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ABSTRACT

In this paper, we propose a scale-scale plot to compare multivariate distributions. These

scale-scale plots can be viewed as a multivariate analogue of quantile-quantile plots and we

illustrate their use as a visualisation tool to validate distributional assumptions for multi-

variate data as well as to compare the distributions of two multivariate samples. We discuss

some characterisations of the proposed plots under elliptically symmetric distributions and

based on those results, some visual tests of location and scale are proposed as further appli-

cations of these scale-scale plots. For the test of location problem, we present a small study

of power using simulations.

Key Words: Central rank regions, elliptically symmetric distributions, quantile quantile

plots, tests of location, tests of scale
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1 Introduction

One of the widely used graphical methods for comparing univariate distributions is the

quantile-quantile (Q-Q) plot that matches the quantiles of one distribution with the same

quantiles of the other. The Q-Q plots, which were proposed by Wilk and Gnanadesikan

(1968), are quite useful in revealing location and scale differences as well as identifying out-

liers. Though there is an extensive literature on univariate Q-Q plots, (see Barnett (1976),

Cook and Weisberg (1982), Cleveland (1993), Marden (2004), for some detailed discussions
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and examples), there are very few proposed generalisations to the multivariate distribu-

tions. Most of the multivariate procedures are based on dimension reduction techniques and

are used to compare some specific reference distributions, such as the multivariate normal

distribution and depend on their properties.

Healy (1968) used squared Mahalanobis distances of the observations from the sample

mean vector to assess multivariate normality. These squared distances are approximately

distributed as chi-squared random variables and a Q-Q plot can be constructed to assess

that. Andrews, Gnanadesikan, and Warner (1973) proposed Q-Q plots based on the direc-

tions and the magnitudes of the observations. The magnitudes or equivalently the squared

distances are approximately distributed as chi-squared random variables as before and the

angles obtained from the direction vectors are uniformly distributed. There are some other

multivariate Q-Q plotting techniques available in the literature, which are based on assess-

ing the commonality of the shape of the marginal distributions for certain commonly used

multivariate distributions. For a detailed discussion on graphical methods for assessing mul-

tivariate distributional shape, see chapters 5 and 6 of Gnanadesikan (1977).

In a completely different approach, Easton and McCulloch (1990) proposed a generali-

sation of multivariate Q-Q plots based on matching the data with simulated observations

from the reference distribution. For a d-dimensional data set X1, . . . ,Xn, the procedure is

to find a permutation σ∗ of {1, 2, · · · , n} a d× d matrix A and a d× 1 vector b that solves

min
A,b,σ

n∑
i=1

||Y i −AXσ(i) − b||2

where Y 1, . . . ,Y n is a random sample from the reference distribution. Suppose the X∗i ’s are

the best matching of the data set to the reference sample where X∗i = A∗Xσ∗(i) + b∗. They

suggested to display the matched pairs (X∗i ,Y i) using either coordinatewise Q-Q plots or

some distance based Q-Q plots. One of the main problem in this approach is that it cannot

be used to compare two multivariate samples. Visualising co-ordinatewise Q-Q plots can

be difficult if the dimension d is large. However the proposed method is invariant under

affine transformations and can be quite useful in picking up the deviations in shape from

the reference sample when the dimension is not very large. There are some more graphical

tools available in the literature to detect non-normality for high dimensional data; see, for

example, Liang et al. (2004), Fang et al. (1998), Liang and Ng (2009). However all of these

methods heavily depend on different characterisations of multivariate normal distribution
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and cannot be extended to a large class of multivariate distributions.

Singh, Tyler, Zhang and Mukherjee (2009) proposed a notion of quantile scale curves

to perform visual tests. Again consider the d-dimensional random sample X1, · · · ,Xn and

denote by 4i the volume of the simplex formed by (d + 1) points X i1 , · · · ,X id+1
with

αi = {i1, · · · , id+1}, a (d+1) subset of indices of {1, · · · , n}, for i = 1, · · · , N and N =
(
n
d+1

)
.

Then their quantile scale curve is defined as qsc(t) = 4([Nt]) for 0 ≤ t ≤ 1. They have used

the quantile scale curve to detect linear and non-linear association between two groups of

variables graphically. They have also described quantile scale curve based testing plans for

location shift problem in a symmetric population set up and multivariate scale comparison

problem for two given multivariate samples. However, this proposal is not a generalisation

of Q-Q plots as it does not compare the multivariate distributions.

In an approach based on the spatial quantiles, Marden (1998) proposed a bivariate Q-Q

plot by drawing arrows from (bivariate) normal quantiles corresponding to bivariate ranks

of the observations to the actual values of the corresponding observations as a check for

normality. Chakraborty (2001) pointed out that Marden’s plots are not affine invariant

and hence might lead to erroneous inference for highly correlated data. He suggested a

modification based on a transformation retransformation (TR) approach to construct an

affine invariant Q-Q plot for bivariate data. However, these suggestions cannot be extended

to higher dimensions in any natural way. In a recent work Dhar, Chakraborty and Chaudhuri

(2014) proposed a method to construct a Q-Q plot for a d-dimensional multivariate dataset

as a collection of d two dimensional plots, each plot corresponding to a component of the

multivariate empirical spatial quantile of the data. They also proposed a test based on

the norms of the spatial quantiles for comparing multivariate distributions. Their proposed

test statistic is related to the arrow lengths of the arrow plots proposed by Marden (1998)

described earlier. In a different development Balanda and MacGillivray (1990) proposed

spread-spread plots to compare univariate distributions where the spread functionals preserve

the spread ordering of Bickel and Lehman (1979). The spread-spread plots are quite useful

in detecting the changes in the shape of the distributions at the peak or at the tails and it

displays a growth pattern. Wang and Zhou (2012) have considered a general depth function

D(x, F ) and its corresponding central region CF,D(p) for a distribution F and with any

measure m(·) in Rd, they have considered λF (p) = m(CF,D(p)). They have also shown

that, λF (p) is a generalised quantile function. In their paper through Theorem 2.1 and
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2.2, they have shown that λF (p) is affine invariant, which would be a desirable property for

any measure which has been developed to describe or compare multivariate distributions.

Discussion on desirable properties of data depth functions is present in Zuo and Serfling

(2000). Our results in Theorem 2.1 and Theorem 3.1 may appear similar, but our results

are with respect to our definition of central rank regions and volume functionals. As the

definitions of our central rank regions are based on affine invariant spatial ranks, the approach

is different in nature.

In this paper, recent developments in multivariate quantiles and ranks and the concept

of univariate spread-spread plots are combined to propose graphical methods of comparing

multivariate distributions. In Section 2, we define a notion of multivariate rank vector and a

scale curve following the idea of Liu et al. (1999) and study its properties under elliptically

symmetric distributions. In Section 3, scale-scale plots are proposed and we discuss their

uses with examples in the one sample and two sample problems. These scale-scale plots

are also quite useful in detecting the deviations in regard to peakedness or tail behaviour.

In Section 4, we propose some visual tests of multivariate location and scale under elliptic

symmetry of the distributions as some further applications of our scale-scale plots. All proofs

are relegated to the appendix.

2 Multivariate Rank Regions:Definitions and Some Ba-

sic Properties

We begin with a vector-valued notion of multivariate sign by generalising the univariate sign

function sign(x) = x/|x|, for x 6= 0 with the definition

Sign(x) =

{
x
‖x‖ if x 6= 0

0 if x = 0,
(1)

where ||x|| =
√
x21 + · · ·+ x2d, x = (x1, · · · , xd)T ∈ Rd. Note that this multivariate notion

of sign vector is nothing but the unit direction vector of x and was used in the literature to

construct various statistics based on signs (for detail see, Oja, 1999). A multivariate centred
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rank function can be defined based on the multivariate sign function as

RFn(x) =
1

n

n∑
i=1

Sign(x−X i)

where x ∈ Rd and X1, · · · ,Xn ∈ Rd is a random sample with a common distribution

function F . We assume throughout this paper that F is absolutely continuous with respect

to the Lebesgue measure in Rd. It is easy to note that

1. ||RFn(x)|| < 1 for all x ∈ Rd.

2. RFn(x) = 0 means that x is the spatial median of the data X1,X2, · · · , Xn ∈ Rd.

3. Smaller values of ||RFn(x)|| imply that x is located more centrally with respect to

the data points and larger values of ||RFn(x)|| imply that x is an extreme point with

respect to the data cloud. The direction of the vector RFn(x) suggests the direction in

which x is extreme compared to the data cloud.

4. RF (x) = E(RFn(x)) is an injective function of the multivariate distribution function

F , see Koltchinskii (1997). Hence RF (x) characterises a multivariate distribution.

We can also note that RF (x) is the inverse function of the multivariate geometric quantile

function (Chaudhuri, 1996), Q(u), in the sense that RF (x) = u implies that Q(u) = x

and vice-versa. If we define a measure of outlyingness by ||RF (x)||, then it is easy to

verify that this measure of outlyingness is invariant under orthogonal and homogeneous

scale transformations (see Serfling, 2004, for some related discussion). Multivariate central

rank regions can be defined as

CF (p) = {x : ||RF (x)|| ≤ rF (p)} , 0 ≤ p < 1,

where rF (p) is the p-th quantile of the distribution of ||RF (X)|| with X ∈ Rd having the

distribution function F . Note that P (CF (p)) = p. In other words, CF (p) is the central rank

region containing the probability mass p. Analogous to the scale curve introduced by Liu et

al. (1999), we define a measure of scale as

VF (p) = volume of CF (p), 0 ≤ p < 1.
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In the univariate case, CF (p) is an interval around the median which has a probability

mass p and VF (p) is the length of that interval, which coincides with the measure of spread

defined by Balanda and MacGillivray (1990). Shorter intervals suggest smaller spread of the

distribution and as p varies from 0 to 1, one can study how the spread is changing with the

tails. Similarly, VF (p) in the multivariate case provides a good measure of scale. For smaller

values of p, it measures the spread of the data around the spatial median and as p increases,

it measures the overall spread of the distribution. A plot of VF (p) against p, named as scale

curve, is quite useful in detecting the changes in scale with increasing p.

A related scale curve based on spatial ranks has also been considered in Serfling (2002),

but the central regions considered there were not indexed by the probability mass p. There

is another alternative definition of dispersion function based on spatial median developed by

Averous and Meste (1997), who extended the univariate interquantile intervals to multivari-

ate “median balls” indexed by their radii, as a class of central regions. Under some regularity

conditions on the distribution F , the probability mass of a median ball is a nondecreasing

function of its radius and that yields a “median ball” analogue of the scale curve defined

above, which has not been investigated in detail in the literature.

In Figure 1, we plot the scale curves for standard bivariate normal, Laplace and t dis-

tribution with 3 degrees of freedom. We note that the spread of these distributions are

similar for the smaller values of p, but the scale increases faster for the bivariate Laplace

and t distribution compared to the bivariate normal distribution, which suggests that the

Laplace and t distributions have larger tails compared to normal. For spherically symmetric

distributions with centre of symmetry 0, we know that the length of the random vector

||X|| and its direction X = X/||X|| are independent and the length of the rank vector,

RF (x) only depends on the length of the vector x−θ, where θ is the centre of the spherical

symmetry(see Oja, 2010). As a consequence of this result, the central rank region CF (p) for

spherically symmetric random vectors can be written as

CF (p) = {x : ||x− θ|| ≤ ξF (p)}

where ξF (p) is the p-th quantile of the distribution of ||X−θ||. Thus the central rank regions

coincide with the level sets of the density of F , if the density exists. We can also write down
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Figure 1: Multivariate scale curves for bivariate normal, bivariate Laplace and bivariate t
distribution with 3 degrees of freedom with location θ = (0, 0)T and scale matrix Σ = I2.

a nice closed form formula for the scale curve:

VF (p) =
πd/2(ξF (p))d

Γ(d
2

+ 1)
.

In a recent study Girard and Stufler (2015a) discussed about the behaviour of extreme

geometric quantiles. They showed that if the underlying distribution a random variable has

a finite scale matrix, then any extreme geometric quantiles can be estimated accurately.

They also discussed that the norm of an extreme geometric quantile is the largest in the

direction where the variance is the smallest and outlier detection would be dangerous without

a preliminary transformation retransformation procedure. Girard and Stufler (2015b) also

discussed extreme geometric quantiles when the integrability conditions are not satisfied. As

a major deficiency of the above definition of multivariate rank vector is that they are not
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Figure 2: Multivariate scale curves for bivariate normal with mean θ = (0, 0)T for different
values of the correlation coefficient ρ.(a) Non-affine equivariant version, (b) affine equivariant
version.

invariant under general affine transformations of the data. Consequently, the scale curves

based on central rank regions are not affine equivariant. To illustrate, we plot the scale

curves of the bivariate normal distributions with mean vector (0, 0)T for different correlation

coefficients ρ in Figure 2(a). From the shape of the distributions, we know that the scale

decreases with the increasing value of ρ, but that behaviour is not reflected in the scale

curves. As a remedial measure, we need to make the definition of multivariate ranks to be

affine invariant in the sense that if the distribution of X is denoted by F and the distribution

of Y = AX + b is denoted by G for some nonsingular matrix A and d-dimensional vector

b, then RG(Ax + b) = RF (x). There are many ways one can achieve that (see Serfling,

2010). In this paper, we adopt the transformation retransformation technique as proposed

by Chakraborty (2001).

Let X1, · · · ,Xn be data points on Rd. Let α = {i0, i1, · · · , id} denote a set of (d + 1)

indices. Then we can define a data-driven coordinate system with X i0 as the origin and

the coordinate axes given by the vectors X i1 −X i0 , . . . ,X id −X i0 . Transforming all the

observations into the new coordinate system and compute the multivariate rank vector in

the new coordinate system by
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RFn(x) =
1

n

n∑
i=1,i/∈α

{X(α)}−1 (x−X i)

|| {X(α)}−1 (x−X i)||
,

where X(α) is the d × d matrix formed with the columns X i1 −X i0 , · · ·X id −X i0 . The

optimal transformation matrix X(α) is obtained by minimising the criterion function

t(α) =
trace[X(α)TΣ−1X(α)]/d

{det[X(α)TΣ−1X(α)]}1/d
,

where Σ is the scale matrix associated with the underlying distribution. For optimality

results of such a transformation and related discussion, see Chakraborty (2001). It is easy

to observe that the above definition of RFn(x) and the corresponding RF (x) are invariant

under general affine transformations. From now on, we restrict our discussion to the affine

equivariant versions of the multivariate ranks and corresponding scale curves. The follow-

ing Theorem states a closed form formula for the affine equivariant scale curve when the

underlying distribution is elliptically symmetric.

Theorem 2.1. If the distribution of the random vector X is elliptically symmetric, that is,

it has a density of the form

f(x) = |Σ|−1/2h((x− θ)TΣ−1(x− θ)) (2)

for some strictly decreasing, continuous, non-negative scalar function h and positive definite

matrix Σ and RF (x) is the affine invariant spatial rank function as defined before, we have

VF (p) =
π

d
2 |Σ|1/2ζdp

Γ(d
2

+ 1)
, (3)

where P ((X − θ)TΣ−1(X − θ) ≤ ζ2p ) = p.

Note that ζp is invariant under affine transformations and thus it can be computed from

the distribution of ||Y ||, where Y has the corresponding spherically symmetric distribution,

with location of symmetry 0.

In Figure 2(b), we plot the affine equivariant version of the scale curves based on the

affine invariant rank vectors for the bivariate normal distribution with different correlation

coefficients ρ and we observe that the ordering between the scale curves with higher values

of the correlation coefficient showing smaller scales. So we can conclude that our definition
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of multivariate rank function is giving an actual picture that the scale decreases with the

increasing value of ρ which was not evident in Figure 2(a).

3 Scale-Scale Plot

We noted earlier that verifying the distributional assumptions of the multivariate data and

comparing samples of multivariate data still remain as difficult tasks. In this section, we

propose a scale-scale plot to compare multivariate distributions as a generalization of the

univariate quantile quantile plot. If F and G are two d-dimensional distributions, we define

a scale-scale plot as a plot of VG(p) against VF (p), 0 ≤ p < 1, where the functionals VF and

VG are the volumes of the affine equivariant central rank regions as defined in the previous

section. If F = G, then the scale-scale plot will be the 45◦ line passing through the origin.

Now as the volume VF (p), depends on the determinant of the scale matrix (see (3)), we may

also get a straight line for the scale-scale plot, making an angle of 45◦, when F 6= G. Thus

in this situation we can detect the shift upto an orthogonal transformation. Since VF (0) = 0

for all continuous distributions F , the scale-scale plot will always pass through the origin

and we cannot detect a change in origin with the scale-scale plot. However, if we can detect

that the two multivariate distributions are same upto a location shift, quite often it is not

difficult to estimate the location shift efficiently. For elliptically symmetric distributions F

and G, we have the following characterization:

Theorem 3.1. Assume that X,Y ∈ Rd have distributions F and G, respectively, which

are elliptically symmetric. Then Y = AX + b for some d× d matrix A and d-dimensional

vector b if and only if VG(p) = k.VF (p), 0 ≤ p < 1 for some k > 0.

The above theorem suggests that if X and Y are in the same elliptically symmetric family

of distribution but possibly differ in the location parameter θ and the scale matrix Σ, the

scale-scale plot will be a straight line. The slope of that straight line is determined by the

determinants of the scale matrices associated with them. In Figure 3, we present the scale-

scale plots comparing the bivariate normal distributions with different correlation coefficients

with the standard bivariate normal distribution and observe that the slopes of the straight

lines in these scale-scale plots are decreasing with the increasing value of the correlation

coefficient ρ.
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Figure 3: Scale-Scale plots comparing bivariate normal distributions with mean θ = (0, 0)T

and different correlation coefficients ρ with the standard bivariate normal distribution.

All scale-scale plots are strictly increasing, with slope at the point (VF (p), VG(p)) equal to

V ′G(p)/V ′F (p). If F and G are elliptically symmetric, the scale-scale plots can be interpreted

in a same way as the quantile-quantile plots for the univariate data, but they can be very

different in non-elliptical cases. If all the points (VF (p), VG(p)) on the scale-scale plot with

p near 1 lie above the line joining (VF (0.5), VG(0.5)) and the origin, G exhibits a greater

movement of probability mass from its “shoulders” into its tails than does F , that is the

tail of G is more “stretched” than F . Similarly, if the slope of the tangent to the scale-scale

plot at (VF (p), VG(p)) is greater for p near 0 than the slope of its tangent at the origin, then

G exhibits a greater movement of probability mass from its “shoulders” into its centre than

does F or in other words the probability mass falls away quickly from its spatial median for

G than F .

3.1 One-Sample Case

The proposed scale-scale plot can be used to check the distributional assumptions of the

multivariate data visually as an extension of the univariate quantile quantile plot. We now

discuss some application of the proposed Scale-Scale plot for elliptically symmetric distribu-

tions. If F0 is the hypothesised distribution function (which is elliptically symmetric) upto
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a location parameter and Fn denotes the empirical distribution function of the multivariate

data X1, · · · ,Xn, we can make a scale-scale plot by plotting VFn(p) against VF0(p). If the

plot is close to a straight line, we can conclude that the underlying distribution does not

deviate significantly from F0 upto location and scale parameters. For illustration, we use

the iris data and check for multivariate normality of the underlying distribution of the three

separate species namely iris setosa, iris versicolor and iris virginica. In Figure 4, we take F0

as the bivariate standard normal distribution and observe that all of these plots are close

to straight lines except for a few points on the upper tail and justify the assumption of

multivariate normality for analysing them. We would like to mention that as these data sets

contain only 50 observations each, estimates of the boundary of the extreme rank regions

are not very precise and estimates of their volumes also have larger variability and thus

deviations from the straight line pattern for few points in the upper end is not unexpected.

In Figure 5, we compare samples from simulated bivariate gamma distributions with the

standard bivariate normal distribution. A sample of size n = 1000 is simulated from the

bivariate gamma density

f(x1, x2) =
1

{λαΓ(α)}2
e−(x1+x2)/λ(x1x2)

α−1, x1, x2 ≥ 0

for different values of α and λ, so that the mean vectors of the distributions remain same.

For small value of α, bivariate gamma is a highly skewed distribution and their scale-scale

plot compared to bivariate normal is a nonlinear curve with scales, VG(p), increasing sharply

with higher values of p. However, as α increases, the scale-scale plots become more linear

and we observe that the scale-scale plot for the sample from bivariate gamma with α = 10

and λ = 0.1 is very close to the 45◦ line, which is in line with the distributional convergence

of the gamma distribution to the normal distribution as α→∞.

3.2 Two Sample Case

We can also use the scale-scale plot to compare two multivariate samples. Suppose Fn and

Gn are the empirical distribution functions of the two independent samples, respectively,

under the assumption that they are from some elliptically symmetric distribution family.

We plot VGn(p) against VFn(p) for 0 ≤ p < 1 to construct the scale-scale plot of the two

samples.
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Figure 4: Scale-Scale plot for Iris data to compare with multivariate normal distribution.
(a) Iris Setosa, (b) Iris Versicolor, (c) Iris Virginica

The measurements were taken on diameter of rings for the first-year freshwater growth and

that for the first-year marine growth for Alaskan and Canadian salmons (See Table 11.2,

Johnson and Wichern (2002)). Sample sizes are 50 for both Alaskan-born and Canadian born

salmons. This is a nice example on classification techniques used in the literature under the

assumption of multivariate normality with the same covariance matrix. To justify, we may

use our proposed scale-scale plot in Figure 6, which is almost on a 45◦ line. That suggests
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Figure 5: Scale-Scale plots comparing bivariate gamma distribution with the standard bi-
variate normal distribution.

that the data distribution for both groups of salmons is the same elliptically symmetric

distribution with the same scale matrix and possibly with a different location vector.

4 Other Applications

In this section, we consider some other applications of the proposed scale-scale plots. It

is almost obvious from the construction that the scale-scale plots can be used to detect a

change in scale, but in the following we also propose a method to use it to detect a shift in

the classical location problem.

4.1 Test of Location

In this section, we propose a test of location as an application of the proposed scale-scale

plots following the ideas of Singh, Tyler, Zhang, and Mukherjee (2009). Let X1, · · · ,Xn be

a random sample from a d-dimensional distribution F , which is symmetric around θ ∈ Rd

in the sense that X i − θ
d
= θ − X i. We are interested to test the null hypothesis H0 :
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Figure 6: Scale-Scale plot comparing the distributions of Alaskan and Canadian Salmons.

θ = θ0 against H1 : θ 6= θ0. Note that under H0, the distributions of X i and its reflection

2θ0 − X i are identical and the scale-scale plot of the combined sample {X1, · · · ,Xn} ∪
{2θ0−X1, · · · , 2θ0−X i} against the original data {X1, · · · ,Xn} will be nearly a 45◦ line.

However, if the null hypothesis does not hold, the scale of the combined data will be more

and the scale-scale plot will move away from the 45◦ line. Using this principle, we construct

a test procedure as follows:

1. Define

Y i =

{
X i with probability 0.5

2θ0 −X i with probability 0.5,

for i = 1, · · · , n.

2. Construct a scale-scale plot of Y 1, · · · ,Y n against X1, · · · ,Xn.

3. There are 2n possible samples {Y 1, · · · ,Y n}. However, it is not practical to construct

scale-scale plots for all of them for large n. One can repeat Steps 1 and 2 for a large

number of random subsets {Y 1, · · · ,Y n} and construct a band of scale-scale plots.

4. If the 45◦ line is in the bottom 5% of the band of scale-scale plots or below the band

altogether, the null hypothesis is rejected.
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Figure 7: Scale-Scale plot for test of location for bivariate normal distribution for n = 500.
(a) θ = (0, 0)T , (b) θ = (0.2, 0.2)T , (c) θ = (0.5, 0.5)T , (d) θ = (1.0, 1.0)T

For illustration, we present plots of the above test procedure in Figure 7 where the data

are simulated from a bivariate normal distribution of sample size n = 500 with Σ = I and

different values of the mean θ. Figure 7(a) is the plot under null hypothesis H0 : θ = 0

and (b), (c) and (d) present the plots for the alternatives θ = (0.2, 0.2)T , (0.5, 0.5)T and

(1.0, 1.0)T respectively. We see that for a small shift in location, the scale-scale plot is not

that effective in detecting the shift. However, for moderate to large shifts of the location,

this visual tool detects the shift quite effectively.

To formally compute the p-values of the proposed test, we have used the proportion of

scale-scale plots in the band below the 45◦ line for some specific values of p, for example, at

p = 0.50, which is the comparison of volumes of the central rank regions containing 50% of
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the data. Using that criteria, we present a small sample simulation study of the power of

the test for different values of p.

In this study we compute the power for three elliptically symmetric distributions, bi-

variate normal, bivariate Laplace and bivariate t with 3 degrees of freedom with the scale

matrix Σ = I and sample size n = 30 and present it in Table 1. The null hypothesis is

H0 : θ = (0, 0)T and the alternatives are θ = (r, r)T , for r = 0.1, 0.2, · · · , 1.0. The test is

performed based on 100 bands with level of significance 0.05, i.e., if 5 of reflected scale curves

at p are below the original sample scale curve at p, then we reject the null hypothesis. The

size and power of this test are computed based on 1000 simulations for p = 0.25, 0.50, 0.75.

We observe that the estimated sizes are slightly higher but the powers are nevertheless quite

encouraging as they increase with r for every p. Hence instead of looking at the entire plot

we can perform the test based on one single p. Perhaps using p = 0.5 might be a good idea

as the power increases most rapidly for p = 0.5 for all three distributions.

Table 1: Finite sample power of the proposed visual test of location by comparing the scale
scale plot at the specified values of p for n = 30 and d = 2. Here the number of scale-scale
plots to construct the band is 100 and the simulation size is 1000 and level of significance
= 5%. Powers are computed at θ = (r, r)T for different values of r.

r
Distribution 0.0 0.2 0.5 1.0

Normal p = 0.25 0.057 0.114 0.369 0.878
p = 0.50 0.068 0.141 0.531 0.980
p = 0.75 0.066 0.138 0.594 0.985

t with p = 0.25 0.071 0.113 0.384 0.867
3 d.f. p = 0.50 0.071 0.131 0.448 0.916

p = 0.75 0.072 0.100 0.318 0.740
Laplace p = 0.25 0.053 0.090 0.281 0.772

p = 0.50 0.069 0.104 0.280 0.772
p = 0.75 0.057 0.071 0.229 0.618

4.2 Test of Scale

Suppose X1, · · · ,Xn and Y 1, · · · ,Y n are random samples from the same family of ellipti-

cally symmetric distributions with possibly different location vector θ and scale matrix Σ.
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Figure 8: Scale-Scale plot for test of scale for bivariate Laplace distribution for n = 500. (a)
ΣY = I2, (b) ΣY = 4I2, (c)ΣY = 2I2 and (d) ΣY = 0.25I2.

Then, we have Y i
d
= AX i + b for some d× d matrix A and d× 1 vector b and as we noted

earlier, the scale-scale plot of such competing samples will be close to a straight line. We

would like to test H0 : |ΣX | = |ΣY | or alternatively, H0 : |A| = 1 against H1 : |A| 6= 1. Under

H0, the scale-scale plot will be very close to a 45◦ line. To construct a graphical test, plot

a band of scale-scale plots of G∗n against F ∗n , where F ∗n and G∗n are bootstrap distributions

of X1, · · · ,Xn and Y 1, · · · ,Y n, respectively. Under H0, this band will lie on both sides

of the 45◦ line, whereas under H1, nearly all of it will lie above or below the 45◦ line. For

illustration, we present a few plots in Figure 8. The data are simulated from the bivariate

Laplace distribution with mean θ = (0, 0)T and X1, · · · ,Xn have ΣX = I2. In Figure 8(a),

the scale matrix for Y 1, · · · ,Y n is ΣY = I2 and it is 0.25I2, 2I2 and 4I2 in (b), (c) and (d)

respectively. We observe that these plots detect the change in scales quite effectively.
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5 Concluding Remarks

Our proposed scale-scale plot is an effective visual tool to validate distributional assump-

tions for multivariate data. The scale-scale plot can be constructed based on other depth

functions as well but we are using the spatial depth to utilize its nice mathematical prop-

erties to illustrate our methods.Under elliptical symmetry of the distributions, we have nice

characterisations for the scale-scale plots and they can be used for tests of location in the one

sample case or to test equality of the scale in one-sample and two-sample problems. Though

we have followed the testing procedure of Singh, Tyler, Zhang, and Mukherjee (2009) for

test of location and scale in section 4.1 and 4.2, our plotting method is based on the volumes

of the central rank regions; the quantile scale curve proposed by Singh, Tyler, Zhang, and

Mukherjee (2009) is the quantile curve of the volumes of random simplices constructed from

a multivariate sample. The scale-scale plot is not dependent on the dimension of the data

and in principle can be constructed for high dimensional data as well. However, in practice,

due to the curse of dimensionality, estimated central rank regions are computationally very

unstable for high dimensional data. We have used the qhull programme (Barber et al.,

1996) to compute the volumes of the central rank regions and that is also not very efficient

for very high dimensional data. Though we can construct a scale-scale plot to validate dis-

tributional assumptions, it may not be possible to use it for test of location or scale in the

case of very high dimensional data with the available algorithms and computing resources.

A Appendix: Proofs

Proof of Theorem 2.1: Let Y = Σ−1/2(X − θ), then Y has a spherically symmetric

distribution about 0. Let F0 denote the distribution of Y . Then by the affine invariance of

the rank function RF (x), we have RF0(Y ) = RF0(Σ
−1/2(X − θ)) = RF (X). This implies

that rF (p) = rF0(p), where rF (p) and rF0(p) are the p-th quantiles of the distributions of

||RF (X)|| and ||RF0(Y )|| respectively. Thus,
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CF (p) = {x : ||RF (x)|| ≤ rF (p)}

=
{
x : ||RF0(Σ

−1/2(x− θ))|| ≤ rF (p)
}

=
{

Σ1/2y + θ : ||RF0(y)|| ≤ rF0(p)
}

= Σ1/2CF0(p) + θ. (4)

Therefore, VF (p) = |Σ|1/2VF0(p). Now by Theorem 4.3 of Oja(2010), ||RF0(y)|| is a

non-negative increasing function of ||y|| only, which implies that

VF0(p) =
π

d
2

Γ(d
2

+ 1)
ζdp (5)

where ζp is given by,

P ((X − θ)TΣ−1(X − θ) ≤ ζ2p ) = P (Y TY ≤ ζ2p ) = p. (6)

This proves the theorem.

Proof of Theorem 3.1: Assume that the probability density function of X and Y are

given by

f(x) = |ΣX |−1/2hX((x− θX)TΣ−1X (x− θX))

and

g(y) = |ΣY |−1/2hY ((y − θY )TΣ−1Y (y − θY ))

respectively. Then by Theorem 2.1,

VF (p) =
πd/2|ΣX |1/2ζdX,p

Γ(d
2

+ 1)
and VG(p) =

πd/2|ΣY |1/2ζdY,p
Γ(d

2
+ 1)

,

where ζX,p and ζY,p are the p-th quantiles of the distributions of
√

(X − θX)TΣ−1X (X − θX)

and
√

(Y − θY )TΣ−1Y (Y − θY ) respectively.

If Y = AX + b, we have hX = hY , ΣY = AΣXAT and θY = AθX + b, which implies

(X − θX)TΣ−1X (X − θX) = (Y − θY )TΣ−1Y (Y − θY ) and thus ζX,p = ζY,p for all p ∈ [0, 1).

Therefore, VG(p) = |A|VF (p).
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Now to prove the converse, let us assume that VG(p) = k.VF (p), then again by Theorem

2.1, we have

ζY,p = k∗ζX,p, for some k∗ > 0 and for all p ∈ [0, 1).

Then by elliptic symmetry of the distributions of X and Y , we have

Σ
−1/2
Y (Y − θY ) = k∗Σ

−1/2
X (X − θX)

and therefore

Y = k∗Σ
1/2
Y Σ

−1/2
X X − k∗Σ1/2

Y Σ
−1/2
X θX + θY

which proves the theorem with

A = k∗Σ
1/2
Y Σ

−1/2
X and b = −k∗Σ1/2

Y Σ
−1/2
X θX + θY .
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Academia, Prague, 33–40.

Chakraborty, B. (2001), On Affine Equivariant Multivariate Quantiles. Annals of the Insti-

tute of Statistical Mathematics, 53, 380–403.

Chaudhuri, P. (1996), On a Geometric Notion of Quantiles for Multivariate Data, Journal

of the American Statistical Association, 91, 862–872.

Cleveland, W. (1993), Visualizing Data, Hobart Press.

Cook, D.R., Weisberg, S. (1982), Residuals and Influence in Regression, Chapman & Hall,

New York.

Dhar, S. S., Chakraborty, B., Chaudhuri, P. (2014) Comparison of Multivariate Distributions

Using Quantile-Quantile Plots and Related Tests, Bernoulli, 20, 1484-1506.

Easton, G.S., and McCulloch, R.E. (1990), A multivariate generalization of quantile-quantile

plots, Journal of the American Statistical Association, 85, 376–386.

Fang, K. T., Kotz, S., Ng. K. W. (1990), Symmetric Multivariate and Related Distributions.

Chapman & Hall, London.

Girard, S., Stupfler, G. (2015), Intriguing properties of extreme geometric quantiles. REVSTAT-

Statistical Journal, to-appear.

Girard, S., Stupfler, G. (2015). Extreme geometric quantiles in a multivariate regular vari-

ation framework. Extremes, 18(4), 629-663.

Gnanadesikan, R. (1977), Methods for Statistical Data Analysis of Multivariate Observations,

Wiley, New York.

Healy, M.J.R. (1968), Multivariate normal plotting. Applied Statistics, 17, 157–161.

Johnson, R.A., Wichern, D.W. (2002), Applied Multivariate Statistical Analysis, Prentice

Hall, New Jersey.

24



Koltchinskii, V. I. (1997), M-Estimation, Convexity and Quantiles, The Annals of Statistics,

25, 435–477.

Liang, J., and Ng, K.W. (2009), A multivariate normal plot to detect nonnormality, Journal

of Computational and Graphical Statistics, 18, 52–72.

Liang, J., Pan, W., and Yang, Z.H. (2004), Characterization-based Q-Q plots for testing

multinormality, Statistics & Probability Letters, 70, 183–190.

Liu, R. Y., Parelius, J. M., Singh, K. (1999), Multivariate Analysis by Data Depth: Descrip-

tive Statistics, Graphics and Inference, The Annals of Statistics, 27, 783–858.

Marden, J.I. (1998), Bivariate QQ-plots and spider web plots, Statistica Sinica, 8, 813–826.

Marden, J.I. (2004), Positions and QQ Plots, Statistical Science, 19, 606–614.

Oja, H. (1999), Affine Invariant Multivariate Sign and Rank Tests and Corresponding Esti-

mates: A Review, Scandinavian Journal of Statistics, 26 319–343.

Oja, H. (2010), Multivariate Nonparametric Methods with R: An Approach Based on Spatial

Signs and Ranks, Springer, New York.

Serfling, R.(2002), A depth function and a scale curve based on spatial quantiles, In Statistical

Data Analysis Based On the L1-Norm and Related Methods, 25–38. Birkhaser(ed. Y. Dodge)

Serfling, R. (2010), Equivariance and invariance properties of multivariate quantile and re-

lated functions, and the role of standardisation, Journal of Nonparametric Statistics, Vol.

22, 915–936.

Singh, K., Tyler, D.E., Zhang, J., and Mukherjee, S. (2009), Quantile scale curves, Journal

of Computational and Graphical Statistics, 18, 92–105.

Wang, J., Zhou, W. (2012), A generalized multivariate kurtosis ordering and its applications,

Journal of Multivariate Analysis, 107, 169–180.

Wilk, M.B., and Gnanadesikan, R. (1968), Probability plotting methods for the analysis of

data, Biometrika, 55, 1–17.

Zuo, Y., and Serfling, R. (2000), Structural properties and convergence results for contours

of sample statistical depth functions, The Annals of Statistics, 28, 483–499.

25


