tactic accuracy has been expressed as
both chemotactic index (Sapey et al.
2011) and as resultant vector analy-
sis (Andrew & Insall 2007); however,
here, we have demonstrated that
these two factors are interchangeable
(Fig. S1, Bland-Altman analysis).

Although there are few studies
examining chemotaxis in chronic
periodontitis (Kumar & Prakash

Fig. 4. Summary of post-treatment results. The diagrams illustrate three plots per condition, as described in Fig. 3.
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2012), there is a wealth of data con-
cerning chemotaxis in patients with
localized aggressive periodontitis
(LAP). It is important to note that
LAP is distinctly different from
chronic periodontitis as it occurs in
otherwise systemically healthy ado-
lescents; the bacteria that colonize
the oral tissues in these individuals
are different in composition to
chronic periodontitis; and there is a
strong genetic pre-disposition to the
disease (Fu et al. 2002, Nibali et al.
2008). Defective LAP neutrophils,
however, offer an attractive platform
to better understand and character-
ize defects in the ability of neutroph-
ils to chemotax and the mechanism
of neutrophil movement in response
to stimuli presented as chemical gra-
dients. LAP is the best-characterized
periodontal disease showing
impaired neutrophil function.
Whether there is cross-correlation
between neutrophil abnormalities in
patients with chronic periodontitis

and patients with LAP remains to be
elucidated.

We have previously reported that
peripheral blood neutrophils from
patients with chronic periodontitis
are both hyperactive and hyperreac-
tive with respect to ROS generation
(Matthews et al. 2007a,b) and that
potential stimulants of these
responses within plasma include
GM-CSF, CXCL8 and interferon-a
(IFN-a) (Dias et al. 2011). IFN-a is
also capable of priming neutrophils
within the circulation of patients with
periodontitis and demonstrates ele-
vated plasma levels, consistent with
reported IFN-a responsive gene
expression profile in neutrophils from
patients with periodontitis (Wright
et al. 2008). However, an element of
ROS hyperactivity in periodontitis
neutrophils appears to be constitutive
(an innate property), and this may be
due to an altered intracellular redox
state in neutrophils from patients
with periodontitis (Dias et al. 2013).

Additionally, Porphyromonas gingiva-
lis-derived gingipains can cleave
CXCL8, potentially impacting upon
ROS production and chemotaxis
(Dias et al. 2008). This may be one
plausible explanation why, in the
present study, we observed a normali-
zation of patient neutrophil responses
to CXCL8 following successful treat-
ment, but not for fMLP. Of the vari-
ous neutrophil chemoattractants
reported in the literature, a number of
the host-derived chemoattractants
demonstrated a similar pattern of
activity to IL-8. We found similar
results to IL-8 for GM-CSF and mac-
rophage inhibitory protein 1alpha
(MIP1a) (data not shown) whose
receptors are all G-protein-coupled
receptor linked. The enhanced ROS
generation we have reported previ-
ously and the defective chemotactic
accuracy observed in this study of
patients with chronic periodontitis
have also been shown in individuals
with other inflammatory-driven

Fig. 5. Analysis of pre-treatment results: extracted values for each individual’s speed, velocity, chemotactic index and resultant vec-
tor length were analysed for statistical difference (Wilcoxon test). The midline of each box represents median, bounding box the
25th and 75th percentiles and the whiskers the extremities of the data sets.
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diseases, such as rheumatoid arthritis
(RA) (Biemond et al. 1986, Miesel
et al. 1996, Bostan et al. 2002, Ceder-
gren et al. 2007) and chronic obstruc-
tive pulmonary disease (COPD)
(Rahman et al. 1997, Yoshikawa
et al. 2007; Sapey at al. 2011).

Information on the mechanisms
underlying altered neutrophil chemo-
taxis in LAP neutrophils may help in
understanding aberrant chemotaxis
in chronic periodontitis neutrophils.
Several studies have reported a
diminished capacity of labelled fMLP
to bind to neutrophils in individuals
with LAP, indicating a reduction in
the number of peptide binding sites
on the surface of LAP neutrophils,
though the receptors themselves
appear to be functional (Van Dyke
et al. 1981, 1986). This would explain
the diminished responsiveness of
these neutrophils to a chemoattrac-
tive gradient. Defective LAP neu-
trophils also express lower levels of

the surface glycoprotein gp110
(ADRM1 or hRpn13) (Van Dyke
et al. 1987, 1990); the significance of
this receptor was demonstrated by
use of the monoclonal antibody to
GP110 called NCD-1, which dimin-
ished chemotaxis in healthy neu-
trophils when exposed to fMLP
(Cotter et al. 1981). LAP-defective
neutrophils also have a reduced
expression of CD38, another receptor
for the chemoattractant fMLP (Fujita
et al. 2005).

Chemoattractant–receptor bind-
ing results in the activation of
numerous signalling pathways,
including PI3K, which in turn medi-
ates the activity of phosphoinositide
dependent kinase 1 (PDK1), which
has been shown to be an essential
regulator of neutrophil chemotaxis
(Fig. 1). A study by Yagi et al.
(2009) demonstrated that neutrophils
from LAP patients had reduced
PDK-1 expression and activity.

Proteomic analysis of defective LAP
neutrophils revealed upregulation of
four proteins, of which the actin
binding protein caldesmon was con-
sidered the most significant and it
was suggested that an increase in
expression of this protein within the
cell may suppress motility by stabi-
lizing actin filaments (Mizuno et al.
2011). Other findings in defective
neutrophils include reduced influx of
extracellular calcium, lower calcium-
dependent PKC activity in unstimu-
lated defective LAP neutrophils,
accumulation of diacylglycerol
(DAG) and reduced DAG kinase
activity in defective LAP neutrophils
compared to healthy matched con-
trols (Agarwal et al. 1989, Tyagi
et al. 1992, Kurihara et al. 1993).
DAG is an activator of PKC, func-
tioning as a second messenger in a
variety of cell functions including
superoxide production and chemo-
taxis (Nishizuka 1986, Harvath et al.

Fig. 6. Analysis of post-treatment results: as described in Fig. 5.
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1987, Lambeth 1988). Elevated
DAG levels in abnormal LAP neu-
trophils support these neutrophils
being kept in a primed state for acti-
vation. The actin polymerization and
depolymerization in LAP individuals
was found to be normal, supporting
studies that show defects in the
chemotaxis signalling cascade
(Champagne et al. 1998). There is
limited data in the literature on che-
motaxis in neutrophils derived from
patients with CP and all the above
factors need to be analysed in
patients with chronic periodontitis,
such that we can further understand
the altered processes in neutrophil
chemotaxis in this disease. Indeed, it
is interesting to speculate that such
neutrophil deficiencies may represent
a common mechanistic link between
the different clinical definitions of
periodontitis (e.g. LAP and CP).

Neutrophils are one of the key
cells involved in protecting the host
from bacterial challenge. Disruption
to neutrophil functions such as che-
motaxis may pre-dispose the individ-
ual to further infection and
inflammation, exacerbating disease
pathogenesis. Impaired neutrophil
function impacts strongly on the
ability of an individual to cope with
microbial challenge as in periodonti-
tis. Reduced neutrophil chemotactic
accuracy and velocity may affect the
transit time of neutrophils that have
exited the circulation to reach the
site of infection, potentially allowing
bacteria to establish themselves in
the periodontal tissues with greater
potency. Collateral tissue damage
may also arise as a result of pro-
longed tissue transit times secondary
to defective chemotaxis, thus con-
tributing to the chronic inflamma-
tory burden.

In conclusion, we have demon-
strated for the first time that neu-
trophils from patients with chronic
periodontitis have reduced speed,
velocity and chemotactic accuracy.
Anti-infective treatment partially
restores velocity and speed of neu-
trophil movement towards CXCL8
to control levels following periodon-
tal therapy, but not for fMLP.
Coupled with our previous knowl-
edge that neutrophils from patients
with periodontitis are both hyperac-
tive and hyperreactive with respect
to extracellular ROS production,
which may drive increased tissue

destruction, these findings may help
to understand the potential role of
dysfunctional neutrophils in the
pathogenesis of periodontitis.
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Clinical Relevance

Scientific rationale for the study:
Neutrophils are the predominant
cell in the periodontal tissues. They
are essential for clearance of bacte-
ria but can also elicit host damage
by inaccurately targeted responses.

Movement of neutrophils to the epi-
thelial surface requires degradation
of tissue. Inaccurate movement can
exacerbate tissue destruction.
Principal findings: Neutrophils from
patients with chronic periodontitis
display aberrant neutrophil move-

ment that is only partially restored
to healthy levels upon treatment.
Practical implications: Understand-
ing sustained atypical neutrophil
behaviour in periodontitis may
help in the development of new
therapeutic approaches.
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