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ABSTRACT 21 

Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi 22 

Arabia, with a view to establishing the concentrations in this major city, and quantifying the 23 

contributions of major sources.  Particulate and vapour  forms have been sampled and analysed 24 

separately.  The concentrations are compared to measurements from other sites in the Middle Eastern 25 

region and are towards the lower end of the range, being far lower than concentrations reported from 26 

Riyadh (Saudia Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in 27 

Damascus (Syria) and higher than those measured in Kuwait.  The partitioning between vapour and 28 

particle phases is similar to that in data from Egypt and China, but with many compounds showing a 29 

higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher 30 

concentration of airborne particulate matter in the former countries.  Concentrations in Jeddah were 31 

significantly higher at a site close to the oil refinery and a site close to a major ring road than at a 32 

suburban site to the north of the city.  Application of Positive Matrix Factorisation to the pooled data 33 

elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and 34 

these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, 35 

and to diesel/fuel oil combustion.   36 

 37 

Keywords:  Polycyclic aromatic hydrocarbons;  PAH;  Positive Matrix Factorisation; PMF; Source 38 

apportionment 39 

 40 

 41 

  42 
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1. INTRODUCTION 43 

Polycyclic aromatic hydrocarbons (PAH) have generated a great deal of interest over several decades 44 

owing to their known carcinogenic and mutagenic properties (Giger and Blumer, 1974). PAH are 45 

ubiquitous pollutants, present in the atmosphere in the vapour phase and associated with particulate 46 

matter (Harrison et al., 1996), as well as in other environmental media and foodstuffs. PAH congeners 47 

are mainly formed through incomplete combustion or pyrolysis of organic material and many have 48 

mutagenic and carcinogenic properties, leading to many human health concerns (Collins et al., 1998).  49 

Major anthropogenic sources include both stationary sources such as industrial and domestic 50 

combustion, and mobile sources including road traffic. PAH have multiple point and diffuse sources, 51 

and unlike other persistent organic pollutants, cannot be controlled by the introduction of substitute 52 

chemicals (Jang et al., 2013). With the percentage of the population living in urban areas increasing 53 

and liable to exposure to elevated concentrations of PAH, it is important to understand and assess the 54 

occurrence and sources of PAH.  55 

 56 

Numerous studies have assessed different methods of source apportionment, in an attempt to devise 57 

efficient strategies to reduce pollution of the urban atmosphere by PAH. For example, diagnostic ratios 58 

have been utilised to identify pyrogenic or petrogenic sources (Zhang et al., 2005), diesel or gasoline 59 

sources (El-Mubarak et al., 2014), fuel or combustion (De La Torre-Rouche et al., 2009) and traffic 60 

related sources (Katsoyiannis et al., 2007) and this work has recently been reviewed by Tobiszewski 61 

and Namiesnik (2012). Further studies, however, have highlighted the variable range of emission 62 

factors and compound ratios from given source categories, deeming this method of source 63 

apportionment imprecise (Katsoyiannis et al., 2011). In addition, more recent studies have suggested 64 

that diagnostic ratios are a useful tool for assessing atmospheric reactivity of PAH, rather than source 65 

apportionment, as these ratios are subject to small changes as the distance from the original source 66 
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increases (Alam et al., 2013; Alam et al., 2014; Keyte et al., 2013; Katsoyiannis and Breivik, 2014). 67 

Principal component analysis (PCA) has also been utilised as a source apportionment method which 68 

separates chemical constituents of the atmosphere according to their source using a statistical factor 69 

analysis method (Hopke et al., 2006; Mari et al., 2010).  However, PCA is subject to drawbacks 70 

including the issue of negative solutions. This has been subsquently overcome by using positive matrix 71 

factorisation (PMF) as the preferred technique of source apportionment of atmospheric constituents 72 

(Jang et al., 2013; Dvorska et al., 2012).  The other commonly used source apportionment method, the 73 

Chemical Mass Balance model, requires locally generated PAH source profiles which were not 74 

available.  75 

A vast number of measurements of airborne concentrations of PAH have been reported from various 76 

geographical locations, including UK, Europe, USA and China. However, very little information has 77 

been reported from the Middle East. The environmental concerns of Saudi Arabia, in particular, are 78 

increasing with increasing developmental activity (Magram et al., 2009). Jeddah, the second largest 79 

city and most significant commercial centre in Saudi Arabia, has experienced a rapid and diverse 80 

growth over the last thirty years and has been accompanied by environmental degradation. Air quality 81 

has progressively deteriorated and the number of vehicles has increased to more than 1.4 million (Saudi 82 

Network, 2008). The city’s major stationary PAH sources include a desalination plant, a power 83 

generation plant and an oil refinery. The oil refinery was originally built in a non residential area, but 84 

with urbanisation, is now in the middle of a highly populated area (Al-Jahdal and Bisher, 2008).  85 

In this study, we report the airborne concentration of 14 PAH compounds in both vapour and 86 

particulate phases in Jeddah, Saudi Arabia. Three sampling locations were chosen according to their 87 

proximity to the Jeddah oil refinery and data were collected simultaneously. Positive matrix 88 

factorisation is utilised to separate the chemical constituents according to their congener profile and the 89 

results are discussed in terms of likely source categories.  90 
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2. EXPERIMENTAL 91 

2.1 Site Location 92 

Sampling was conducted simultaneously at three locations  in Jeddah, the second largest city and most 93 

significant commercial centre in the Kingdom of Saudi Arabia, with a population of ca. 3.4 million. 94 

The sampling sites are shown in Figure 1. The locations where chosen according to their distance from 95 

the Jeddah oil refinery. Site A  was a primary school situated in a highly populated economically 96 

disadvantaged residential area, located in the Ghulail district, south of the city and ca. 700 m east of the 97 

Jeddah oil refinery. Site B was a primary school, located in the Al-Muntazahat district, East of Jeddah, 98 

ca. 150 m  adjacent to the heavily trafficked Al-Haramain ring road. Site C was an urban background 99 

site located in the Al-Murjan district, situated on the Red Sea Creek (Sharm Obhur), and is subjected to 100 

anthropogenic emissions from some moderately busy roads (nearest road ca. 300 m away) and 101 

surrounding activities from a few local residents. The samplers at all sites were located at a height of 102 

ca. 9 m above street level.  This was to ensure that contaminated road dust was not sampled, and to 103 

ensure that samplers were not interfered with. 104 

 105 

2.2 Sample Collection 106 

Daily (24 h) samples were collected simultaneously at the three sampling locations between 23 107 

February 2013 and 23 April 2013, using a polyurethane foam high volume air sampler (TE-PUF, Tisch 108 

Environmental, Inc). The sampler typically draws volumes of air in the range of 240 – 300 m3 over a 24 109 

h period, through a quartz microfibre filter (TE-QMA4 10.16 cm) substrate, to collect compounds in 110 

the particulate phase, followed by an absorbent polyurethane foam (PUF) substrate, to collect 111 

compounds present in the gaseous phase.  Temperatures during the study ranged between 26 and 30 °C 112 

for all three sites. 113 

  114 
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2.3 Sample Analyses 115 

Prior to sampling, the filters were preheated at 400 °C for 48 h in a box furnace, wrapped in clean 116 

preheated foil, placed in a cardboard box and sealed in an airtight metallic container.  The PUF 117 

substrates were pre-cleaned prior to their use in the field by immersing in 100 mL of dichloromethane 118 

(DCM) and ultrasonicating at 20 °C for 30 min. The solvent was then drained and the PUF substrates 119 

were left to dry in a sealed metal container under a stream of nitrogen. The clean and dry PUF 120 

substrates were subsequently sealed in airtight plastic bags and stored in the freezer.  Once exposed, the 121 

filter and PUF substrates were wrapped separately with clean preheated foil, enclosed in airtight plastic 122 

bags and stored at approximately -18 °C. 123 

 124 

Samples were analysed for 14 PAH using the methodology described previously (Delgado-Saborit et 125 

al., 2013). Briefly, filter and PUF substrates were spiked with 1000 pg µL-1 deuterated internal 126 

standards for quantification (see Supplementary Material for a list of these compounds). Filters were 127 

immersed in DCM and ultrasonicated for 15 min at 20 °C. The extract was subsequently dried and 128 

cleaned using a chromatography column filled with 0.5 g of anhydrous sodium sulphate (puriss grade 129 

for HPLC). The extract was further concentrated to 50 µL under a gentle N2 flow. PUF substrates were 130 

immersed in 100 mL of DCM and ultrasonicated for 20 min at 20 °C. The sample was then 131 

concentrated to 10 mL using N2 and subsequently dried and cleaned as outlined for the filters above. 132 

Samples were analysed for PAH compounds using Gas Chromatography (6890, Agilent Technologies) 133 

equipped with a non-polar capillary column (Agilent HP-5MS, 30m, 0.25 mm ID, 0.25 µm film 134 

thickness – 5 % phenylpolysiloxane) in tandem with a Mass Spectrometer (5973N, Agilent 135 

Technologies).  The precision of analysis was 8±4% and the accuracy, expressed as the difference 136 

between the measured and true value as a percentage of the true value was 6±4%.  The analytical 137 

detection limits varied widely between congeners, and sample detection limits estimated from analysis 138 
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of blank filters and PUFs all lay well below 1 pg m-3 for the 24-hour air samples. Further information 139 

regarding the analytical procedure can be found in Delgado-Saborit et al., 2013.   140 

 141 

2.4 Positive Matrix Factorisation (PMF) 142 

PMF is a multivariate receptor model that is used to identify a number of factors (p), the species profile 143 

(f) of each source and the amount of mass (g) contributed by each factor to each individual sample, and 144 

is defined as follows: 145 

𝑥𝑖𝑖 = � g𝑖𝑖 𝑓𝑖𝑖 + 𝑒𝑖𝑖

𝑝

𝑖=1

 

where xij is the jth measured species concentration in the ith sample, gik is the is the factor contribution of 146 

k source to ith sample, fkj is the fraction of j species in the k source, and eij is the residuals matrix. PMF 147 

is described in detail elsewhere (Paatero and Tapper, 1994; Paatero, 1997). Briefly, it is weighted least 148 

square fit, to search for a proper residual matrix by minimising the object function, Q(E), as follows 149 

(Hopke, 2001): 150 

𝑄(𝐸) = ���
𝐸𝑖𝑖
𝜕𝑖𝑖
�
2𝑛

𝑖=1

𝑚

𝑖=1

 

where ∂ij is the estimated uncertainty associated with the determination of xij and Eij is the scaled 151 

residual defined as: 152 

𝐸𝑖𝑖 = 𝑥𝑖𝑖 −� g𝑖𝑖 𝑓𝑖𝑖

𝑝

𝑖=1

 

Appropriate uncertainties, ∂ij, are imperative for PMF analyses, where the user has the freedom to 153 

generate the ∂ matrix based on method detection limits and uncertainties in the measurements. 154 

Information  regarding method detection limits and uncertainties in the chemical measurements, which 155 
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were applied to these data, are described elsewhere (Delgado-Saborit et al., 2013). The robust mode is 156 

the default mode with EPA PMF v3.0, which reduces the effect of very large variables by treating them 157 

as outliers so that they do not affect the model fitting process and results (Sofowote et al., 2011). 158 

Multiple f and g matrices with the same minimum Q value can exist, and thus the least squares 159 

approach can produce multiple solutions depending on the initial starting point (Jang et al., 2013; 160 

Sofowote et al., 2011). In order to estimate a statistically stable solution, factor rotation by changing 161 

Fpeak values from  -1.4 and 0.3 was conducted, as well as utilising the bootstrapping technique, within 162 

EPA PMF v3.0 software, based on arbitrary selection of n samples from the data. More details on 163 

bootstrapping factor profiles, rotations and other features of PMF can be found elsewhere (Norris et al., 164 

2008). 165 

 166 

3. RESULTS AND DISCUSSION 167 

3.1 PAH Concentrations 168 

The average total (vapour and particulate) concentration of PAH measured at the three sampling sites 169 

between 23 February and 23 April 2012 2013 are shown in Table 1. Concentrations measured at sites A 170 

and B were statistically larger (t test, p<0.01) than those measured at site C, where average total 171 

concentrations for all PAH measured at site C were between 50 and 90 % lower (see Table 1). Total 172 

concentrations measured at site A were significantly larger (t test, p<0.05) to those at site B, with the 173 

exception of ANT and B(a)A, where no significant difference was observed. This demonstrates the 174 

importance of oil refinery and traffic related emissions of PAH. Lower molecular weight (LMW) PAH 175 

compounds (Da <202) were predominantly in the vapour phase, where the most abundant PAH 176 

measured at the three sites were PHE, FLU and PYR, in agreement with previous measurements from 177 

Western Europe, the Middle East and China (Albinet et al., 2007; Gevao et al., 2006; Ma et al., 2011). 178 
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The concentrations of vapour phase LMW PAH were largest at site A followed by B and C, with the 179 

exception of ANT, which was frequently (~53 %) larger at site B.  Higher molecular weight (HMW) 180 

PAH compounds (Da >228) were predominantly in the particulate phase, with B(ghi)P and COR being 181 

the most abundant at sites A and B, and B(ghi)P and CHR being the two most abundant PAH at site C. 182 

This suggests that sites A and B may be associated with high levels of vehicular emissions, as B(ghi)P 183 

and COR are often used as vehicular emission tracers (Greenberg et al., 1981; Harkov et al., 1984).  184 

Furthermore, although HMW PAH in the particulate phase (B(b)F to COR) were statistically different 185 

between all sites, LMW PAH in the particulate phase (PHE to CHR) were remarkably similar for sites 186 

A and B (within 10 %).  187 

 188 

Table 2 summarises the PAH concentrations measured in Jeddah and some other cities around the 189 

world. The average total suspended particulate (TSP) concentration for sites A, B and C were 435, 396, 190 

232 µg/m3, reflecting the large crustal dust component present in particulate matter in the Middle 191 

Eastern area. The measured PAH concentrations, however, are only modestly higher than those 192 

measured in urban areas of the United Kingdom (Delgado-Saborit et al., 2013; Alam et al., 2013), and 193 

significantly lower than those previously measured in different areas of Saudi Arabia (El-Mubarak et 194 

al., 2014; Habeebullah, 2013). Habeebullah (2013) conducted a risk assessment of PAH in Makkah, 195 

located ca. 85 km east of Jeddah, during an influx of approximately 2.8 million pilgrims to the city, in 196 

November 2010. They reported total particulate PAH concentrations in the range of 103.5 to 195.2  197 

ng/m3, a factor of 17 to 33 times larger than Site A in this study. These high concentrations were 198 

attributed to various residential activity and traffic emissions. Makkah City, however, has been subject 199 

to extensive building construction since 2009, particularly in the vicinity of two of their sampling sites, 200 

which may also give rise to the elevated levels reported in their study. In a more recent study, El-201 

Mubarak et al. (2014) reported PM10 PAH concentrations in Riyadh, located ca. 1000 km north east of 202 
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Jeddah, in December 2010. The authors reported extremely high concentrations of individual PAH 203 

congeners of up to 1003 ng/m3, with an average concentration of B(a)P of 400 ng/m3, three orders of 204 

magnitude larger than this study (0.39 ng/m3 for site A). Furthermore, Abdallah et al. (2014) 205 

investigated gaseous and particulate PAH concentrations across 9 sampling locations in Assiut, Egypt 206 

and reported total mean concentrations of B(a)P of up to 108.2 ng/m3 in high population density areas. 207 

The large concentrations measured were attributed to vehicular exhaust emissions which was also 208 

highlighted by Hasan and Khoder (2012) who reported total mean concentrations for B(a)P and 209 

B(ghi)P of 159.55 and 219.32 ng/m3, respectively; at a traffic related site in Giza, Egypt.  210 

 211 

Concentrations reported from Middle Eastern countries other than Egypt and other parts of Saudi 212 

Arabia are also relatively higher than those  reported in this study.  Total mean concentrations of PHE, 213 

B(a)P and B(ghi)P in Tehran, Iran were 278.19, 18.71 and 34.38 ng/m3 where the major emission 214 

sources are thought to be traffic-related (Halek at el., 2010). In Damascus, Syria, the concentration of 215 

particulate B(a)P and B(ghi)P was ~ 4.5 and 5.2 ng/m3, respectively (Dimashki et al., 1996). However, 216 

PAH concentrations reported from Kuwait were lower than those in this study (Gevao et al., 2006), 217 

where average airborne concentrations were in the range of 2.63 ng/m3 (for PHE) and 0.07 ng/m3 (for 218 

D(ah)A). The authors also reported that approximately 70 to 90 % of the total PAH concentration 219 

consisted of PHE, FLU and PYR, and a substantial increase in the contribution of HMW PAH to the 220 

total PAH was observed at sites closer to the oil lakes of Kuwait.   221 

 222 

The influences upon the partitioning of PAH between the vapour and condensed phases need to be 223 

considered as PAH are known to cycle actively between the particle and vapour phases.  There have 224 

been various theoretical treatments of these processes reviewed in Keyte et al. (2013), the simplest 225 

being due to Yamasaki et al. (1982), which can be expressed as: 226 
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 227 

log[𝐴(𝑇𝑇𝑇)𝐹−1] =  −𝑚𝑇−1 + 𝑐 

 228 

in which A is the gas-phase concentration, TSP is total suspended particulate matter, F is the particulate 229 

(filter) concentration, T is the sampling temperature (K), and m and c are compound-dependent 230 

empirical constants.  From this, it may be seen that an increase in temperature will be associated with a 231 

relative increase in vapour (A/F increases), and an increase in TSP leads to a reduction in vapour (A/F 232 

decreases). 233 

 234 

Figure 2 shows the percentage particulate PAH in various locations.  The data from Jeddah are very 235 

similar to those from Egypt (Giza and Asiut) and China (Wanqingsha), but for the lower molecular 236 

weight compounds have a higher particulate component than in the data from Birmingham (UK).  This 237 

seems likely to be reflective of the higher TSP loading in Jeddah causing greater partitioning into the 238 

particle phase, outweighing the effect of temperature in increasing the vapour phase component, as TSP 239 

concentrations in Birmingham are generally < 30 µg m-3 (unpublished data). 240 

 241 

3.2 PMF Modelling 242 

A 52 × 14 matrix (sample number × 14 PAH species) dataset was introduced into the EPA PMF v3.0 243 

software to assess the source contribution to PAH. Total PAH (vapour + particulate) was used to 244 

minimise the influence of partitioning, ageing and photochemical degradation (Kim et al., 2009). 245 

Uncertainties applied to the data corresponded to the calculated limits of detection and recovery 246 

standard deviation of the surrogate standards as outlined in Delgado-Saborit et al. (2013) and as 247 

modified by Jang et al. (2003) to give less weight to the more reactive compounds, which are expected 248 
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to degrade appreciably between source and receptor. Three source factors were extracted from the PMF 249 

model, illustrated in Figure 3. 250 

 251 

Factor 1 accounted for 17 % of the sum of the measured PAH species and was attributed to traffic 252 

emissions, in particular gasoline powered vehicles. The profile (see Figure 3) includes conventional 253 

traffic biomarkers including B(a)P, B(ghi)P and COR (Greenberg et al., 1981; Harkov et al., 1984; 254 

Mastral et al., 2003; Ning et al., 2007). A strong temporal profile was also observed in this factor with 255 

average concentration levels during weekdays being significantly larger for the sum of PAH (∑PAH) 256 

and B(a)P than at weekends (Figure 4). 257 

 258 

Factor 2 was attributed to industrial sources, in particular the oil refinery, and accounted for up to 33 % 259 

of the sum of the measured PAH species. This factor was dominated by FLU, PYR and D(ah)A and did 260 

not show a significant difference between weekdays and weekends. The UK National Atmospheric 261 

Emissions Inventory (http://naei.defra.gov.uk/) reports relatively large emissions of FLU from refinery 262 

combustion between 2002 and 2006, in agreement with Factor 2 from this study. Kulkarni and 263 

Venkataraman, (2000) reported the significance of FLU and PYR emissions from oil combustion 264 

activities and the predominance of B(a)P, PYR and D(ah)A from kerosene uses. Furthermore, in a 265 

recent PMF study of urban air in the UK, it was reported that only a small concentrations of D(ah)A 266 

could be attributed to the net traffic contribution (Jang et al., 2013). This factor was responsible for the 267 

largest contribution at site A, which is located ca. 700 m from Jeddah’s oil refinery. Site specific plots 268 

and weekday-weekend variation are shown in Figure 4. 269 

 270 

Factor 3 accounted for 50 % of the sum of the measured PAH species and was dominated by LMW 271 

PAH compounds (PHE, ANT, FLU, B(a)A and CHR). A strong temporal profile was also observed in 272 
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this factor with average concentration levels during weekdays being significantly larger for ∑PAH and 273 

B(a)P than at weekends (Figure 4). This factor was responsible for PAH concentrations in the order, 274 

site B > site A > site C. The predominance of PHE along with FLU, CHR and PYR have been 275 

previously reported as diesel exhaust markers and thus been associated with diesel traffic emissions 276 

(Riddle et al., 2008; Zielinska et al., 2004). However, enhanced levels of LMW PAH species have also 277 

been attributed to oil combustion (Lee et al., 2004). In comparison to a previously reported diesel 278 

combustion derived source profile from the UK NAEI (Jang et al., 2013), factor 3 has a larger 279 

contribution of ANT, B(a)A and CHR, which may be explained by the use of different compositions of 280 

diesel fuels between the UK and Saudi Arabia. Alternatively, the enhanced levels of LMW PAH 281 

observed in factor 3 may be due to both oil combustion, originating from Jeddah’s desalination plant, 282 

and diesel traffic emissions, with a possible contribution from shipping, which burns predominantly 283 

heavy fuel oils.  This would affect predominantly site 1 which is close to the port. The desalination 284 

plant is situated central to all three sites (see Figure 1) and the prevailing north westerly winds means 285 

that the emissions from the plant may affect mainly the sites A and B.  286 

 287 

4. CONCLUSION 288 

The concentrations of PAH measured in Jeddah are overall surprisingly similar to those in Birmingham 289 

(UK) and Wanqingsha (China), while being higher than those reported for Kuwait, but far below the 290 

measurements reported for Assuit and Giza (Egypt) and Tehran (Iran) (see Table 2).  Concentrations 291 

decline from site A close to the oil refinery to site B which was close to the ring road, which are both 292 

significantly higher than those at site C which was in a suburban area in the north of the city.  The 293 

partitioning of PAH between the particle and vapour phases is broadly similar to that in many other 294 

studies but shows some preferential partitioning into particles especially for low molecular weight 295 

compounds compared to the data from Birmingham (UK).  This is attributed to the very much higher 296 
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concentrations of total suspended particulate matter (TSP) in Jeddah in comparsion to Birmingham 297 

with the influence of the higher temperatures in Jeddah being a secondary effect tending towards higher 298 

vapour concentations. 299 

 300 
The source apportionment study, which is one of the very few successful published applications of 301 

PMF to PAH datasets, clearly shows three major source contributions.  The largest appears to be from 302 

combustion of diesel and fuel oil, the former probably predominantly in road vehicles while there may 303 

be a significant contribution from the Jeddah desalination plant to the latter.  The second largest 304 

contribution is from refinery emissions while the third contribution, which shows a strong weekday to 305 

weekend variation, is attributed to gasoline vehicle emissions. 306 

 307 
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Table 1.  Average concentrations of PAH in ambient air (vapour and particulate phases) measured 501 

at the three sampling sites. Site A – Zaid Ibn Al-Khatab School, Site B – Al Hgag 502 
School, Site C – Abhor. 503 
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Table 2.   Average total (vapour and particulate) concentrations of PAH in ambient air measured at 505 

various cities around the world. 506 
 507 
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FIGURE LEGENDS 509 
 510 
Figure 1.  Map of Jeddah and locations of sampling sites and major PAH stationary sources. 511 
 512 
Figure 2.  Average particle-vapour partitioning for PAH measured in Jeddah, SA (this study), 513 

Giza, Egypt (Hassan and Khoder, 2012), Assiut, Egypt (Abdallah et al., 2014), 514 
Birmingham, UK (Alam et al., 2013) and Wanqingsha, China (Huang et al., 2014). 515 
Molecular mass increases from left to right. 516 

 517 
Figure 3.  Source factor profiles of atmospheric PAH obtained from EPA PMF 3.0 model for three 518 

sites in  Jeddah, Saudi Arabia.  The bars show the chemical profile, and the diamonds 519 
are the variance explained by each factor. 520 

 521 
Figure 4.  Factor contributions to the three sampling sites and the observed variation between 522 

weekdays and weekends, obtained from EPA PMF 3.0 model. 523 
    524 
 525 
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Table 1. Average concentrations of PAH in ambient air (vapour and particulate phases) measured at the three sampling sites. Site A – Zaid Ibn Al-526 
Khatab School, Site B – Al Hgag School, Site C – Abhor. 527 
 528 

 
Average Concentration (ng/m3) 

   
 

Vapour Particulate TOTAL % Particulate 
  Site A Site B Site C Site A Site B Site C Site A Site B Site C Site A Site B Site C 
PHE 21.00 16.70 8.60 0.15 0.13 0.05 21.15 16.83 8.65 0.69 0.78 0.53 
ANT 1.40 1.60 0.70 0.03 0.03 0.01 1.43 1.63 0.71 2.43 1.66 1.13 
FLU 3.30 2.50 1.05 0.17 0.19 0.06 3.47 2.69 1.11 5.00 7.09 5.36 
PYR 6.00 3.90 0.75 0.23 0.26 0.07 6.23 4.15 0.82 3.73 6.15 8.34 
B(a)A 0.05 0.04 0.02 0.19 0.20 0.05 0.23 0.24 0.06 80.22 84.95 71.31 
CHR 0.13 0.05 0.02 0.52 0.56 0.15 0.65 0.61 0.17 79.78 91.34 89.74 
B(b)F 0.09 0.07 0.02 0.48 0.40 0.10 0.57 0.47 0.12 83.86 85.02 81.94 
B(k)F 0.10 0.06 0.02 0.49 0.36 0.09 0.60 0.42 0.11 82.56 85.85 78.16 
B(e)P 0.02 0.02 0.02 0.59 0.47 0.11 0.60 0.50 0.13 97.12 95.30 84.22 
B(a)P 0.04 0.03 0.02 0.35 0.27 0.07 0.39 0.30 0.09 89.44 89.79 77.45 
IND 0.06 0.02 0.01 0.57 0.44 0.09 0.63 0.47 0.11 91.10 94.85 87.43 
D(ah)A 0.07 0.03 BDL 0.08 0.05 0.02 0.15 0.09 0.02 52.48 60.21 100.00 
B(ghi)P 0.05 0.03 0.01 1.22 0.99 0.16 1.27 1.03 0.17 95.77 96.83 94.78 
COR BDL BDL BDL 0.79 0.61 0.09 0.79 0.61 0.09 100.00 100.00 100.00 
∑14PAH 32.31 25.06 11.24 5.85 4.97 1.10 38.17 30.03 12.34 15.33 16.53 8.92 
BDL – below detection limit 

 529 
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 532 

 533 
Table 2.  Average total (vapour and particulate) concentrations of PAH in ambient air measured at various cities around the world. 534 

  
Average total (vapour + particulate) concentrations (ng/m3) 

  
PHE ANT FLU PYR B(a)A CHR B(b)F B(k)F B(e)P B(a)P IND D(ah)A B(ghi)P COR ∑14 PAH 

This study  
Site A 21.15 1.43 3.47 6.23 0.23 0.65 0.57 0.60 0.60 0.39 0.63 0.15 1.27 0.79         38.17  

Site B 16.83 1.63 2.69 4.15 0.24 0.61 0.47 0.42 0.50 0.30 0.47 0.09 1.03 0.61         30.03  
Site C 8.65 0.71 1.11 0.82 0.06 0.17 0.12 0.11 0.13 0.09 0.11 0.02 0.17 0.09         12.35  

Assuit, Egypt a 100.39 57.12 79.62 70.04 65.01 78.18 90.26 48.40 - 49.39 32.26 45.86 63.39 -      779.91  
Giza, Egypt b  257.18 187.27 216.79 188.09 175.99 211.56 229.88 - - 159.55 123.08 174.97 246.32 -   2,170.68  
Tehran, Iran c 278.19 155.04 802.78 61.09 30.79 29.41 41.61 27.68 - 18.71 32.28 28.93 34.38 -   1,540.89  
Kuwait d 2.63 0.24 1.18 1.12 0.35 0.30 0.10 0.09 - 0.25 0.09 0.07 0.15 -           6.57  
Wanqingsha, China e 40.00 1.54 14.60 9.81 1.09 3.21 3.15 1.29 - 1.65 2.33 0.37 2.67 -         81.71  
Zaragoza, Spain f 2.30 0.46 1.10 1.10 0.33 0.41 0.47 0.13 0.28 0.29 1.10 1.00 1.50         10.47  
Birmingham, UK g 20.65 1.61 9.02 10.26 1.15 2.88 0.73 0.53 0.25 0.18 0.22 0.18 0.21 0.15 48.01  
a Abdallah et al. (2014); b Hassan and Khoder (2012); c Halek et al. (2010); d Gevao et al. (2006); e Huang et al. (2014); f Callen et al. (2008) g Alam et al. (2013)   

 535 

 536 

 537 

 538 



22 
 

 539 

  540 

Figure 1. Map of Jeddah and locations of sampling sites and major PAH stationary sources. 541 
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 542 

 543 

 544 

Figure 2. Average particle-vapour partitioning for PAH measured in Jeddah, SA (this study), Giza, Egypt 545 
(Hassan and Khoder, 2012), Assiut, Egypt (Abdallah et al., 2014), Birmingham, UK (Alam et al., 2013) and 546 
Wanqingsha, China (Huang et al., 2014). Molecular mass increases from left to right.  547 
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Figure 3. Source factor profiles of atmospheric PAH obtained from EPA PMF 3.0 model for three sites in  
Jeddah, Saudi Arabia.  The bars show the chemical profile, and the diamonds are the variance 
explained by each factor. 
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Factor 1 - Contribution 

 
 

 
 
 

Factor 2 – Contribution 

 
 

 
 

 
Factor 3 – Contribution 

 
 

 
 
 

Figure 4. Factor contributions to the three sampling sites and the observed variation between weekdays 
and weekends, obtained from EPA PMF 3.0 model. 
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