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Review on Shear Strength Prediction of Reinforced 
Concrete Beams Using Machine Learning 

Abstract: Recent years have witnessed a surge in the application of machine learning 
techniques for solving hard to solve structural engineering problems. The application of 
machine learning can replace the use of empirical and semi-empirical prediction models 
currently used in practice with highly accurate models. This paper provides a detailed 
discussion on the basic terminologies and concepts of commonly used machine learning 
algorithms for solving structural engineering problems. To provide confidence to use this 
method and show the potential of machine learning in accurately predicting the results of 
complex civil engineering problems, a comprehensive literature review on the application of 
machine learning in shear strength prediction is also presented. The literature review covers 
the application of different machine learning algorithms in predicting the shear strength of 
conventional concrete beams, steel fibre reinforced concrete beams, beams reinforced with 
FRP bars as well as high strength concrete beams. Major observations, challenges and future 
scope in this field are also discussed in detail. This article will be a valuable resource for 
individuals who are unfamiliar with machine learning yet aspire to learn more about it. 

Keywords: Machine Learning, shear strength prediction, ANN, artificial neural network, shear 
strength.  

1. Introduction 

Shear failure is the most critical failure in a beam because of its brittle nature. Unlike flexure 
failure, the occurrence of shear failure in a beam can lead to a sudden structural collapse [1–
4]. The shear capacity of concrete structural elements can be increased by adopting different 
methods such as adding discrete fiber into the concrete matrix, using fiber-reinforced polymer 
(FRP) sheets, and using high-strength concrete. [5,6,15–24,7–14] Numerous investigations 
have been conducted and are still on going to understand the exact underlying mechanism of 
shear transfer happening during the collapse of a structural element. After the formation of 
shear cracks in beams, the shear transfer mechanism is highly uncertain because it is influenced 
by numerous parameters, and the relationship between the shear strength and these parameters 
is nonlinear. The presence of fibers in the concrete matrix further complicates the shear transfer 
mechanism and makes it much harder to understand. Consequently, shear design is typically 
performed based on empirical and semi-empirical relations developed by different researchers 
and suggested by international codes [25,26]. These empirical equations were developed based 
on the results of experimental investigations carried out by various researchers. The shear 
strength prediction made by these models can vary considerably because the number of 
influencing parameters and the parameters considered for developing these models can be 
different[27,28]. Numerous efforts have been made to understand the actual shear transfer 
mechanism and develop an accurate relationship between the shear strength and influencing 
parameters.   

In recent decades, machine learning (ML) has attracted attention for finding solutions to highly 
complex problems. A significant advantage of ML models is their ability to automatically 
analyze and learn associations between different parameters. This ability can help evaluate the 
influence of different parameters on shear strength and understand the complex relationship 
between them. Accordingly, new shear strength prediction models can be developed by 
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utilizing ML for making accurate predictions. Amani and Moeini proposed shear prediction 
models using an artificial neural network (ANN) and the adaptive neuro-fuzzy inference 
system (ANFIS) [29]. A comparison between the proposed method and the relations in 
American Concrete Institute and Iranian Concrete Institute codes was performed for predicting 
the shear strength of reinforced beams. Researchers have observed that the prediction made by 
their ANN models with multilayer perceptrons using a backpropagation algorithm exhibited 
superior performance than other models. Abdalla et al. also employed an ANN with a 
backpropagation algorithm to predict the shear resistance of reinforced concrete beams with 
rectangular sections [30]. Different activation functions were utilized in their investigation. 
They concluded that the proposed ANN models could accurately predict the shear resistance 
of beams with rectangular cross-sections. In a separate study, Naderpour and Mirrashid 
demonstrated the potential of ANFIS in predicting the shear strength of reinforced concrete 
beams with stirrups [31]. Moreover, Chou et al. proposed a novel hybrid artificial intelligent 
model that combined a smart firefly algorithm and least squares support vector regression for 
predicting the shear strength of different types of reinforced concrete beams [32].  They 
compared the prediction efficiency of the proposed hybrid model with those of standard ML 
models, ensemble models, and empirical methods to demonstrate its prediction superiority. A 
random forest model was proposed to perform the shear design of reinforced concrete beams 
with and without stirrups [33]. Asteris et al. evaluated the potential of surrogate approaches, 
such as ANN models in predicting the shear capacity of concrete beams with transverse 
reinforcements [34]. They reported that such methods were highly effective in evaluating the 
shear strength of reinforced concrete beams.  

Adhikary and Mutsuyoshi developed two shear strength prediction models for steel fiber-
reinforced concrete (SFRC) beams using an ANN [35]. The first and second models considered 
five and four input parameters, respectively. The performance of the models was compared 
with the results predicted by the equations proposed by Swamy et al. and Khuntia et al. [12,36]. 
It was observed that both the proposed models made superior predictions compared with 
empirical relations. Yaseen et al. proposed a novel hybrid shear strength prediction model by 
combining the support vector regression (SVR) algorithm with particle swarm optimization 
(PSO) for SFRC beams. A comparison of the performance of the proposed model with that of 
another ANN-PSO hybrid model highlighted the superior prediction capacity of the SVR-PSO 
model. Keshtegar et al. developed a novel response surface method (RSM) coupled with a SVR 
hybrid model for predicting the shear resistance of SFRC beams [37]. Researchers have 
compared the performance of their hybrid model with the predictions made by standalone ML 
models, such as RSM, SVR, neural network (NN), and eight empirical relations. The newly 
developed models outperformed the prediction capacities of the other models. In a separate 
study, Tanarslan employed an ANN to predict the shear strength of concrete beams retrofitted 
with a side-bonded FRP [38]. Tanarslan reported good conformance with the experimental 
results, and the predictions were more accurate than those obtained using the theoretical 
guidelines. Furthermore, Nasrollahzadeh and Basiri proposed an original shear strength 
prediction model for concrete beams reinforced with FRP bars using a fuzzy inference system. 
They used the proposed ML model that outperformed the design provisions for the shear 
strength of FRP-reinforced concrete beams suggested by ACI 440-06 and CSA S806-02. Two 
ANN models with backpropagation were developed by Tanarslan et al. to predict the shear 
strength of reinforced concrete beams externally bonded with carbon fibre reinforced polymer 
(FRP) sheets [39]. Subsequently, the predictions made by their models were compared with 
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the shear strength calculated from the American guideline (ACI 440.2R) and the Australian 
guideline to comprehend the effectiveness of the newly developed models. It was found that 
the shear strength predicted by the proposed models was far superior to that predicted by 
international standards.   

Based on the literature, it can be stated that ML has huge potential to solve complex problems 
associated with practical engineering. Besides, good knowledgeability in this field will enable 
researchers and the engineering community to explore its possibilities and find solutions to 
hard-to-solve problems. As this field is rather new to civil engineers, this study has two main 
objectives. The first part of this work aims to help beginners understand the fundamental 
terminologies and concepts of machine learning to enhance researchers' confidence in 
exploiting the great potential of ML in their future research endeavors. The details regarding 
the common terminologies and the concept of ML algorithms used for solving structural 
engineering problems are explained in a simple manner in Sections 2 and 3. The second 
objective of this work is to highlight the potential of different ML algorithms in solving 
complex problems associated with civil engineering. To achieve this objective, a detailed 
literature review of different research works associated with accurately predicting the shear 
strength of conventional concrete beams, SFRC beams, beams reinforced with FRP bars, and 
high-strength concrete beams is presented in Section 4. The problem of accurately predicting 
the shear resistance of concrete beams is highly challenging owing to the influence of different 
parameters on the shear resistance and the complex nonlinear relationship between the shear 
strength and the influencing parameters. The details presented in this section will aid in 
comprehending the potential of ML to easily solve the shear prediction problem with high 
accuracy. This will provide confidence in utilizing this method to solve other complex 
engineering problems. Finally, the major challenges and future scope of this area of research 
are included in Section 5. 

2. Terminologies in Machine Learning 

This section discusses the details of the common terminologies used in this field to ensure that 
this work helps beginners gain knowledge in the field of ML. These details will allow beginners 
to easily analyze and understand the details of the studies discussed in the literature. 

2.1 Algorithm / Learner: An algorithm or learner represents the program used to develop a 
model. The algorithm learns the patterns or interconnections between different parameters 
based on the provided database, and finalizes the parameters in the final model that are used 
for new predictions or classifications. For example, in the case of ANN different weights are 
assigned to each node and the accuracy of prediction is evaluated. Towards the end of training 
the optimum weights (parameters) are finalized.  

2.2 Training: In ML, machines or programs learn the patterns or interconnections between 
different parameters. This is done by first analyzing a given set of data with defined 
connections. Training refers to the process in which a program learns based on the (known 
data) data provided for finalizing the different parameters in the final model. The data used for 
this purpose are known as training datasets. 

2.3 Model: In the field of ML, a model represents the output of an algorithm. This can be used 
for new predictions of unknown data. The parameters in the model will already be finalized 
after the training stage of the learner. 
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2.4 Deep Learning: This is a subset of ML that typically uses complex neural networks for 
learning from databases and developing models. Generally, the accuracy of a model developed 
using a deep learning technique is directly proportional to the size of the database used for 
training the learner. 

2.5 Feature: Features refer to independent variables provided to an algorithm. The quality of 
the features is crucial for developing an optimum correlation with different variables. 

2.6 Regression, Classification and Clustering: There are three types of problems considered 
in ML. In regression-type problems, ML is used to develop a model that can correlate different 
variables. Generally, it is used to predict continuous parameters based on the variation in other 
parameters. The prediction of the shear strength of a beam based on different parameters, such 
as compressive strength, cross-sectional details, and span-to-depth ratio, is an example of this 
type of problem. Classification is another type of problem considered in ML, in which the 
primary objective involves classifying the given data under different labels that are already 
provided. Regression and classification are performed using supervised learning (explained 
later). Clustering is an unsupervised learning technique in which the program itself must find 
patterns and classify the data without the aid of any provided labels. 

2.7 Hyperparameters: These are the parameters that control the learning process of an 
algorithm. For instance, when using ANNs (explained later), the number of hidden layers, 
number of neurons in each layer, etc., are considered as hyperparameters. Each ML algorithm 
has explicit hyperparameters that need to be carefully selected. Although these values are not 
part of the final model, they play an instrumental role in determining the quality of the final 
model. The values for hyperparameters are pre-assigned before starting the training process.  

2.8 Bias and Variance: Bias is the quantitative estimate of the error made by the prediction 
model during training. The model will be developed by learning the relationships between 
different variables. While the final model makes a prediction, there can be differences between 
the predicted and actual values. A quantitative estimate of this error is known as a bias. A 
model with higher bias does not properly fit the given data. Variance represents the variation 
in prediction when a different training dataset is used. Generally, a model with high bias will 
have low variance, and a model with low bias will have high variance. It is difficult to develop 
a model that has both low bias and variance. 

2.9 Activation function: This function determines whether the considered neuron in a NN 
should be activated. Linear and nonlinear activation functions exist; however, linear functions 
are not typically preferred in NNs. The activation function considers the weighted sum of inputs 
and the bias to determine if the output from the considered neuron should be passed on to the 
next neuron. The commonly utilized activation functions are the step, sigmoid, ReLU, leaky 
ReLU, Tanh Function, and Softmax functions. The choice of activation function in the hidden 
layer has a significant effect on the efficiency of the neural network. 

2.10 Cost function: This is a parameter used in ML to estimate the accuracy of the developed 
model in making predictions based on the predictions made and the actual value. The cost 
function helps improve the model and attain optimum results. 

2.11 Underfitting and overfitting: Underfitting is the condition when the model fails to fit the 
data points. Underfitting can occur when a linear model is used for nonlinear training data, or 
when the model is not sufficiently trained. An underfitted model will show poor accuracy in 
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training as well as on unknown data. Overfitting is a condition that arises because of 
overtraining of the model. Models such as nonlinear models have high flexibility so that they 
try to fit all the points in the provided data. This force fits the model to unwanted or irrelevant 
points. Even though an overfitted model exhibits good performance with trained data, the 
performance of the model with a new set of data will be poor. A proper balance between 
underfitting and overfitting is key to developing an efficient ML model. 

2.12 Confusion Matrix:  This matrix is used to evaluate the performance of a classification 
model. To use a confusion matrix, the actual values must already be known. Consider a case in 
which a model is used to predict whether the used mix combination will provide a compressive 
strength higher than 50 MPa. Fig 7 illustrates the confusion matrix for this model, assuming 
that it has made 100 predictions. Based on the correct and incorrect predictions made as given 
in the matrix, different parameters, such as classification accuracy, misclassification rate, 
precision, and recall, can be calculated. 

 
Fig 7 Confusion Matrix 

2.13 Regularization: This is a technique used to reduce the influence of overfitting and 
underfitting. Generally, regularization is achieved by minimizing the cost function. The 
application of regularization will help attain the best-fit model without overfitting and 
underfitting. 

2.14 Ensemble learning: This is a method in which the accuracy of the prediction is enhanced 
by combining the predictions made by different learners. The three most commonly utilized 
methods for ensemble learning are bagging, stacking, and boosting. In bagging, the average 
value of the prediction made by different decision trees trained using separate data from the 
same database is considered as the final output. Stacking involves using different models to 
make predictions based on a common database. The final prediction is made by combining 
these predictions with the help of another model. In the final method, the models are 
sequentially added, and the error made in each model is corrected by modifying the associated 
weights with the samples in the following model. Finally, a strong model is developed that can 
make predictions with high accuracy. 

3. Machine Learning 

ML is a subset of artificial intelligence in which a computer or machine is programmed to make 
predictions based on available data. For example, ML models can be used to predict the 
compressive strength of concrete based on influencing parameters, such as the water-cement 
ratio, aggregate ratio, and age of concrete. To achieve this, an algorithm is initially developed 
to predict the output (compressive strength) based on influencing parameters (features). 
Subsequently, the model selects a crude mapping function that connects the output to features. 
In the example mentioned above, if the output (Compressive strength) is represented by the 
variable “Y” and the features water-cement ratio, aggregate ratio, and age of concrete are 
represented by variables “X1,” “X2,” and “X3,” respectively, the mapping function may be of 

Total Prediction 
= 100 Actual: Yes Actual: No

Predicted: Yes 60 7

Predicted: No 8 25
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the form Y = A×X1 + B×X2 + C×X3. Subsequently, the mapping function is refined using the 
available data highlighting the connection between the compressive strength and the effect of 
change in each of the influencing parameters. The process of refining the mapping function 
using the available data is termed as model training. During the training, the function will be 
optimized to match the actual relation of compressive strength and different influencing 
parameters provided during the training in the best possible manner. Following this stage, the 
performance of the developed model is tested using another set of available data that include 
the compressive strength corresponding to the considered influencing parameters. This process 
is called model testing. Different statistical parameters are used to quantitatively represent the 
efficiency of the final model. Following the successful completion of these two stages, if a new 
set of influencing parameters is fed into the developed model, it will be able to automatically 
predict the compressive strength of the concrete with reasonable accuracy.  

Based on the training process, ML can be classified into three major categories: supervised 
learning, unsupervised learning, and reinforced learning. As the name suggests, in supervised 
learning assistance is provided to the model during the training stage. To be more precise, the 
data will be labelled, and this knowledge will be provided in the training data, as discussed in 
the above example. However, in the case of unsupervised learning, the data provided for 
training do not have any labels. The model must identify the patterns and differences in the 
data provided during the training stage.  

 

Fig 1 Classification of machine learning 

An example of classifying cracks into flexure cracks, shear cracks, and flexure-shear cracks 
can be considered to clarify the difference between supervised and unsupervised learning. For 
this example, it can be assumed that the training data consist of a large number of images 
showing cracks in the failed beams. In the case of supervised learning, all flexure cracks, shear 
cracks, and flexure-shear cracks are placed in different groups, and a proper label is provided 
to each of the groups in the training data. Thus, the models can learn from the training data, 
and when a new image depicting the cracks is provided, the model can classify the crack with 
accuracy. Meanwhile, in the case of unsupervised learning, the same images are provided as 
training data but without classification or labels. In this case, the model itself has to find 
different patterns, locations of cracks, and geometries, and thereby categorize each crack into 
different groups. The cracks that are at the midspan and in the vertical direction will be placed 
into one group, whereas the cracks that are going at an angle of approximately 450 will be 
placed into another group. The remaining cracks may be placed into another group. In this case, 
all this identification and classification is performed by the model itself, and based on this, the 
model will train itself. Therefore, after training, when a new image depicting the crack is fed 
into the model, it will predict the group to which the new crack belongs. Reinforced learning 
is a type of training in which a model learns in a trial-and-error approach. Here, no label or 
relation is provided during the training. The model must learn sequentially based on the 
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decisions. A classic example of reinforced learning is that of autonomous cars. An autonomous 
car should be trained in a realistic simulator before it is introduced into the real world. For each 
correct action taken by the model during the training, a reward is provided for the model, 
whereas for each wrong action, a penalty is provided. The objective of the model is to maximize 
the reward and train itself. Therefore, following several trials and errors, the car is self-
sufficient to make decisions and drive in the real world. 

3.1 Types of Machine Learning Algorithms 

As ML has the potential to solve complex real-life problems, numerous research efforts have 
been focused on developing new and optimized ML algorithms. Consequently, many ML 
algorithms are already available and have been developed for different purposes. This section 
details on ML algorithms commonly employed for solving structural engineering-related 
problems. This will aid beginners in this field to understand the concept of each algorithm and 
use them for solving practical problems with ease. 

3.1.1 Regression Models 

Regression analysis is a statistical method used to make predictions based on the relationship 
between input parameters (independent variables) and required output parameters (dependent 
variable). The concept is also applicable to ML. This method is based on supervised learning, 
in which a labelled dataset is used for training the models, as explained in Section 3. Regression 
models are used when the output variable is discrete or quantitative. The primary objective of 
regression analysis is to determine a mathematical equation representing the best-fit line/curve 
for a provided training dataset. At a later stage, this relation can be used to make predictions 
for unknown data. Based on the number of variables involved and the type of function used to 
represent the dataset, regression analysis can be classified into different types, as shown in Fig 
2. 

 

Fig 2 Classification of Regression Models 

3.1.2 Linear Regression (LR) 

This is the simplest form of a regression model used in ML. The objective of the linear 
regression model was to develop a linear relationship (a line in the case of a two-dimensional 
dataset) to connect the output and input parameters. If only one input parameter is considered 
in the model, it is called a simple linear regression; else it is called multiple linear regression. 
The output of the algorithm is obtained as shown in Eq 1. In this equation “Y, X, and 𝛽𝛽” 
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represent the dependent variable, independent variable, and the regression coefficient, 
respectively. The best-fit relation is obtained by reducing the value of the cost function (root 
mean square error). 

𝑌𝑌 = 𝛽𝛽0 + ∑ 𝛽𝛽iXi
𝑛𝑛
𝑖𝑖=1        (1) 

3.1.3 Polynomial Regression (PR) 

The most significant difference between linear regression and polynomial regression is the 
shape of the curve used to fit the dataset. While a straight line is used in linear regression, a 
curved line represented by a higher-degree polynomial is used to fit the dataset in the 
polynomial regression. Even though the use of a higher-degree polynomial helps to reduce the 
variance and obtain a better fit, it will increase the probability of overfitting. Thus, the resulting 
model may have a higher prediction accuracy in the testing process but will fail to accurately 
predict unknown data. Therefore, when using the polynomial regression model, special care 
must be taken to avoid overfitting. The output of the algorithm is obtained as shown in Equation 
2. In this equation, “Y, X, and β” represent the dependent variable, independent variable, and 
the regression coefficient respectively, where the best-fit relation is obtained by reducing the 
value of the cost function (root mean square error). 

 𝑌𝑌 = 𝛽𝛽0 + ∑ 𝛽𝛽i
𝑛𝑛
𝑖𝑖=1 X i      (2) 

 

3.1.4 Ridge Regression (RR) and Lasso Regression (LAR) 

Ridge regression (RR) and LASSO regression are similar to linear regression in terms of their 
functions. The sole distinction is the addition of L1 and L2 penalties in the cost function in 
lasso regression and RR, respectively. These penalties are added to avoid overfitting by 
reducing or nullifying the coefficients 𝛽𝛽i (weights). Overfitting is a problem that occurs when 
the regression model becomes overly fitted to the training data and fails to accurately 
generalize. Therefore, in both regression models, the weight assigned to each feature is adjusted 
based on their significance in the prediction. In RR, the weights of less-important features are 
reduced, whereas in lasso regression, they are nullified. Accordingly, these models reduce the 
problem of overfitting by assigning importance to the proper feature selection. 

3.1.5 Decision Tree (DT) 

The decision tree (DT) model is a commonly used ML algorithm that falls under the supervised 
learning category. It generates a tree-like model based on training data, as shown in Fig 3. DTs 
can be used to solve regression and classification problems. Hence, it is also known as a 
classification and regression tree (CART). As shown in Fig 3, the main parts of a DT include 
root nodes, branches, internal/decision nodes, and leaf/end nodes. The topmost node in a tree 
is the root node. The final node that cannot be further split is the leaf/end node. A DT is 
constructed by splitting different nodes starting from the root node based on certain conditions. 
Different metrics, such as entropy, information gain, and the Gini index, form the splitting 
condition at each level. The splitting process continues until the predefined depth of the tree is 
reached or until a split cannot be made, thereby improving the adopted metrics. Overfitting is 
a common problem reported by different researchers while using DT models. 
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Fig 3 Decision tree with terminologies 

 

 

3.1.6 Random Forest (RF) 

Random forest (RF) is a powerful ML algorithm that comes under ensemble learning 
algorithms. The concept of RF entails constructing a group of trees (forest) by combining two 
or more weak learners (DT algorithms commonly used) and making an enhanced prediction by 
combining the decisions made by each of the weak learners. Decision trees are created using a 
bagging technique. This means that the weak learners are trained in parallel. Each tree is 
constructed by randomly selecting features from the dataset. The RF method can be used for 
both classification and regression problems. In a classification problem, the RF makes its final 
decision by voting on the predictions made by each DT. For regression problems, the final 
decision is made by considering the average of the predictions made by individual weak 
learners. 
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Fig 4 Random Forest Machine Learning Model 

3.1.7 Artificial Neural Network (ANN) 

ANNs are one of the most widely used ML techniques for solving complex problems. It 
primarily consists of processing elements known as nodes or neurons. They are interconnected 
in an optimized manner to form a network. The connections between different neurons in a NN 
are known as channels. Generally, an ANN can be divided into three layers: the input, hidden, 
and output layers, as shown in Fig 5. An ANN typically consists of one input layer, in which 
the data are fed, and an output layer, in which the output is obtained. All the computations 
required in the proposed algorithm are performed in the hidden layer. The hidden layer may 
contain one or more node layers. When the number of layers of nodes in the hidden layer is 
two or more, it is known as a multilayer perceptron or deep learning network. 

In an ANN, input data are first received by the input layer. The input parameters need to be 
normalized before they are fed into the network. Therefore, most of the input values fed to the 
neurons in the input layer will be a value between 0 and 1 or -1 to 1. Each of the channels that 
connect one neuron to another is assigned a parameter known as weight (Wi), as depicted in 
Fig 5. The input value obtained in a neuron is multiplied by the weight assigned to the 
respective channel. The weighted sum from the input layer is then passed to the corresponding 
neuron in the hidden layer. Each neuron in the hidden layer is assigned a numerical value called 
the bias (Bi), as depicted in Fig 5. The weighted sum received from the previous layer is added 
to the respective bias value at each of the neurons and is then passed through a threshold 
function known as the activation function. Different types of activation functions are available, 
and the programmer can choose the best function for the problem. The results obtained from 
the activation function decide whether to transmit data from that neuron to the next layer. This 
process is repeated until it reaches the output layer, which is known as forward propagation. 
After obtaining the output, it is compared with the actual value in the training database, and the 
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error is quantified using the cost function. Based on the error, details regarding the direction 
and magnitude of the correction required are transferred back into the network. This process is 
known as backpropagation (BP). Based on this data, the weights are further modified, and the 
process is repeated. The cycle of forward propagation and backpropagation is repeated 
iteratively until the values of the weights are optimized to obtain the required results. This 
completes the training of the NN. Then this network with fixed weights is tested using the 
testing database, and the performance is evaluated. 

 

Fig 5 Typical Artificial Neural Network with two layers of nodes in the hidden layer 

3.1.8 K-nearest neighbor (KNN) 

The K-nearest neighbor is a simple ML algorithm that can be effectively used for classification 
and regression problems when the distribution of data points is highly nonlinear. In the case of 
the classification problem, the prediction is based on the type of “k” number of nearest points 
around the unknown data, as illustrated in Fig 5a. In this method, the value of “k” is a 
hyperparameter, and the optimum value must be determined. It should be also mentioned that 
the value of “k” should be always an odd number. The required number of nearest points is 
determined using the Euclidean or Manhattan distance. After finding the nearest points, the 
unknown point can be classified by analyzing the group to which the majority of the nearest 
point belongs. In the example presented in Fig 5, because there are four orange points near the 
unknown point, the new point (green point) is classified into the orange group. 
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Fig 5 Concept of K-nearest neighbor 

In the case of a regression problem using the Euclidean distance or Manhattan distance, “k” 
number of points near the unknown point will be found. Consequently, the prediction 
corresponding to the unknown data will be made by taking the average value corresponding to 
all these “k” number of neighbors as shown in Fig 5b.  

3.1.9 Support vector machine (SVM) 

Support vector machine (SVM) is another algorithm that was initially developed for 
classification problems and later extended to regression and clustering problems. When this 
algorithm is used for regression and clustering problems, it is referred to as SVR and support 
vector clustering (SVC), respectively. The fundamental concept of this method involves 
separating the given features using a plane (called a hyperplane or support vector classifier) 
with the maximum margin, as illustrated in Fig 6a. The data point located at the edge of the 
margin, as shown in Fig 6a, is known as the support vector. In the case of a regression problem, 
the idea is to determine the mathematical equation of the hyperplane that can best represent the 
data points, as shown in Fig 6b. Real-life problems can be complex, with a highly nonlinear 
distribution. Therefore, it is difficult to determine a boundary that properly classifies them. For 
example, the relationship between the effect of the dosage of a superplasticizer on the 
compressive strength is considered, as shown in Fig 6c. It is assumed that when the dose of the 
admixture is low or high, the compressive strength is low, whereas for values between them, 
the compressive strength is enhanced. It is difficult to determine a support vector classifier to 
solve this problem. Therefore, in the SVM, these data are first transferred to a higher 
dimension. As shown in Fig 6d, each piece of data is squared and plotted. Consequently, a 
support vector classifier that classifies the data into two groups can be provided. This 
transformation is called the kernel trick, and different kernel functions are available to transfer 
data from a lower dimension to a higher dimension. The type of kernel function used has a 
significant effect on the performance of the final model. The most commonly used kernel 
functions include linear polynomial functions, nonlinear polynomial, radial basis, and sigmoid 
functions. 
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Fig 6 Support Vector Machines (SVM) 

3.1.10 Extreme gradient boosting (XGBoost) 

XGBoost is one of the most powerful and efficient ML algorithms available today. This method 
is suitable for both regression and classification problems. For the first time, Chen and Guestrin 
proposed this as an efficient ensemble tree model [40]. Subsequently, Friedman enhanced its 
efficiency using the gradient boosting algorithm [41]. In this method, the gradient boosting 
technique generates strong learners by sequentially adding different weak learners. The 
primary objective of this algorithm is to minimize the error in the current tree, in which the 
residual error from the previous tree has already been added. This process continues until the 
end of the iteration so that the remaining residual error is minimal. In XGBoost, the value of 
the objective function is obtained by using Eq. (3). The first part of the equation indicates the 
loss function and the second part represents the regularization function. This method uses 
several techniques, such as the randomization technique, compressed column-based structure 
for storage of data, parallel and distributed computing, etc., which make it more efficient and 
faster than other methods. With the help of the randomization technique, the problem of 
overfitting is addressed with great efficiency. 

𝑂𝑂𝑂𝑂𝑂𝑂 =  ∑ 𝐿𝐿(𝑦𝑦i,𝑦𝑦i�)𝑛𝑛
𝑖𝑖=1 + ∑ �𝛾𝛾𝛾𝛾 + 1

2
× 𝜆𝜆∑ 𝑤𝑤𝑗𝑗2𝑘𝑘

𝑗𝑗=1 �𝑘𝑘
𝑡𝑡=1  (3) 

where L denotes the loss function for the model, w indicates the weight of the leaf, γ and λ 
represent the complexity of each leaf and penalty parameter, respectively. 

3.1.12 Adaptive Boosting (AdaBoost) 

AdaBoost is one of the oldest and most popular ML algorithms. It uses the concepts behind DT 
and RF algorithms. The trees considered in AdaBoost typically have only one root node and 
two leaves. In this algorithm, the trees with one root node and two leaves are called stumps. 
The method starts with a weak learner to evaluate all the data (equal weight is assigned in the 
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first stage) and adopts a higher weight for the incorrectly predicted cases and a lower weight 
for the correctly predicted cases in the next iteration. Accordingly, several weak learners 
(stumps) can be formed during training. The influence of predictions made by each weak 
learner on the final output is different in the case of the AdaBoosting technique. The influence 
of each weak learner on the final output is determined based on the correctness of the 
prediction. Finally, a strong learner is developed based on the predictions made by weak 
learners. 

3.1.13 Categorical Boosting (CatBoost) 

CatBoost is a recently developed, open-source algorithm. This method was developed by 
Yandex et al.. The key advantage of CatBoost is that it can work with different data types using 
a built-in preprocessor. This significantly reduces the pre-processing required by the other 
algorithms. This algorithm is very fast compared to other methods owing to its ability to utilize 
multiple cores available in both the CPU and GPU. CatBoost can be utilized for ranking, 
providing recommendations, forecasting problems, providing assistants, and solving regression 
and classification problems. Using ordered target statistics, CatBoost can automatically handle 
categorical features. Compared to deep learning algorithms, CatBoost can produce more 
accurate results even when the amount of data used for training is low.  

 

4. Machine learning models for predicting the shear strength of concrete beams 

This section provides details of research works on ML-based shear strength prediction models. 
With the help of ML, researchers have developed models that can precisely predict the shear 
strength of conventional concrete beams with stirrups, beams without stirrups, beams 
reinforced with FRP bars, fiber-reinforced beams, high-performance concrete beams, ultra-
high-performance concrete beams, and steel beam sections. A comprehensive review of the 
important research works available in this field is given in the initial part of this section. In the 
later part of this section, some of the selected research works are explained in detail to provide 
a better picture of the investigation for beginners in this field. The details regarding the type of 
algorithm used, the database considered for developing the model, the statistical parameters 
used for performance evaluation, and the efficiency of the developed models are discussed in 
detail for each of these investigations in this part. 

Sanad and Saka [42] depicted the potential of artificial neural networks in evaluating the shear 
strength of reinforced-concrete deep beams. They used a dataset consisting of one hundred 
eleven experimental data of simply supported beams carrying symmetrically applied two-point 
loads. Ten features were considered in their analysis which represented the geometric and 
material properties. The performance of their model was compared with the models proposed 
by ACI, strut-and-tie method and model proposed by Mau-Hsu. The proposed model was able 
to produce accurate shear strength prediction with a ratio of actual to the predicted value of 
0.99 compared to inaccurate predictions made by other models. Cladera and Mari  [43] 
developed new design equations for the shear design of normal and high-strength reinforced 
concrete beams with stirrups using ANN and a parametric study. Using the parametric 
investigation, the researchers highlighted the influence of different parameters on the shear 
strength of the concrete beam and used it to arrive at the final design expressions. Their model 
was having a better performance compared to the methods suggested by EC-2 or ACI. Mansour 
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et al. [44] also utilised artificial neural networks for predicting the ultimate shear strength of 
RC beams with stirrups. A dataset consisting of experimental results of 176 RC beams with 
nine features was used for developing their model. It was observed that the proposed model 
was able to outperform empirical equations suggested in design standards and truss model 
theories. Chabib et al. [45]developed a new ANN model for predicting the shear strength of 
reinforced concrete beams using a dataset consisting of 656 samples. This model was used to 
understand the influence of transverse reinforcement on the shear resistance of concrete. It was 
observed that the shear resistance offered by concrete was more for beams with transverse 
reinforcement in comparison to beams without stirrups. But it was also observed that the effect 
of transverse reinforcement on shear strength was lesser for a higher percentage of transverse 
reinforcement. Abdalla et al. [30]evaluated the performance of ANN in predicting the shear 
strength of RC beams and its potential to be used as a tool for conducting parametric studies. 
They developed their ANN model using a dataset consisting of 164 experimental results. Back 
propagation neural networks with different activation functions were considered during the 
training and the sigmoid function was observed to be the best activation function that can 
produce accurate results. A comparison of performance of their model with ACI318-02 and 
BS8110 codes was also included in their investigation. An effort was put forward by the 
researchers to understand the nonlinear relationship between different features. Based on the 
observations’ researchers also developed shear response curves and surfaces. The researchers 
concluded that ANN is capable of predicting the shear capacity with good accuracy and it can 
be used as a model for parametric studies related to shear strength. 

To evaluate the effectiveness of commonly adopted models in predicting the failure load of RC 
beams Ahmad et al. [46]conducted a comparative study considering the experimental data and 
predictions obtained from the design standards, the compressive force path method and an 
artificial neural network. Their investigation revealed that the ANN model was able to provide 
close fix prediction compared to other methods. Cladera and Mari  [47] developed a new ANN 
model for predicting the shear strength of beams without transverse reinforcement. With the 
help of this model, researchers conducted a parametric study to show the relationship between 
different influencing parameters and the shear strength. Researchers also proposed simpler 
expressions for calculating the shear strength with more accuracy compared to design 
standards. Oreta [48] developed a novel ANN model that can predict the shear strength of RC 
beams with reasonable accuracy and simulate the size effect on ultimate shear stress at failure. 
The developed model was having superior performance compared to empirical, theoretical and 
design code equations. The potential of ANN in establishing the relation between different 
parameters was also depicted by the researchers through a parametric investigation. Seleemah 
[49] proposed the artificial neural network (ANN) technique as an alternative to the existing 
shear capacity prediction methods. The performance of the researchers’ model was compared 
with eight different codes and models available in literature. The proposed model was able to 
depict superior performance compared to the other models. El-Chabib [50] proposed a new 
ANN model for predicting the shear strength of normal and high-strength concrete beams 
without transverse reinforcement. To highlight the potential of ANN in shear strength 
prediction the results of the model were compared with the ACI method, the CSA simplified 
method, Response 2000, Eurocode-2, and Zsutty's method. The comparison depicted that the 
ANN model was able to make superior predictions compared to other methods. Jung and Kim 
[51] proposed an innovative idea of knowledge-based prediction of conservative shear strength 
for beams without transverse reinforcements using ANN models. The researchers proposed 
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two ANN models developed using a database consisting of experimental results. The first 
model was similar to the ANN models available in literature but the second model was 
preferable when conservative predictions like in the design codes are preferred. Elsanadedy et 
al. [52] put forward two models for shear strength prediction of high-strength concrete beams 
without web reinforcements using regression and neural network methods. A large database 
consisting of 250 test results which cover a wide range of features was used for the training 
and testing of the proposed models. The ANN-based model was observed to depict a better 
performance compared to the regression model. The researchers proposed new empirical 
design models for high-strength concrete beams. They proposed the use of these models be 
restricted to beams having shear span to depth ratio greater than 2.5, depth less than 1000 mm, 
steel ratio less than 4% and compressive strength of concrete less than 100 MPa. 

Adhikary and Mutsuyoshi [35] developed two ANN models for the shear strength prediction 
of steel fibre reinforced concrete (SFRC) beams. The main difference between the two models 
was the number of input features considered. The first and second model considered five and 
four input parameters respectively. The additional feature considered in the first model enabled 
it to depict a better performance. In comparison to the shear strength prediction model proposed 
by Swamy et al. and Khuntia et al, both the proposed models were able to depict a superior 
performance. Hossain et al. [53] proposed a new ANN-based model for predicting the shear 
strength of medium- to ultra-high-strength steel fiber-reinforced concrete beams using artificial 
neural network. The dataset used for training the model consisted of 173 experimental test 
results of SFRC beams without stirrups. The database included beams with compressive 
strength varying from 20 MPa to 175 MPa and various types of commonly used steel fibres. 
An additional database consisting of 36 experimental test results was used by the researchers 
for validation and testing of the developed model. Based on the results of their investigation 
researchers concluded that the ANN model has good potential to be employed as a design tool 
for predicting the shear strength of SFRC concrete beams without stirrups. Ahmadi et al. 
[54]developed new design equations for predicting the shear stress of SFRC beams without 
transverse reinforcements using Gene Expression Programming and ANN. The final model 
was able to efficiently connect the geometrical and material properties of the beam with the 
shear stress. The performance of the proposed models was evaluated using different statistical 
metrics and was also compared with the performance of methods suggested by the ACI code 
as well as different empirical models. The results show better performance for the newly 
proposed model for predicting the shear stress. 

Perera et al. [55]developed a shear strength prediction model for RC beams strengthened in 
shear with the help of fibre-reinforced polymer using ANN. On comparing with other design 
provisions the proposed model was having good performance with high accuracy. The critical 
parameters that influence the shear strength of FRP strengthened beams were identified by the 
researchers with the help of a parametric investigation. Based on the results and observations 
of their investigation researchers proposed modification to the design equations suggested by 
ACI for the evaluation of the shear capacity of beams strengthened with FRP. Tanarslan [38] 
evaluated the potential of ANN in predicting the shear strength of RC beams strengthened in 
shear with side-bonded FRP reinforcements. In addition to the dataset collected from literature, 
experimental testing of ten shear deficient beams with different carbon fibre reinforced 
polymer (CFRP) arrangements were conducted and the results were added. Researchers 
depicted that the proposed model was having better performance in comparison to the available 
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empirical models. In addition to this, a parametric investigation was also conducted to 
understand the critical factors that influence the parameters of the FRP contribution. Based on 
this research a simple equation was proposed to predict the influence of externally bonded side-
bonded FRP on the resulting shear strength. Tanarslan et al. [56]showed the superiority of ANN 
models in predicting the shear strength of RC beams strengthened by externally bonded, 
wrapped and U-jacketed FRP. The geometrical properties of the beam along with the 
mechanical properties of the beam and strengthening material were considered as the input 
parameters. A dataset consisting of experimental results of 84 beams was considered for the 
training and testing of the ANN model. The performance of the proposed model was compared 
with the design standards of five different countries and was observed to be superior. Tanarslan 
et al. [39] proposed an innovative shear design method for RC beams retrofitted with anchored 
CFRP by using ANN. Two neural network models with back propagation were proposed in 
this investigation. Test results of 79 beams were used for training and testing the proposed 
models. The predictions made by the ANN models were compared with the available 
theoretical models and were found to be more accurate.  

Abuodeh et al [57] used a resilient back-propagating neural network for predicting the shear 
capacity of shear deficient beams retrofitted with side-bonded and U-wrapped FRP laminates. 
The database considered in this investigation consisted of 120 experimental results of beams 
with fifteen different parameters. The recursive feature elimination and neural interpretation 
diagram were used by the researchers to identify the critical features for the shear prediction. 
The performance of models developed with the help of the feature selection as well as with all 
the 15 features was evaluated and compared by the researchers. It was observed that the feature 
selection techniques helped in improving the performance of the proposed model to a greater 
extent. As done by other researchers the prediction made by the proposed model was compared 
with the predictions made by ACI 440.R-17, fib14 and CNRDT200 also. The result indicates 
that the proposed model was able to make superior predictions compared to the remaining 
methods. Ali et al. [58] used the extreme gradient boosting method (XGBoost) for developing 
a shear prediction model for FRP-reinforced concrete beams without transverse 
reinforcements. To utilise the complete dataset K-fold cross-validation technique was 
implemented in this investigation. Researchers observed that the proposed model was able to 
make a better prediction and was more precise compared to the predictions made by other 
empirical relations, design codes, LASSO model as well as the model developed using random 
forest method. Lee and Lee [59] developed a prediction equation for the shear strength of FRP 
strengthened RC beams without stirrups using ANN. Using the 2k experiment the researchers 
also evaluated the influence of different parameters on the shear capacity of FRP strengthened 
beams. The proposed model was having good performance when compared to the prediction 
made using existing empirical relations. Naderpour et al. [60] used ANN to develop a new 
model for predicting the shear strength of concrete beams reinforced with FRP bars. The 
geometrical and mechanical properties of the concrete section as well as the FRP bars were 
used as the input features during the development of the prediction model. It was observed that 
the proposed model was having better performance compared to the predictions made by 
models in ACI 440.1R-06, ISIS-M03-07, BISE, JSCE design recommendation, CNR-DT 203-
06 Task Group, and Kara.  

Degtyarev [61] proposed a new ML model (ANN) for predicting the elastic shear buckling 
loads and the ultimate shear strengths of the channels with slotted webs. A large dataset 
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consisting of 3512 numerical simulation results was used for training and testing the proposed 
model. The hyperparameters of the ANN model were optimised using a grid search in this 
investigation. The results of the final model were a good match with the numerical results. 
Limbachiya and Shamass [62] used ANN to predict the web-post buckling shear strength of 
cellular beams. A dataset consisting of 304 numerical results was used to train, validate and 
test the proposed 16 models. Among the 16 tested models the model that used geometric 
parameters as features were able to make the best predictions. On comparing the results with 
that of the existing model it was understood that the proposed ANN model was able to predict 
with superior accuracy. Degtyarev and Naser [63]depicted the potential of ML in accurately 
predicting the shear strength of CFS channels with staggered web perforations using five 
different boosting algorithms. They used gradient boosting regressor, XGBoost, LightGBM, 
CatBoost, and AdaBoost in their analysis. The dataset used for the investigation consisted of 
3512 simulation results. To optimise the performance of each of the proposed models, 
researchers tuned the hyperparameter of each algorithm to the best possible end. The elastic 
buckling loads and the ultimate shear strengths predicted by the model had a good agreement 
with the simulation results. The CatBoost model was observed to be better than all other tested 
models in this investigation. Based on the results a simple Python-based template was also 
developed by the researcher for easily calculating the shear buckling load and ultimate shear 
capacity of the channels. 

Mohammed and Ismail [64] reported on a new reliable soft computing model that can 
accurately predict the shear strength of RC beams. They considered the XGBoost and 
multivariable adaptive regression spline (MARS) algorithms to achieve this objective. A 
comparison of the predictions made by the proposed models with those predicted by SVMs 
and different empirical models already available in the literature is also included in this study. 
A detailed theoretical background of XGBoost, MARS, and SVM is provided in the initial part 
of their paper. Totally, 349 samples were collected from the literature for this research work 
[16,47,65–72]. Fourteen statistical parameters are provided for each feature in the database. In 
this study, the total dataset was divided into 80% and 20% for training and testing, respectively. 
Based on the statistical correlation between the dependent and independent parameters, nine 
different combinations of input parameters were selected to develop new models. The 
researchers employed different types of statistical metrics, such as the coefficient of 
determination (R2), root mean square error, mean absolute error, mean absolute percentage 
error, Nash–Sut–Cliffe efficiency, and modified index of agreement, to evaluate the prediction 
accuracy. Based on the results, the researchers observed that MARS exhibited superior 
performance in predicting and understanding the relationship between different parameters and 
shear strength. It was also noted that the predictions made by all the three models (XGBoost, 
MARS, and SVM) were better than those predicted by empirical relations available in the 
literature. 

Hosein Naderpour et al [73] conducted an investigation to determine the optimum structure for 
an ANN that can accurately predict the shear strength of concrete beams with stirrups. 
Researchers have proposed and compared the efficiencies of three ANN configurations to 
achieve their objectives. These models were developed using a database comprising 194 
experimental test results collected from the literature. It was ensured that all beams in the 
database failed in shear. Seven features were considered, namely, the strength of concrete, 
section width, effective depth, strength of transverse reinforcement, percentage of tensile 
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reinforcement, strength of tensile reinforcement, and transverse reinforcement ratio. The output 
parameter was the shear strength of the beam. In this study, the training and testing databases 
were formed using 85% and 15% randomly selected data, respectively. Before feeding the data, 
all samples were normalized to a range between -1 and 1. The general structure of the ANN 
developed in this study comprised a single middle layer with a feed-forward NN using the 
Levenberg–Marquardt algorithm. Researchers used different numbers of neurons and 
activation functions in the middle layer to evaluate the performance of different ANN 
structures. Two of the considered ANN consisted of eight neurons in the middle layer with a 
tansig activation function for the first and a purelin function for the second. To check the 
possibility of reducing the complexity of the ANN network, a third network with only one 
neuron in the middle layer was also considered by the researchers. A comparison of the results 
obtained for the developed models with those of the experimental results and with the values 
proposed by the ACI code was also presented by the researchers. Researchers evaluated the 
performance of all models using three statistical parameters: the coefficient of determination, 
root mean square error, and mean square error. Based on the results, it was observed that the 
first model with eight neurons in the middle layer and the tansig activation function 
outperformed all other models during the training and testing phases. Although the ANN model 
with a single middle layer could not perform as well as the other two ANN models, it was able 
to make better predictions than the ACI code. The results of this study show that even simple 
ANN models with less complexity can be used to obtain better shear strength predictions for 
beams. 

Rahman et al [74] conducted an investigation to develop a novel superior ML algorithm that 
could accurately predict the shear strength of SFRC beams with the least computational time. 
To obtain the best model, the researchers considered 11 different ML algorithms: linear 
regression, RF, RR, lasso regression, decision trees, SVMs, k-nearest neighbor, ANN, 
XGBoost, AdaBoost, and CatBoost. In this study, a database comprising the experimental 
results for 507 SFRC beams was collected from the literature and used by researchers. All 
SFRC beams considered had longitudinal reinforcements and no shear reinforcement to enable 
shear failure. Although the database comprised beams made with normal-to-high-strength 
concrete, the percentage of high- and ultra-high-strength concrete was lower. Approximately 
66% of the beams in the database were slender, whereas the remaining 34% were deep beams. 
Based on the information available in the literature, the ratio of shear span to effective depth, 
fiber volume fraction, fiber aspect ratio, steel fiber type, longitudinal reinforcement ratio, 
concrete compressive strength, and fiber factor were considered as the input parameters in this 
study. The researchers considered 80% of the database for training and the remaining 20% for 
testing. A 10-fold cross-validation method was used in this study. The details of the 10-fold 
cross-validation accuracy of all models for training and testing data are presented using box 
and whisker plots in this study. In this investigation, four statistical parameters, namely, the 
coefficient of determination (R2), adjusted R2, root mean square error, and mean absolute error, 
were used for the performance evaluation of each model. During comparison, it was observed 
that the XGBoost model exhibited the best performance among the 11 models, with R2 values 
of 0.998 and 0.722 for training and testing, respectively. The RF model was the second-best 
performer among the considered models. The rigid regression algorithm was observed to be 
the poorest performer among the 11 algorithms. Moreover, the researchers also compared the 
shear capacity predicted by their models with experimental results and equations proposed by 
different authors. Shear capacity models proposed by Ashour et al. [75], Khuntia et al. [76], 
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Sharma [77], Sarveghadi et al. [78], and Alam [79] were used for this purpose. The newly 
developed XGBoost algorithm outperformed all the other models, as well as the models 
proposed in the literature. An attempt was also made to comprehend the influence of different 
input parameters on the shear strength prediction. Based on the investigation, it was observed 
that the ratio of shear span to effective depth is the most critical feature for predicting the shear 
capacity of SFRC beams, followed by the ratio of longitudinal reinforcement and concrete 
strength. The volume fraction of the fiber and the type of fiber also had a significant influence 
on the shear capacity of the SFRC beam. 

Solhmirzaei et al [80] developed a computational framework using ML technique for 
classifying the failure type and predicting the shear strength of ultra-high-performance concrete 
(UHPC) in the MATLAB simulation environment. In their study, SVM, k-nearest neighbor, 
and ANN algorithms were used for the classification of failure types, and a model for shear 
strength prediction was developed using genetic programming. The database used in this study 
was developed based on the experimental results of UHPC beams, high-performance concrete 
beams, and reactive powder concrete beams available in the literature. The database also 
comprised beams with different cross-sectional shapes and prestressed concrete beams. Feature 
selection techniques were used to finalize the critical features of the prediction model. The type 
of concrete, shape of the cross-section, compressive strength, width of the section, effective 
depth, reinforcement ratio, shear span to effective depth, shear reinforcement ratio, fiber 
volume, aspect ratio of the fiber, and level of prestressing were considered in this investigation. 
The values of the minimum, maximum, mean, and standard deviation of the selected features 
were included in the manuscript. In this study, a k-fold cross-validation technique was 
employed during training to control the overfitting of the data. The scholars divided the entire 
database into three groups: training, validation, and testing. Seventy percent of the available 
data were used for training and validation, and the remaining 30% were used for testing in this 
study. The validation dataset was used to optimize the hyperparameters used in the model to 
obtain the best classification. Based on the results of validation, it was observed that the best 
classification percentage of 81% was obtained using the linear kernel in the case of SVM. In 
the case of the k-nearest neighbor, optimum classification was obtained with a value of 20 for 
the number of nearest neighbors. A feed-forward 2-layer ANN comprising one hidden layer 
with ten neurons was observed to be optimum for the ANN model. A confusion matrix and 
receiver operating characteristic curve were provided to illustrate the effectiveness of each of 
the algorithms employed in the failure classification. Based on these data, the ANN exhibited 
better performance for correctly classifying the failure model in comparison to the other two 
models. The researchers used a modified database to develop a shear strength prediction model 
by removing the details of beams that failed in flexure. The dataset was divided into three 
groups. The first and second groups represent the details of the non-prestressed beams with and 
without stirrups. The third dataset consisted of the prestressed beams. These groups consisted 
of 191, 52, and 45 datasets, respectively. A comparison of the predictions made by the newly 
developed model was completed with the predictions made by the models proposed by Ahmad 
et al.[81], Imam et al [82], Sharma [77], Narayanan and Darwish [8], Ashour et al. [75] and 
Kwak et al [83] and the recommendations of international codes. Upon comparison, it was 
observed that the proposed model could make a better prediction with a coefficient of 
determination (R2 value) of 0.92. It was also observed that the UHPC and FRC models 
available in the literature underestimated shear capacity. 
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Kaveh et al. [84] proposed novel ML models for predicting the shear strength of beams without 
stirrups and reinforced with FRP bars using three different algorithms. They employed LASSO 
regression, RF, and XGBoost to develop new prediction models. A database comprising 205 
FRP-reinforced beams was used in this investigation. The width of the web, effective depth of 
the section, shear span-to-depth ratio, compressive strength of concrete, percentage of tensile 
reinforcement, yield strength of the reinforcing bar, and Young’s modulus were considered as 
the input parameters for developing the model. Based on feature importance analysis, 
researchers observed that the width of the web, effective depth of the cross-section, shear span 
to effective depth ratio, and compressive strength of concrete were more correlated with the 
shear strength. Statistical parameters related to the input data, such as the minimum value, 
maximum value, mean, and standard deviation, were included in the manuscript.  k-fold cross-
validation was employed to utilize the entire dataset. The performance of each model was 
compared using root mean square error, mean absolute error, and R-squared values. 
Furthermore, researchers also compared the predictions made by their models with those 
suggested by international codes and models available in the literature. It was observed that the 
predictions made by the XGBoost and RF models were superior to those of the regression and 
other empirical models. The results predicted for FRP-reinforced concrete beams using the 
relations available in the standards and the literature were conservative.   

Hosein Naderpour et al [73] developed a new relationship for predicting the shear strength of 
beams reinforced with FRP bars using an ANN algorithm. The model was developed using a 
database comprising 110 experimental results for beams reinforced with FRP bars. Seventy 
percent of the data were considered for the training of the model. Ten percentage and twenty 
percentage of the data were used for validation and testing respectively. Prior to feeding the 
input, the data were normalized in the range of -1 to 1. The compressive strength, percentage 
of FRP reinforcement, Young’s modulus of FRP reinforcement, shear span-to-depth ratio, web 
width, and effective depth were considered as the input parameters. The statistical 
characteristics of the features, such as minimum, maximum, range, average, and standard 
deviation, were also calculated and provided by the researchers. They provided an optimal 
ANN model with two hidden layers comprising a single node. A log-sigmoid function was 
used as the transfer function. To evaluate performance, different statistical parameters, such as 
the coefficient of variance (R2), mean absolute error, root mean square error, and mean square 
error, were considered. A comparison of the predictions made by the newly proposed equation 
was made with models proposed by researchers [85–88] and international standards like ACI 
440.1R-15, BISE and ISIS-m03-01. It was observed that in training and testing, the proposed 
model exhibited similar performance to that of ACI and Tureyen-Frosch’s equation in terms of 
the R2 value. However, during validation, the proposed model outperformed all other models. 
Considering the results of other evaluation matrices, researchers could show that the newly 
developed simple ANN model could achieve better performance among the tested models. A 
sensitivity analysis was conducted using the finalized weights obtained after training to 
investigate the influence of different features on the shear strength. The depth of the cross-
section was obtained as the most significant parameter based on the sensitivity analysis. The 
compressive strength of concrete was another parameter that had a significant effect on the 
shear strength. With a model developed using a very simple ANN network, researchers 
demonstrated the potential of NNs to make predictions comparable to those proposed by 
international standards and available models.      
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Feng et al. [89] adopted ensemble learning methods to predict the shear strength of RC deep 
beams with and without web reinforcement. Ensemble methods combine the decisions of 
multiple individual ML methods based on specific rules and generate enhanced predictions. 
Several investigations have demonstrated the ensemble techniques' superior generalization 
capability [90–92]. In their study, researchers used four different ensemble methods, namely 
RF, adaptive boosting (AdaBoost), gradient boosting regression tree (GBRT), and extreme 
gradient boosting (XGBoost), to construct prediction models. A database containing 271 
sample data (80% for training and 20% for testing) with 16 different input parameters was 
considered by the researchers for developing the new models. Sample data were collected from 
different published experimental results available in the literature by the researchers [18,93–
101]. To avoid the scale effect, researchers normalized the input parameters to the range 0–1. 
Although ML models can present accurate predictions for different complex problems, they 
are still considered black-box models because it is difficult to explain the physical or 
mechanical background of the considered problem based on them. As a solution to this 
problem, the researchers included feature importance and partial dependence analyses to 
interpret the developed model. A comparison between the prediction capacity of these four 
ensemble models and the performance of these models in comparison to that of empirical 
equations available in four different international codes (design codes of China, USA, Canada, 
and Europe) was also presented in their manuscript. The performance of the developed model 
was also compared with that of three standard ML models. ANN, SVM, and DT were the 
models used for this purpose. Based on a literature survey, the authors observed that most of 
the previous research provided only the theoretical development of methodologies along with 
the outcomes achieved using ML techniques. Therefore, in their study, the researchers included 
additional details on the implementation of the training and testing processes to help readers 
who are new to this field. In their work, the researchers finalized the hyperparameters for the 
models by combining k-fold validation with a grid search method. The use of k-fold validation 
will aid in overcoming the bias introduced by random sampling of the training set. Four 
statistical parameters (the coefficient of determination R2, root mean squared error, mean 
absolute error, and mean absolute percentage error) were used to evaluate the performance of 
the different models. The 16 features selected in this study were the span of the beam, beam 
depth, effective depth, beam width, shear span, span-to-depth ratio, shear span-to-depth ratio, 
longitudinal reinforcement ratio, strength of longitudinal reinforcements, horizontal and 
vertical web reinforcement ratio, spacing and strength of transverse reinforcement, and 
compressive strength of concrete. The mean values of the effective span, shear span, depth, 
compressive strength, and shear strength are 1484.45 mm, 467.73 mm, 523.48 mm, 30.89 MPa, 
and 287.20 kN respectively. The researchers compared the predicted results with experimental 
data to assess the performance of all four models based on the testing dataset. The RF and 
GBRT models performed similarly, with R2 values of 0.906 and 0.910, respectively. Better 
performance was displayed by both the AdaBoost model and the XGBoost model, with an R2 
value of 0.928 for the latter. Comparing the predictions with single ML models, the researchers 
observed that even the best individual ML model could not catch up with the worst-performing 
ensemble learning model. When comparing the results with models available in different 
international standards, researchers observed larger variations for beams with shear span-to-
depth ratios of less than one. In this comparison, the models developed by the researchers 
outperformed those available in the standards. However, the variation in the results based on 
the models available in the codes can be attributed to the use of safety factors and assumptions 
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taken from the viewpoint of practical applications. The compressive strength of concrete was 
observed to be the most significant factor in predicting the shear strength based on the feature 
importance and partial dependence analysis conducted by researchers. The other critical factors 
were observed to be the shear span, vertical web reinforcement spacing, horizontal web 
reinforcement spacing, beam width, and shear span-to-depth ratio.  

Chaabene and Nehdi [102] developed a novel hybrid model to classify the failure mode and 
predict the shear strength of SFRC beams. The model was developed by combining atom search 
optimization with an ANN. An atom search optimization algorithm based on the population 
was first introduced by Zhao et al. [34]. It was developed on the basis of molecular dynamics. 
Accordingly, a global solution is obtained by iteratively updating the positions and velocities 
of an atomic population. The database used in this investigation consisted of the experimental 
results for the 573 SFRC beams. It included beams without stirrups that failed in the shear, 
flexure-shear, and flexure modes. From this, a database containing 484 specimens for which 
the failure model was either shear or flexural shear was employed to develop the shear strength 
prediction model. The database used for developing the classification model contained 475 
specimens that failed in the shear, flexure-shear, and flexure modes. The proportion of beams 
that failed in flexure in the database was less (89 specimens) than that of the other failure 
modes. Parameters, such as the width of the beam, effective depth of the beam, longitudinal 
steel ratio, shear span-to-depth ratio, steel fiber volume, aspect ratio of the fiber, compressive 
strength of concrete, and tensile strength of the fibers were considered as features during 
training and testing. Researchers have used a shallow ANN consisting of one hidden layer with 
10 nodes to avoid overfitting and reduce complexity. They arrived at this configuration based 
on a trial-and-error approach. Based on the attained accuracy, the optimum values for the 
number of atoms and iterations were obtained as 125 and 150, respectively. Researchers 
conducted the training process of their model using randomly selected specimens that 
constituted 75% of the database, and the remaining 25% was employed for testing. The 
adaptation of atom search optimization helped to optimize the NN weights and biases by 
minimizing the fitness function. A flow chart showing the details of developing the hybrid 
model proposed by the researchers is shown in Fig 7. 

 

 

 

 

 

 

Fig 7 Flow chart of Hybrid model (ASO-ANN model) 

In this study, the data were normalized using the z-score method before being fed into the 
algorithm. To evaluate the performance of the new ASO-ANN hybrid model, researchers 
compared its results with the shear strength predicted by six different empirical equations as 
well as with those of several hybrid and standalone ML techniques, including ANN, genetic 
algorithm optimized NN, particle swarm optimized NN, SVR, particle swarm optimized 
network, and SVR. Performance was assessed using statistical parameters, such as root mean 
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square error, correlation coefficient, mean absolute error, and modified agreement index in 
their research. The performance of the proposed ASO-ANN hybrid model was observed to be 
superior, based on all statistical parameters. Because the developed model was a black box 
model, researchers conducted a sensitivity analysis with the aim of understanding the influence 
of the input parameters on shear strength. It was observed that the shear span-to-depth ratio 
and compressive strength of concrete were the most crucial factors influencing the shear 
strength. Although the proposed ASO-ANN model yielded superior accuracy, it should be 
mentioned that because of the difficulty in convergence using the adopted algorithm, this model 
can demand a higher computational time. 

In this study, researchers also developed a model for the classification of failure modes using 
four different methods: DT, k -Nearest Neighbors, SVM, and naïve Bayes. A 10-fold cross-
validation method was employed in this investigation to train all models. To account for the 
gap arising due to the lower number of flexure-shear and flexural failure modes in the database, 
a novel performance metric was suggested by the researchers, as given in Eq (4).  

𝛾𝛾 = �1
3
� �cFS

NFS
+ cS

NS
+ cF

NF
� × 100      (4) 

Where cFS, cS, cF, NFS, NS, and NF represent the correctly predicted and total number of 
specimens that failed in flexure-shear, shear, and flexure, respectively. Based on the results, it 
was observed that k -nearest neighbor had the best accuracy, and naïve Bayes had the lowest 
accuracy. Because there was an interaction between different features in the considered 
problem, researchers suggested the assumption of feature independence as the reason for the 
low accuracy of naïve Bayes.  

Armaghani et al [103] investigated the development of an optimized shear prediction model 
using an ANN. The researchers employed a backpropagation NN to achieve their objectives. 
The features considered in this study were the width of the beam, effective depth, compressive 
strength of concrete, yield strength of tensile reinforcement, yield strength of transverse 
reinforcement, ratio of shear span to effective depth, tensile reinforcement ratio, transverse 
reinforcement ratio, and ratio of effective span of the beam to effective depth. A database 
containing the experimental results for 300 beams with stirrups was collected from the 
literature and used in this investigation. To select the optimum algorithm for training the ANN 
model, researchers compared the performance of different training functions, such as quasi-
Newton, resilient, one-step secant, gradient descent with momentum and adaptive learning rate, 
and Levenberg–Marquardt backpropagation algorithms. Because the performance of the 
Levenberg–Marquardt backpropagation algorithm was superior to that of the remaining 
algorithms, the researchers used it for the remaining part of their investigation. The input and 
output parameters were normalized using the min-max normalization method before feeding 
into the program. By varying the number of features used, the researchers proposed and 
evaluated four different ANN structures. The first was having all the input parameters. The 
second structure is formulated by combining the yield strength of the tensile reinforcement and 
its percentage into a single feature. The number of features in the third structure was reduced 
by neglecting the width and the effective depth of the beam. The final structure was obtained 
by avoiding the compressive strength of the concrete from the input parameters. To account 
for the effect of compressive strength, researchers made the output in the fourth structure a 
dimensionless term by dividing the shear strength by the compressive strength. All four 
configurations were subdivided into a network with one hidden layer and a network with two 
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hidden layers. All cases were tested with normalized and raw data to comprehend the 
significance of parameter normalization. In these 16 scenarios, researchers used different 
numbers of neurons and three different functions. Accordingly, a large number of neural 
networks were designed and trained by the researchers in this investigation. Sixty percent of 
the samples from the database were used for training the neural networks, and 20% samples 
were used for validation and testing respectively. Statistical parameters, such as the Pearson 
correlation coefficient, root mean square error, mean absolute percentage error, and variance, 
were used to evaluate the performance of the developed models. In addition, a novel 
engineering index called the a20-index was used. This index is defined as the ratio of the 
number of samples with an experimental value to a predicted value between 0.80 and 1.20 and 
that of the total number of samples. The performance of the optimum model obtained in all 
four categories by varying the number of features was compared with the performance of 
models suggested by international standards, such as the Eurocode (EC2), ACI building code, 
Canadian Code, New Zealand Standards, and with the model proposed by Gandomi et al [104]. 
The results reveal that all four proposed models were able to depict better performance 
compared to predictions made by codes and models available in the literature. The results of 
this investigation also highlight the superior shear strength prediction capacity of the ANN 
models.  

Hossain et al [53] investigated the development of a new shear strength prediction model for 
medium-to-ultra-high-strength SFRC beams using ANNs. A database comprising 176 
experimental results was used to test and validate the proposed model. An additional database 
comprising 36 experimental results was used to test the model. Researchers have used a 
backpropagation network with the Levenberg–Marquardt algorithm to develop the prediction 
model. The features considered in this investigation were the percentage of steel fibers, aspect 
ratio of steel fibers, percentage of tensile reinforcement, strength of concrete, ratio of shear 
span to effective depth, fiber factor, beam width, beam depth, and aggregate size. The minimum 
and maximum values of the different features and output parameters have been provided in the 
manuscript. The final architecture of the network was arrived at through a trial-and-error 
process. First, the researchers kept the number of features at nine and varied the number of 
neurons in the hidden layers from 2 to 10. After determining the optimum number of neurons 
in the hidden layer, the number of input parameters was varied, and the critical input parameters 
were selected. The performance of the network was evaluated using statistical parameters, such 
as the degree of agreement, mean squared error, and root mean squared error. In this study, a 
network architecture with nine input parameters and five neurons in the hidden layer was found 
to be the optimum configuration. Based on the results, researchers further concluded that the 
shear span to effective depth ratio is the most influential parameter, followed by the percentage 
of longitudinal reinforcement and the compressive strength of concrete. Researchers also 
presented a comparison of the performance of their model with the values predicted by 
empirical relations proposed by different researchers like Narayanan and Darwish [10], Ashour 
et al. [75], Sharma [77], Khuntia et al. [76] and Shin et al [105]. Based on the results of this 
comparison, it was observed that the proposed model was capable of making accurate 
predictions for medium-, high-, and ultra-high-strength SFRC beams. Notably, the empirical 
relations could not reasonably predict the shear strength of ultra-high-strength SFRC beams.  
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5. Challenges and future scope for machine learning in structural engineering 

In the last few years, researchers and the engineering community have witnessed a drastic 
increase in the adaptation of ML for solving structural engineering problems. Although this 
method was able to provide accurate solutions for many complex problems in civil engineering, 
many challenges must be overcome for researchers and engineers to adopt it for practical 
engineering problems. The primary challenge for a new structural engineer in this field is the 
selection of an appropriate algorithm for the considered problem. Many ML algorithms have 
been developed and are readily available. As these algorithms were developed with the aim of 
solving a specific problem, the accuracy of the results for a problem will greatly depend on the 
correct selection of these algorithms and the context of the problem to which it is applied. 
Therefore, the user should be well aware of their strengths and weaknesses. Although different 
comparative studies are available on the use of various algorithms to solve different structural 
engineering problems, the conclusions arrived at by the researchers are observed to be 
contradictory [64,74,80,84,89,106–108]. Extensive research is required to understand and 
highlight the feasibility and efficiency of various algorithms in solving different structural 
engineering problems. The selection of the optimum number and value of the hyperparameters 
associated with each of these algorithms is the next challenge faced by structural engineers. 
Most ML algorithms have different hyperparameters. The selection of the required 
hyperparameters and the values provided for these parameters will strongly influence the speed 
and accuracy of the final model. Currently, it is difficult for beginners to determine the 
optimum number and value of these parameters. The authors believe that more research 
focused on evaluating the optimum hyperparameter for various ML algorithms applied to 
different structural engineering problems will be useful for beginners in this field. Another 
considerable challenge faced in this field is the quantity and quality of the databases available 
for different problems. Even though the amount of data required for training and validation 
using different algorithms varies, most algorithms require a large dataset to produce good 
models. Care should also be taken to ensure that the samples present in the dataset cover 
different parameters that could influence the considered output. To ensure that the final model 
is not biased to some parameters, it should also be ensured that the frequency of each parameter 
in the sample is sufficient and does not largely outnumber the other. Another challenge faced 
by some of the widely used algorithms like ANN is the black box problem. Even though these 
algorithms are able to produce accurate results, the level of dependability is still questioned by 
many researchers as the details of operations happening behind these algorithms are not known 
to the user. It is difficult to understand the contribution of different influencing parameters in 
reaching the final predicted values. This will give way to lack of confidence in using them in 
real life problems. A solution to solve this problem is to adopt physics-based models or to use 
feature importance study or methods like shapley additive explanations (SHAP) along with the 
prediction algorithms. Again, these are some of the areas where more research is needed. Even 
though, with the application of machine learning more accurate solutions were developed for 
many complex engineering problems, more research addressing the above-mentioned 
challenges is necessary to provide confidence for the adaptation of this method to real-life 
problems. 

6. Summary and Conclusion 

The high potential of ML to provide accurate solutions for structural engineering problems has 
attracted the attention of researchers and civil engineers. This is evident from the exponentially 
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increasing number of publications by researchers who utilize ML-based methods for solving 
complex engineering problems. Numerous researchers have already depicted the potential of 
this method to provide an accurate solution for prediction and classification problems. This 
paper includes the details of basic terminologies associated with ML and a detailed discussion 
of the concept of commonly used algorithms (13 algorithms) for solving structural engineering 
problems. It will help beginners in this field understand the basics of ML and enable them to 
easily utilize its potential in their future research. A comprehensive review of the literature 
related to shear strength prediction of conventional concrete beams, SFRC beams, beams 
reinforced with FRP bars, and high-strength concrete beams is also presented to highlight the 
potential of ML in making accurate predictions for complex structural engineering problems. 
A detailed discussion on the major challenges faced in this field, as well as the scope for future 
research in this field, are also included in this paper. The major conclusions drawn from the 
current study are as follows. 

• ML is a rapidly emerging field that can replace empirical and semi-empirical prediction 
models that are currently used in codes and standards. 

• The accuracy of ML-based algorithms greatly depends on the quantity and quality of 
the database used for training and validation. 

• The use of feature selection technique, based on the type of features and algorithm used, 
is highly recommended to improve the accuracy of the final model. 

• As far as possible, it should be ensured that the samples in the selected dataset cover 
the maximum range possible. 

• The dataset should contain sufficient number of samples to represent different possible 
variation of each feature. 

• The K-fold cross-validation technique can be used to exploit the complete dataset and 
reduce the overfitting of the model. 

• The use of separate training, validation and testing dataset will help in preventing data 
leakage. 

• The majority of the studies utilized ANNs for developing prediction models. 
• In recent years, more studies have been conducted using ensemble and hybrid models, 

which have resulted in enhanced performance and accuracy compared with standalone 
models. 

• Depending on the type of algorithm used and the dataset, the hyperparameters of the 
learner should be optimised for enhancing the model performance. 

• Most ML models are black-box systems, for which it is difficult to comprehend what 
is happening internally. This reduces the confidence in their use for complex 
engineering problems. 

• There is a need to develop new ML algorithms that are easily interpretable so that they 
can be used safely to solve complex engineering problems with confidence. 

• In the considered studies, XGBoost, Random Forest and ANN algorithms were 
observed to be depicting better performance for shear strength prediction.  

7. Acknowledgement 

The present research was supported by the Secondary Century Fund (C2F) scholarship for Post-
Doctoral fellows and the Catalyst Grant. The Catalyst Grant is funded by the Thai-UK World-
class University Consortium supported by the British Council and the Office of the Permanent 



28 
 

Secretary, Ministry of Higher Education, Science, Research and Innovation. The authors 
acknowledge and extend their sincere gratitude for the support extended by C2F and the Thai-
UK World-class University Consortium. 

Reference 

[1] Kuntal VS, Chellapandian M, Prakash SS. Efficient near surface mounted CFRP shear 
strengthening of high strength prestressed concrete beams – An experimental study. 
Compos Struct 2017;180:16–28. https://doi.org/10.1016/j.compstruct.2017.07.095. 

[2] Abambres M, Lantsoght EOL. Neural network-based formula for shear capacity 
prediction of one-way slabs under concentrated loads. Eng Struct 2020;211:110501. 
https://doi.org/10.1016/j.engstruct.2020.110501. 

[3] Abdulrahman M, Mahmood S. Strength of Reinforced Reactive Powder Concrete 
Hollow Beams. Tikrit J Eng Sci 2019;26:15–22. https://doi.org/10.25130/tjes.26.2.03. 

[4] ACI318-14 A. Building code requirements for structural concrete (ACI 318-08) and 
commentary. American Concrete Institute; 2008. 

[5] Oh BH, Lim DH, Yoo SW, Kim ES. Shear behaviour and shear analysis of reinforced 
concrete beams containing steel fibres. Mag Concr Res 1998;50:283–91. 

[6] K. H. Tan  and P Paramasivam KM. Shear Behavior of Steel Fiber Reinforced 
Concrete Beams. ACI Struct J n.d.;90. https://doi.org/10.14359/9646. 

[7] Mansur MA, Ong KCG, Paramasivam P. Shear strength of fibrous concrete beams 
without stirrups. J Struct Eng 1986;112:2066–79. 

[8] Darwish RN and IYS. Use of Steel Fibers as Shear Reinforcement. ACI Struct J 
n.d.;84. https://doi.org/10.14359/2654. 

[9] Lim TY, Paramasivam P, Lee SL. Shear and moment capacity of reinforced steel-
fibre-concrete beams. Mag Concr Res 1987;39:148–60. 

[10] Darwish RN and IYS. Fiber Concrete Deep Beams in Shear. ACI Struct J n.d.;85. 
https://doi.org/10.14359/2698. 

[11] Samir A. Ashour  and Faisal F. Wafa GSH. Shear Behavior of High-Strength Fiber 
Reinforced Concrete Beams. ACI Struct J n.d.;89. https://doi.org/10.14359/2946. 

[12] R. Narayam Swamy  and Andy T. P. Chiam RJ. Influence of Steel fibers on the Shear 
Resistance of Lightweight Concrete I-Beams. ACI Struct J n.d.;90. 
https://doi.org/10.14359/4201. 

[13] Perry Adebar  Daniel St.-Pierre, and Brent Olund SM. Shear Tests of Fiber Concrete 
Beams without Stirrups. ACI Struct J n.d.;94. https://doi.org/10.14359/462. 

[14] Li VC. Steel and Synthetic Fibre as Shear Reinforcement. ACI Mater Jouornal 
1992;89:499–508. 

[15] Yoo D-Y, Yang J-M. Effects of stirrup, steel fiber, and beam size on shear behavior of 
high-strength concrete beams. Cem Concr Compos 2018;87:137–48. 

[16] Roller JJ, Russel HG. Shear strength of high-strength concrete beams with web 
reinforcement. Struct J 1990;87:191–8. 



29 
 

[17] Pendyala RS, Mendis P. Experimental study on shear strength of high-strength 
concrete beams. Struct J 2000;97:564–71. 

[18] Oh J-K, Shin S-W. Shear strength of reinforced high-strength concrete deep beams. 
Struct J 2001;98:164–73. 

[19] Shin S-W, Lee K-S, Moon J-I, Ghosh SK. Shear strength of reinforced high-strength 
concrete beams with shear span-to-depth ratios between 1.5 and 2.5. Struct J 
1999;96:549–56. 

[20] Watanabe F, Kabeyasawa T. Shear Strength of RC Members with High-Strength 
Concrete. Spec Publ 1998;176:379–96. 

[21] Elzanaty AH, Nilson AH, Slate FO. Shear capacity of reinforced concrete beams using 
high-strength concrete. J. Proc., vol. 83, 1986, p. 290–6. 

[22] Chaallal O, Nollet M-J, Perraton D. Shear strengthening of RC beams by externally 
bonded side CFRP strips. J Compos Constr 1998;2:111–3. 

[23] Diagana C, Li A, Gedalia B, Delmas Y. Shear strengthening effectiveness with CFF 
strips. Eng Struct 2003;25:507–16. 

[24] Dias SJE, Barros JAO. Performance of reinforced concrete T beams strengthened in 
shear with NSM CFRP laminates. Eng Struct 2010;32:373–84. 
https://doi.org/10.1016/j.engstruct.2009.10.001. 

[25] Shahnewaz M, Rteil A, Alam MS. Shear strength of reinforced concrete deep beams – 
A review with improved model by genetic algorithm and reliability analysis. Structures 
2020;23:494–508. https://doi.org/10.1016/j.istruc.2019.09.006. 

[26] Mohammad KI, Bashar A. T ikrit J ournal o f E ngineering S ciences Finite Element 
Analysis for RC Deep Beams under an Eccentric Load 2019;26:41–50. 

[27] Abuodeh OR, Abdalla JA, Hawileh RA. Prediction of shear strength and behavior of 
RC beams strengthened with externally bonded FRP sheets using machine learning 
techniques. Compos Struct 2020;234:111698. 
https://doi.org/10.1016/j.compstruct.2019.111698. 

[28] Pan L, Liu X, Xing G. Probabilistic shear strength models for reinforced concrete 
beams. World Earthq Eng 2015;31:107–13. 

[29] Amani J, Moeini R. Prediction of shear strength of reinforced concrete beams using 
adaptive neuro-fuzzy inference system and artificial neural network. Sci Iran 
2012;19:242–8. https://doi.org/10.1016/j.scient.2012.02.009. 

[30] Abdalla JA, Elsanosi A, Abdelwahab A. Modeling and simulation of shear resistance 
of R/C beams using artificial neural network. J Franklin Inst 2007;344:741–56. 
https://doi.org/10.1016/j.jfranklin.2005.12.005. 

[31] Naderpour H, Mirrashid M. Shear strength prediction of RC beams using adaptive 
neuro-fuzzy inference system 2020;27:657–70. 
https://doi.org/10.24200/sci.2018.50308.1624. 

[32] Jui-Sheng Chou, Thi-Phuong-Trang Pham, Thi-Kha Nguyen, Anh-Duc Pham N-TN. 
Shear strength prediction of reinforced concrete beams by baseline , ensemble , and 
hybrid machine learning models. Soft Comput 2020;24:3393–411. 



30 
 

https://doi.org/10.1007/s00500-019-04103-2. 

[33] Zhang J, Sun Y, Li G, Wang Y, Sun J, Li J. Machine ‑ learning ‑ assisted shear 
strength prediction of reinforced concrete beams with and without stirrups. Eng 
Comput 2020. https://doi.org/10.1007/s00366-020-01076-x. 

[34] Asteris PG, Armaghani DJ, Hatzigeorgiou GD, Karayannis CG, Pilakoutas K. 
Predicting the shear strength of reinforced concrete beams using Artificial Neural 
Networks. Comput Concr An Int J 2019;24:469–88. 

[35] Adhikary BB, Mutsuyoshi H. Prediction of shear strength of steel fiber RC beams 
using neural networks. Constr Build Mater 2006;20:801–11. 
https://doi.org/10.1016/j.conbuildmat.2005.01.047. 

[36] Madhusudan Khuntia  and Subhash C. Goel BS. Shear Strength of Normal and High-
Strength Fiber Reinforced Concrete Beams without Stirrups. ACI Struct J n.d.;96. 
https://doi.org/10.14359/620. 

[37] Keshtegar B, Bagheri M, Mundher Z. Shear strength of steel fi ber-uncon fi ned 
reinforced concrete beam simulation : Application of novel intelligent model 
2019;212:230–42. https://doi.org/10.1016/j.compstruct.2019.01.004. 

[38] Tanarslan HM. Predicting the Capacity of RC Beams Strengthened in Shear with Side-
Bonded FRP Reinforcements Using Artificial Neural Networks Predicting the 
Capacity of RC Beams Strengthened in Shear with Side-Bonded FRP Reinforcements 
2012;6440. https://doi.org/10.1163/156855411X615075. 

[39] Tanarslan HM, Kumanlioglu A, Sakar G. An anticipated shear design method for 
reinforced concrete beams strengthened with anchoraged carbon fiber‐reinforced 
polymer by using neural network. Struct Des Tall Spec Build 2015;24:19–39. 

[40] Chen T, He T, Benesty M. XGBoost : eXtreme Gradient Boosting. R Packag Version 
071-2 2018:1–4. 

[41] Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal 2002;38:367–78. 
https://doi.org/10.1016/S0167-9473(01)00065-2. 

[42] Sanad A, Saka MP. Prediction of ultimate shear strength of reinforced-concrete deep 
beams using neural networks. J Struct Eng 2001;127:818–28. 
https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818). 

[43] Cladera A, Marí AR. Shear design procedure for reinforced normal and high-strength 
concrete beams using artificial neural networks. Part I: Beams without stirrups. Eng 
Struct 2004;26:917–26. https://doi.org/10.1016/j.engstruct.2004.02.010. 

[44] Mansour MY, Dicleli M, Lee JY, Zhang J. Predicting the shear strength of reinforced 
concrete beams using artificial neural networks. Eng Struct 2004;26:781–99. 
https://doi.org/10.1016/j.engstruct.2004.01.011. 

[45] El Chabib H, Nehdi M, Saïd A. Predicting the effect of stirrups on shear strength of 
reinforced normal-strength concrete (NSC) and high-strength concrete (HSC) slender 
beams using artificial intelligence. Can J Civ Eng 2006;33:933–44. 
https://doi.org/10.1139/L06-033. 

[46] Ahmad A, Kotsovou G, Cotsovos DM, Lagaros ND. Assessing the accuracy of RC 
design code predictions through the use of artificial neural networks. Int J Adv Struct 



31 
 

Eng 2018;10:349–65. https://doi.org/10.1007/s40091-018-0202-4. 

[47] Cladera A, Marí AR. Shear design procedure for reinforced normal and high-strength 
concrete beams using artificial neural networks. Part I: beams without stirrups. Eng 
Struct 2004;26:917–26. https://doi.org/https://doi.org/10.1016/j.engstruct.2004.02.010. 

[48] Oreta AWC. Simulating size effect on shear strength of RC beams without stirrups 
using neural networks. Eng Struct 2004;26:681–91. 
https://doi.org/10.1016/j.engstruct.2004.01.009. 

[49] Seleemah AA. A neural network model for predicting maximum shear capacity of 
concrete beams without transverse reinforcement. Can J Civ Eng 2005;32:644–57. 
https://doi.org/10.1139/l05-003. 

[50] H. E-C, M. N, A. S. Predicting shear capacity of NSC and HSC slender beams without 
stirrups using artificial intelligence. Comput Concr 2005;2:79–96. 
https://doi.org/10.12989/CAC.2005.2.1.079. 

[51] Jung S, Kim KS. Knowledge-based prediction of shear strength of concrete beams 
without shear reinforcement. Eng Struct 2008;30:1515–25. 
https://doi.org/10.1016/j.engstruct.2007.10.008. 

[52] Elsanadedy HM, Abbas H, Al-Salloum YA, Almusallam TH. Shear strength prediction 
of HSC slender beams without web reinforcement. Mater Struct Constr 2016;49:3749–
72. https://doi.org/10.1617/s11527-015-0752-x. 

[53] Hossain KMA, Gladson LR, Anwar MS. Modeling shear strength of medium- to ultra-
high-strength steel fiber-reinforced concrete beams using artificial neural network. 
Neural Comput Appl 2017;28:1119–30. https://doi.org/10.1007/s00521-016-2417-2. 

[54] Ahmadi M, Kheyroddin A, Dalvand A, Kioumarsi M. New empirical approach for 
determining nominal shear capacity of steel fiber reinforced concrete beams. Constr 
Build Mater 2020;234:117293. https://doi.org/10.1016/j.conbuildmat.2019.117293. 

[55] Perera R, Barchín M, Arteaga A, Diego A De. Prediction of the ultimate strength of 
reinforced concrete beams FRP-strengthened in shear using neural networks. Compos 
Part B Eng 2010;41:287–98. https://doi.org/10.1016/j.compositesb.2010.03.003. 

[56] Tanarslan HM, Secer M, Kumanlioglu A. An approach for estimating the capacity of 
RC beams strengthened in shear with FRP reinforcements using artificial neural 
networks. Constr Build Mater 2012;30:556–68. 
https://doi.org/10.1016/j.conbuildmat.2011.12.008. 

[57] Abuodeh OR, Abdalla JA, Hawileh RA. Prediction of shear strength and behavior of 
RC beams strengthened with externally bonded FRP sheets using machine learning 
techniques. Compos Struct 2020;234:111698. 
https://doi.org/https://doi.org/10.1016/j.compstruct.2019.111698. 

[58] Kaveh A, Javadi SM, Moghani RM. Shear Strength Prediction of FRP-reinforced 
Concrete Beams Using an Extreme Gradient Boosting Framework. Period Polytech 
Civ Eng 2022;66:18–29. 

[59] Lee S, Lee C. Prediction of shear strength of FRP-reinforced concrete flexural 
members without stirrups using artificial neural networks. Eng Struct 2014;61:99–112. 
https://doi.org/https://doi.org/10.1016/j.engstruct.2014.01.001. 



32 
 

[60] Naderpour H, Poursaeidi O, Ahmadi M. Shear resistance prediction of concrete beams 
reinforced by FRP bars using artificial neural networks. Meas J Int Meas Confed 
2018;126:299–308. https://doi.org/10.1016/j.measurement.2018.05.051. 

[61] Degtyarev V V. Neural networks for predicting shear strength of CFS channels with 
slotted webs. J Constr Steel Res 2021;177:106443. 
https://doi.org/https://doi.org/10.1016/j.jcsr.2020.106443. 

[62] Limbachiya V, Shamass R. Application of Artificial Neural Networks for web-post 
shear resistance of cellular steel beams. Thin-Walled Struct 2021;161:107414. 
https://doi.org/https://doi.org/10.1016/j.tws.2020.107414. 

[63] Degtyarev V V, Naser MZ. Boosting machines for predicting shear strength of CFS 
channels with staggered web perforations. Structures 2021;34:3391–403. 
https://doi.org/https://doi.org/10.1016/j.istruc.2021.09.060. 

[64] Mohammed HRM, Ismail S. Proposition of new computer artificial intelligence 
models for shear strength prediction of reinforced concrete beams. Eng Comput 2021. 
https://doi.org/10.1007/s00366-021-01400-z. 

[65] Gilman JR, Brickey RT, Red MM. Monte Carlo techniques for evaluating producing 
properties. SPE rocky Mt. Reg. Reserv. Symp., OnePetro; 1998. 

[66] Frosch RJ. Behavior of Large-Scale Reinforced Concrete Beams with Minimum Shear 
Reinforcement. ACI Struct J n.d.;97. https://doi.org/10.14359/9626. 

[67] Ramirez MKJ and JA. Minimum Shear Reinforcement in Beams With Higher Strength 
Concrete. ACI Struct J n.d.;86. https://doi.org/10.14359/2896. 

[68] Mphonde AG. Use of Stirrup Effectiveness in Shear Design of Concrete Beams. ACI 
Struct J n.d.;86. https://doi.org/10.14359/3250. 

[69] Guney Ozcebe  and Tugrul Tankut UE. Evaluation of Minimum Shear Reinforcement 
Requirements for Higher Strength Concrete. ACI Struct J n.d.;96. 
https://doi.org/10.14359/669. 

[70] Scordelis BB and AC. Shear Strength of Reinforced Concrete Beams. ACI J Proc 
n.d.;60. https://doi.org/10.14359/7842. 

[71] Baghi H, Barros JAO. Design approach to determine shear capacity of reinforced 
concrete beams shear strengthened with NSM systems. J Struct Eng 
2017;143:4017061. 

[72] Young-Soo Yoon  and Denis Mitchell WDC. Minimum Shear Reinforcement in 
Normal, Medium, and High-Strength Concrete Beams. ACI Struct J n.d.;93. 
https://doi.org/10.14359/9716. 

[73] Naderpour H, Haji M, Mirrashid M. Shear capacity estimation of FRP-reinforced 
concrete beams using computational intelligence. Structures 2020;28:321–8. 
https://doi.org/10.1016/j.istruc.2020.08.076. 

[74] Rahman J, Ahmed KS, Khan NI, Islam K, Mangalathu S. Data-driven shear strength 
prediction of steel fiber reinforced concrete beams using machine learning approach. 
Eng Struct 2021;233:111743. https://doi.org/10.1016/j.engstruct.2020.111743. 

[75] Ashour SA, Hasanain GS, Wafa FF. Shear behavior of high-strength fiber reinforced 



33 
 

concrete beams. ACI Struct J 1992;89:176–84. 

[76] Khuntia M, Stojadinovic B, Goel SC. Shear strength of normal and high-strength fiber 
reinforced concrete beams without stirrups. ACI Struct J 1999;96:282–9. 

[77] Sharma AK. Shear Strength of Steel Fiber Reinforced Concrete Beams. ACI J Proc 
n.d.;83. https://doi.org/10.14359/10559. 

[78] Sarveghadi M, Gandomi AH, Bolandi H, Alavi AH. Development of prediction 
models for shear strength of SFRCB using a machine learning approach. Neural 
Comput Appl 2019;31:2085–94. https://doi.org/10.1007/s00521-015-1997-6. 

[79] Alam MS. Genetic algorithm for predicting shear strength of steel fiber reinforced 
concrete beam with parameter identification and sensitivity analysis. J Build Eng 
2020;29:101205. https://doi.org/10.1016/j.jobe.2020.101205. 

[80] Solhmirzaei R, Salehi H, Kodur V, Naser MZ. Machine learning framework for 
predicting failure mode and shear capacity of ultra high performance concrete beams. 
Eng Struct 2020;224:111221. https://doi.org/10.1016/j.engstruct.2020.111221. 

[81] Ahmad S, Bahij S, Al-Osta MA, Adekunle SK, Al-Dulaijan SU. Shear behavior of 
ultra-high-performance concrete beams reinforced with high-strength steel bars. ACI 
Struct J 2019;116:3–14. https://doi.org/10.14359/51714484. 

[82] Imam M, Vandewalle L, Mortelmans F. Shear – moment analysis of reinforced high 
strength concrete beams containing steel fibres. Can J Civ Eng 1995;22:462–70. 
https://doi.org/10.1139/l95-054. 

[83] Kwak Y-K, Eberhard MO, Kim W-S, Kim J. Shear strength of steel fiber-reinforced 
concrete beams without stirrups. ACI Struct J 2002;99:530–8. 

[84] Kaveh A, Dadras Eslamlou A, Mahdipour Moghani R. Shear Strength Prediction of 
FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework. 
Period Polytech Civ Eng 2021;66:18–29. https://doi.org/10.3311/ppci.18901. 

[85] Deitz DH, Harik IE, Gesund H. One-way slabs reinforced with glass fiber reinforced 
polymer reinforcing bars. Spec Publ 1999;188:279–86. 

[86] Tureyen AK, Frosch RJ. Concrete Shear Strength: Another Perspective. ACI Struct J 
2003;100:609–15. 

[87] El-Sayed AK, El-Salakawy EF, Benmokrane B. Shear capacity of high-strength 
concrete beams reinforced with FRP bars. ACI Struct J 2006;103:383–9. 

[88] Michaluk CR, Rizkalla SH, Tadros G, Benmokrane B. Flexural behavior of one-way 
concrete slabs reinforced by fiber reinforced plastic reinforcements. ACI Struct J 
1998;95:353–65. 

[89] Feng DC, Wang WJ, Mangalathu S, Hu G, Wu T. Implementing ensemble learning 
methods to predict the shear strength of RC deep beams with/without web 
reinforcements. Eng Struct 2021;235:111979. 
https://doi.org/10.1016/j.engstruct.2021.111979. 

[90] Wang Z, Wang Y, Zeng R, Srinivasan RS, Ahrentzen S. Random Forest based hourly 
building energy prediction. Energy Build 2018;171:11–25. 
https://doi.org/https://doi.org/10.1016/j.enbuild.2018.04.008. 



34 
 

[91] Lahouar A, Ben Hadj Slama J. Hour-ahead wind power forecast based on random 
forests. Renew Energy 2017;109:529–41. 
https://doi.org/https://doi.org/10.1016/j.renene.2017.03.064. 

[92] Ma J, Cheng JCP. Identifying the influential features on the regional energy use 
intensity of residential buildings based on Random Forests. Appl Energy 
2016;183:193–201. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.08.096. 

[93] Kong F-K, Robins PJ, Cole DF. Web reinforcement effects on deep beams. J. Proc., 
vol. 67, 1970, p. 1010–8. 

[94] Clark AP. Diagonal tension in reinforced concrete beams. ACI J 1951;48:145–56. 

[95] Aguilar G, Matamoros AB, Parra-Montesinos GJ, Ramírez JA, Wight JK. 
Experimental evaluation of design procedures for shear strength of deep reinforced 
concrete beams. ACI Struct J 2002;99:539–48. 

[96] Quintero-Febres CG, Parra-Montesinos G, Wight JK. Strength of struts in deep 
concrete members designed using strut-and-tie method. ACI Struct J 2006;103:577–
86. 

[97] Tan K-H, Kong F-K, Teng S, Guan L. High-strength concrete deep beams with 
effective span and shear span variations. ACI Mater J 1995;92:395–405. 

[98] Ramakrishnan V, Ananthanarayana Y. Ultimate strength of deep beams in shear. ACI 
J 1968;65:87–98. 

[99] Liu L, Xie L, Chen M. The shear strength capability of reinforced concrete deep 
flexual member. Build Struct 2000;30:19–22. 

[100] Shaoxi G. The shear strength capability of reinforced concrete deep beam under 
symmetric concentrated loads. J Zhengzhou Technol Inst 1982;1:52–68. 

[101] Subedi NK, Vardy AE, Kubotat N. Reinforced concrete deep beams some test results. 
Mag Concr Res 1986;38:206–19. 

[102] Chaabene W Ben, Nehdi ML. Novel soft computing hybrid model for predicting shear 
strength and failure mode of SFRC beams with superior accuracy. Compos Part C 
Open Access 2020;3. https://doi.org/10.1016/j.jcomc.2020.100070. 

[103] Armaghani DJ, Hatzigeorgiou GD, Karamani C, Skentou A, Zoumpoulaki I, Asteris 
PG. Soft computing-based techniques for concrete beams shear strength. Procedia 
Struct Integr 2019;17:924–33. https://doi.org/10.1016/j.prostr.2019.08.123. 

[104] Gandomi AH, Alavi AH, Gandomi M, Kazemi S. Formulation of shear strength of 
slender RC beams using gene expression programming, part II: With shear 
reinforcement. Measurement 2017;95:367–76. 

[105] Shin S-W, Oh J-G, Ghosh SK. Shear behavior of laboratory-sized high-strength 
concrete beams reinforced with bars and steel fibers. Spec Publ 1994;142:181–200. 

[106] Guo P, Meng W, Xu M, Li VC, Bao Y. Predicting mechanical properties of high-
performance fiber-reinforced cementitious composites by integrating micromechanics 
and machine learning. Materials (Basel) 2021;14. 
https://doi.org/10.3390/ma14123143. 

[107] Yaseen ZM, Deo RC, Hilal A, Abd AM, Bueno LC, Salcedo-Sanz S, et al. Predicting 



35 
 

compressive strength of lightweight foamed concrete using extreme learning machine 
model. Adv Eng Softw 2018;115:112–25. 
https://doi.org/10.1016/j.advengsoft.2017.09.004. 

[108] Koya BP, Aneja S, Gupta R, Valeo C. Comparative analysis of different machine 
learning algorithms to predict mechanical properties of concrete. Mech Adv Mater 
Struct 2021;0:1–18. https://doi.org/10.1080/15376494.2021.1917021. 

 


