UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research at Birmingham

Atmospheric removal of methane by enhancing the natural hydroxyl radical sink

Wang, Yuyin; Ming, Tingzhen; Li, Wei; Yuan, Qingchun; de Richter, Renaud; Davies, Philip; Caillol, Sylvain

DOI:

10.1002/ghg.2191

License:

Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Wang, Y, Ming, T, Li, W, Yuan, Q, de Richter, R, Davies, P & Caillol, S 2022, 'Atmospheric removal of methane by enhancing the natural hydroxyl radical sink', *Greenhouse Gases: Science and Technology*, vol. 12, no. 6, pp. 784-795. https://doi.org/10.1002/ghg.2191

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)

•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 16. May. 2024

Atmospheric removal of methane by enhancing the natural hydroxyl radical sink

Yuyin Wang, University of Edinburgh, Scotland, UK
Tingzhen Ming, Wuhan University of Technology, Wuhan, P. R. China
Wei Li, University of Edinburgh, Scotland, UK
Qingchun Yuan, Aston University, Birmingham, UK
Renaud de Richter, Tour-Solaire.fr, 8 Impasse des Papillons, Montpellier, France
Philip Davies, University of Birmingham, Edgbaston, Birmingham, UK
Sylvain Caillol, Institut Charles Gerhardt CNRS 5253, Montpellier, Cedex, France

Abstract: According to the latest report from the intergovernmental panel on climate change (IPCC), currently, global warming due to methane (CH₄) alone is about 0.5°C while due to carbon dioxide (CO₂) alone is about 0.75°C. As CH₄ emissions will continue growing, in order to limit warming to 1.5°C, some of the most effective strategies are rapidly reducing CH₄ emissions and developing large scale CH₄ removal methods. The aim of this review article is to summarise and propose possible methods for atmospheric CH₄ removal, based on the hydroxyl radical (°OH), which is the principal natural sink of many gases in the atmosphere and on many water surfaces. Inspired by mechanisms of °OH generation in the atmosphere and observed or predicted enhancement of °OH by climate change and human activities, we proposed several methods to enhance the °OH sink by some physical means using water vapour and artificial UV radiation. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.

Keywords: hydroxyl radical; natural sink; methane removal; greenhouse gas removal; negative emissions technology; water vapour; UV light

Introduction

ethane (CH₄), is a potent greenhouse gas (GHG). For a 100-year time horizon, CH₄ has a global warming potential (GWP) 27–35 times higher than that of carbon dioxide (CO₂). It also has a short residence time in the atmosphere with a GWP 84 times higher than that of CO₂ over 20 years. ¹ Currently CH₄ contributes 0.5°C of warming pext to

Currently, CH₄ contributes 0.5°C of warming next to the highest contribution of 0.75°C from CO₂,² as

shown in Fig. 1(A), according to the latest report from the Intergovernmental Panel on Climate Change (IPCC). By the end of the century, in a baseline scenario, the warming due to CH₄ alone can be as high as 0.9°C, ranging from 0.75°C to 1.5°C.³

The tropospheric CH₄ concentration has grown by nearly 2.6 times over its pre-industrial level and growing faster in the recent two decades,¹ as shown in Fig. 1(B). In 2020 and 2021 the annual increases in

Correspondence to: Wei Li, Institute for Materials and Processes, School of Engineering, University of Edinburgh, EH9 3FB, Scotland, UK. E-mail: wei.li@ed.ac.uk

Received August 16, 2022; revised October 23, 2022; accepted November 1, 2022 Published online at Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/ghg.2191

SCI where science meets business

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Figure 1. A) Assessed contributions of various warming factors to observed warming in 2010–2019 relative to 1850–1900. Reproduced with permission.² Copyright 2021, IPCC. (B) Globally-averaged, monthly mean atmospheric CH₄ concentration since 1983. (NOAA Global Monitoring Laboratory). (C) Relative sectoral contributions to the anthropogenic emissions of CH₄.²Copyright 2021, IPCC.

conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creativ

21523878, 2022, 6, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ghg.2191 by University of Birmingham, Wiley Online Library on [07/12/2022]. See the Terms

atmospheric CH₄ (respectively 15.3 ppb and 17 ppb) were the largest annual increases ever recorded since systematic measurements began.⁴

CH₄ sources are widely spread from natural sources (e.g. tropical wetlands, thawing permafrost and submarine CH₄-clathrates, lakes and reservoirs) and anthropogenic emissions (e.g. rice paddies, landfills, fossil fuels, livestock, agriculture, wildfires and biomass burning, hydroelectric installations, as shown in Fig. 1C).⁵ Global emissions of CH₄ are increasing by shale gas fracking, venting, flaring, fugitive emissions of global gasoline and diesel,⁶ as well as by leaks in extraction,⁷ distribution and use.⁸ The emissions of CH₄ from the fossil fuel industry are 25–40% higher than previous estimates.⁹

To limit global warming to less than 2°C or below 1.5°C as targeted by the Paris agreement, the most effective strategy would be to rapidly reduce CH₄ emissions. Therefore, a recent United Nations report proposes to reduce the human-caused CH₄ emissions by 45% in this decade to keep the current warming level (about 0.5°C) more or less the same by the end of the century. In November 2021, during the 26th conference of parties (COP26) in Glasgow, UK, more than 100 countries signed the Global Methane Pledge committing to reduce anthropogenic CH₄ emissions by 30% in 2030 compared to the 2020 level. 11

A complementary strategy to $\mathrm{CH_4}$ emission mitigation is $\mathrm{CH_4}$ removal from the atmosphere (i.e. $\mathrm{CH_4}$ remediation). Scientists proposed numerous mitigation methods for $\mathrm{CH_4}$, $^{13-15}$ in different sectors such as agricultural soil and animal operations. But remediation proposals for $\mathrm{CH_4}$ already present in the atmosphere are still scarce. He main proposals consist of enhancing natural heterogeneous reactions with semi-conductor metal oxides in dusts, by photocatalysis or by thermal catalysis, 2 as well as by enhancing the Cl atom natural sink of $\mathrm{CH_4}$.

The aim of this review is to summarise and propose some possible methods for atmospheric CH₄ removal, based on the hydroxyl radical (°OH), which is the principal natural sink of CH₄ (and also many other gases) in the atmosphere and on many water surfaces.

Enhancing the tropospheric °OH sink of CH₄

Why °OH?

In the troposphere, the major oxidizing agent is the °OH. It is generated naturally and is considered as the

Table 1. Global emission of some trace gases in the troposphere and the estimated percent of removal by °OH.²⁶

Gas	Global emission rate (Tg year ⁻¹)	Removal by °OH (%)
CO	2,800	85
CH ₄	530	90
C ₂ H ₆	20	90
Isoprene	570	90
Terpenes	140	50
NO ₂	150	50
SO ₂	300	30
(CH ₃) ₂ S	30	90

detergent of the atmosphere converting about 3.7 gigatons of trace gases into CO_2 each year,²⁵ including several GHGs and many gases involved in stratospheric ozone (O_3) depletion (man-made hydrofluorocarbons [HFCs] and hydrochlorofluoro-carbons [HCFCs], biogenic chloromethane and bromomethane), volatile organic compounds (VOCs) and urban air pollution. Accordingly, the °OH concentration determines their atmospheric lifetimes.

As shown in Table 1, Prinn et al. 26 summarised some of the principal trace gases in the troposphere, their global emission and the estimated $^{\circ}$ OH role in their removal ($^{\circ}$ OH has no effect on CO₂ and N₂O).

While the global natural oxidative capacity of the atmosphere seems to be stable, 27 on a wide variety of space and timescales the levels of °OH in the atmosphere do not remain steady but change rapidly. The °OH sinks increase with pollution emissions of reduced gases (e.g., SO_2 , NO, CO). The °OH sources are turned off when UV radiation is absent (night time, polar winter), or decrease by lowering UV radiation (e.g. increasing cloudiness, the recovery of the stratospheric O_3 layer). The °OH sources also decrease for instance by lowering NO_x emissions, decreasing humidity (winter, altitude, droughts, deserted regions...), etc. 26

Mechanisms of °OH generation in the atmosphere

The concentrations of °OH depend on numerous factors: concentrations of O₃, relative humidity, temperature, ultraviolet radiation, emissions of VOCs,

carbon monoxide (CO), nitrogen oxides (NO_x), ²⁸ and some other factors. ²⁹

An important source for °OH during daytime comes from the UV photolysis of O_3 which generates oxygen and excited atomic oxygen $O(^1D)$, which then reacts with water (H_2O) to produce two OH radicals as in reactions R1 and R2:

$$O_3 + h\nu (UV light) \rightarrow O_2 + O(^1D)$$
 (R1)

$$O(^{1}D) + H_{2}O \rightarrow 2^{\circ}OH$$
 (R2)

These reactions show that O_3 , H_2O and UV radiation in the wavelength range between 310 and 350 nm^{30,31} are essential in the troposphere to produce °OH.

As °OH generation is triggered by O₃, UV and humidity, its concentration shows strong day/night cycles and seasonal variations, its concentration shows strong day/night cycles, seasonal variations, and correlation with height due to decreased H₂O concentration with lower temperatures in altitude. In the tropics, as the humidity is high and the solar radiation is intense, the concentrations of tropospheric °OH are the highest.

UV levels vary mainly with the height of the sun in the sky, the time of day (higher around solar noon), and the time of year (higher in summer), but also with latitude, as the closer to the equator the shorter the distance to travel through the atmosphere and the lower the amount of the UV radiation which is absorbed by the atmosphere. For the same reason, UV levels increase by approximately 10% with every 1 km in altitude.

°OH can also be formed through the reaction between O_3 and some terpenes during the entire 24-hour cycle, 32,33 as well as from hydrogen peroxide H_2O_2 by Fenton reaction. 34 The in-situ generation of H_2O_2 can be divided into three categories: chemical, photochemical, and electrochemical pathways that activate O_2 . 35 The photochemical activation is the most likely process that happens in the atmosphere, where the photocatalytic activation of O_2 is usually achieved by photoelectrons from catalysts under light irradiation. 36 The in-situ produced H_2O_2 is catalytically breakdown to generate °OH in this unique Fenton/Fenton-like process. 37,38

Observed or predicted enhancement of °OH atmospheric concentration by climate change and human activities

The primary sources of tropospheric °OH are reactions R1 and R2 starting with the photo-dissociation of O_3 by solar UV radiation, and in a warmer climate as projected under future global warming characterised by increased amounts of water vapour, the °OH abundance (as well as of other tropospheric oxidants such as HO_2 °) is expected to be enhanced in the troposphere. Photolysis rates influence °OH (Reaction R1), and hence variations in the cloud and stratospheric O_3 also have an impact on the concentration of °OH.³⁹

Lamarque et al.,⁴⁰ showed that under reduced aerosol emissions, a warmer and moister climate significantly increases global °OH concentration which illustrates the importance of the humidity concentration and distribution. Some studies estimate that in a warmer climate with doubled tropospheric CO₂, the annual global mean °OH concentration would increase by 12.5%⁴¹ or 7%.⁴²

Regional phenomena should also be noted, such as a 10-fold decrease for °OH in the Tropical West Pacific in relation to the surrounding area and increases in the South Atlantic and East Pacific. 43 Coupled climate chemistry models found that about 85% of CH₄ oxidation by tropospheric °OH occurs between 40° South and 40° North. 44

There are not yet publications proposing methods for enhancing the tropospheric °OH sink for CH₄ (as well as of other less concentrated GHGs). But from the above, it can be deduced that if human activities change the humidity levels (e.g., in hot and dry regions with high UV radiation index), the amounts of °OH generated will increase and thus °OH sink for CH₄ will be enhanced.

As an example, in some regions of Australia, Saudi Arabia, India or the United States, anthropogenic humidity changes already occur, for instance when irrigation for agriculture is made using river flows, fossil groundwater, or sometimes desalinated seawater. Several studies have shown that irrigation can increase relative humidity by 9–20%, and can have significant impacts on local meteorological fields. ⁴⁵ It is estimated that irrigation in California increases humidity in

southwestern US states (Arizona, Colorado, New Mexico, Utah and Wyoming).⁴⁶

The modelization made in early 2010s estimates that from 16.7 km³ of irrigation water used in the summer months over the 52,000 km² of irrigated area in Californian Central Valley, evapotranspiration amounts to 14.7 km³ which benefits the southwestern United States by water vapor export strengthening the regional hydrological cycle. The moisture is blown over the Sierra Nevada, initiating an anthropogenic loop, with a 15% increase in summer precipitation in the other states, and this additional rain in return causes the Colorado River stream flow to experience a 28% boost. ⁴⁶

Due to the global increasing population rates (expected to rise to 9.8 billion by 2050 and 11.2 billion in 2100⁴⁷) significant expansion of irrigated land in developing countries will continue.

One possible path to fight global warming is "planting a trillion trees". If this path becomes reality, in order to avoid competition for fertile agricultural land, some arid regions would need to be transformed and that requires irrigation and implies increasing evapotranspiration and more humidity, which in turn will generate more humidity transfer to adjacent regions.

Another example of human activity enhanced evaporation in dry regions is the hydroelectric reservoirs. Several dams have been built in dry regions and among them, one of the world's largest reservoirs is Lake Nasser in Egypt, almost 500 km long and with an average width of about 12 km covering about 6000 km² and having a storage capacity of about 162 km³ of fresh water. The evaporated water loss is estimated to range between 12 and 16 km³ every year. Since temperatures and the UV index are high, there is no doubt that the enhancement of the relative humidity also enhanced the °OH generation.

Human activities can contribute in one more unexpected way. The reasons why the 2020 and 2021 CH₄ concentrations were the highest ever recorded are multifactorial, but one of them is probably due to Covid-19 pandemic lockdowns, as at the global scale the emissions of NOx decreased, leading to a decrease in the levels of tropospheric O_3 , 52,53 even if locally in many cities the O_3 burden increased due to other factors. This reduction of NOx emissions and O_3 generation lead to a decrease in the atmospheric CH₄ oxidation due to lower levels of °OH, estimated to be

1.6 to 2% with an atmospheric chemistry transport model.⁵⁵ This reduced °OH generation is in turn partially responsible for the record increase of the atmospheric CH₄ concentration in 2020 and 2021.

Last but not the least, man-made °OH generators are commercially available and have been proposed for the removal of some pollutants at point sources. ^{56,57} °OH generators are becoming cheaper thanks to the development of long life-time UV-LEDs, whose use has exploded for UV-disinfection or sterilization following the SARS-CoV-2 pandemic. But such systems have not yet been suggested for large scale CH₄ removal.

Table 2 summarises the observed or predicted enhancement of °OH atmospheric concentration by climate change and human activities.

Further enhancement of °OH atmospheric concentration by water vapour

Water vapor is a key link between physical climate and °OH. The previous sections of this paper have focused on the discussion related to why more water vapor in hot dry places will generate more °OH. In very dry regions the tropospheric level of °OH is low. By adding humidity to the local atmosphere, which is very sunny and UV rich, °OH will be generated according to reactions R1 and R2.

A device was developed in Israel to generate huge amounts of humidity in very dry regions: it is named the downdraft energy tower (DET). It is a power plant that generates electricity by using sea water and solar energy stored in hot, dry desert air.⁵⁸ As demonstrated in Fig. 2, DET⁵⁹ includes a high downdraft evaporation tower, pumps, pipes, turbines and water reservoirs. The DET must be located inland, in the driest possible area, because moisture reduces the yield; yet, DET should not be too distant from the ocean, since seawater is required and piped through ducts to the DET. Then, sea water is pumped to the top of the DET and sprayed with a slew of nebulizers. Water droplets fall and evaporate, creating a downward flow of cold air that is denser than the ambient air. To ensure humidity saturation, the tower is relatively big and tall (usually 400 m in diameter and 1.4 km in height). The strong artificially generated cold wind powers turbines at the base of the tower. Only about a third of the electricity generated is required to pump the seawater to the top

Table 2. Observed or predicted enhancement of °OH atmospheric concentration.		
By climate change	Influences	Ref.
Solar UV radiation	Photo-dissociation of O ₃	39
Cloud and stratospheric O ₃	Photo-dissociation by UV	39
Humidity concentration and distribution	Regional phenomena	40–42
By human activities	Influences	
Irrigation for agriculture	Enhanced evaporation	46
Hydroelectric reservoirs	Enhanced evaporation	48–50
Emissions of NO _x	Changing the lifetime of CH ₄	55
°OH generators	Direct °OH generation	56, 57

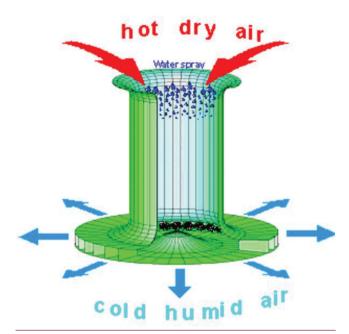


Figure 2. Schematic illustration of the energy tower, Reproduced with permission.⁶⁰ Copyright Czisch and Technion - Israel Institute of Technology.

of the tower and from the ocean. For this technology, the higher the temperature differential between water and ambient air, the higher the energy efficiency. The energy required is collected from the air, that is, the ultimate source is the sun. This means that it can be considered as a form of solar power generation. ⁵⁸

In comparison with many other renewable energy systems, the temporal behavior of the DET is particularly beneficial. As dry air is accessible 24 hours a day, the daily fluctuations are minimal. The ideal

areas are along the desert belts' coastlines, where Passat Winds, for example, supply hot dry air. There are no transportation or elevation losses for bringing water to the chimney's foot there. About 41 m³s⁻¹ of water are evaporated, representing 15 g of water per kg of air processed⁶¹ and about 1.3 km³ per year: ten such downdraft towers evaporate nearly the same quantity of water than due to irrigation in California or to Lake Nasser evaporation losses.

The daily amount of °OH generated by a DET can be calculated via the following equation, based on reaction R1 and R2:

$$N(^{\circ}OH) = 2N (O_3) = 2 \times N (air) \times c (O_3)$$
$$= 2 \times c (O_3) \times \frac{Q (air)}{22.4L/mol}$$
$$= 2 \times c (O_3) \times \frac{tvS}{22.4L/mol}$$

where, $c(O_3)$ means the concentration of O_3 in the atmosphere (approximately 1ppm at 1.4 km); t represents the time (24 × 3600 s); v is the air velocity at the tower's bottom (17.8 m/s¹⁵) and S is the bottom surface area of the tower. As a result, it is about 1.724×10^7 mol.

As we mentioned earlier, DET is a power plant that generates electricity by using sea water and solar energy stored in hot, dry desert air. Herein, the water vapour is generated from this process as a by-product, which does not require additional energy. Take the cooling tower built by Abdelsalam et al. as an example, the tower generates 409 MWh of gross energy annually. 40% of that (164 MWh) is utilised to power the pumps that elevate the water to the top of the chimney. System

losses consume 20% of the gross energy (82 MWh). As a result, the net benefit is 40% (164 MWh) of usable energy. 63

Further enhancement of °OH atmospheric concentration by artificial UV radiation

The atmospheric concentration of °OH can also be enhanced by artificial UV-B radiation to generate both O_3 (via photolysis of O_2)⁶⁴ and °OH in locations or at times where their concentration is low and when the risks are minimal both for fauna and flora.

Several types of UV lamps are commercially available such as conventional ones with Hg vapour inside, economy bulbs (without the coating transforming the UV into visible light) and light emitting diodes (LEDs). Their lifetimes and efficiencies increase in the order cited, while their energy consumptions and prices decrease. The wavelength specificity was generally good and is still improving for both visible LEDs and UV-LEDs, which are more and more used in horticulture (some higher plants and green algae have a UV-B photoreceptor named UV-R8⁶⁵) and for analytical purposes, for instance, diode array detectors coupled with chromatographic apparatus⁶⁶ equip almost all modern laboratories. Selective UV reflecting mirrors⁶⁷ allow directing the radiation in the desired direction.

Safest locations for generating tropospheric O₃ and °OH by artificial UV light

To not increase the surface O_3 burden over polluted cities, the UV light generators should be located in unpopulated areas, preferably at sources of CH_4 emissions, such as Siberia, the Arctic, coal mines, open pit mines, regions of shale gas extraction by fracking, rice paddies, wetlands, etc.

The UV radiation is either directed upwards to the outer space, in order to protect plants and animals from possible damage; or is used in a closed environment such as the ventilation system of a coal mine.

Other possible locations are over the oceans on fixed floating platforms or moving marine vessels in the Southern Oceans far from populated areas.

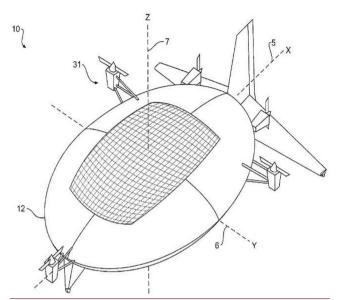


Figure 3. A possible lighter than air platform for solar energy collection, reproduced with permission.⁷⁴ Copyright 2014. United States Patent.

The main idea is that the O_3 will be generated locally and rapidly consumed to generate °OH and oxidize CH_4 and other VOCs.

Using balloons, airships, aerostats or flying kites for both holding the UV lamps and power generation

Electrical power generated at altitude, as described in numerous articles^{68,69} and patents,⁷⁰ can be designed to light UV lamps.

Collecting solar and wind energy is ideal in altitude as winds and solar radiation are more regular and intense. Several types of devices (e.g., aerostats, platforms with PV panels⁷¹ and kites with wind turbines⁷²) have been proposed for such applications. Several studies show that, compared to a typical ground-based system, locating them in altitude might bring a significant advantage for the electrical power production.⁷³

The feasibility and viability of such techniques which have been studied are not included in this review article, but as an example, the collection of solar energy at altitudes of 6–12 km with the help of a device shown in Fig. 3 could produce four to six times more electricity than on grounds. As a matter of fact, because reaction R1 requires H_2O and O_3 to generate OH, altitudes lower than 612 km are necessary. Also, the weight of UV lamps (UV LEDs) needs to be taken into consideration when designing those devices.

21523878, 2022. 6, Downloaded from https://online.library.wiley.com/doi/10.1002/ghg.2191 by University of Birmingham, Wiley Online Library on [07/12/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/

When the wind is blowing from land to sea, offshore wind turbines are used to power UV lamps. Several types of alternative power generating devices are described, such as kite-surf plants,⁷⁵ sailing wind farms,⁷⁶ and artificial floating islands or platforms⁷⁷ with multiple renewable energy sources including other marine energies.

During peak load, 100% of electricity produced can be sent to the grid. Before and after the peak of consumption, almost all electricity production could be devoted to the UV lamps. At night some base-load electricity production from the grid, or "excess" wind energy which often costs zero or even has a negative price can be used.

The use of batteries to store PV generated electricity for night use is probably not necessary because this will unnecessarily increase the costs of the GGR method proposed. CH₄ is a well-mixed GHG and has many types of natural and anthropogenic sources all over the planet, so any excess of electricity produced in the night or even during the daytime could immediately be used for GGR.

Further discussions

Limitations in tropospheric O₃ concentrations

If tropospheric O_3 concentrations become the bottlenecks for °OH generation and more tropospheric O_3 is needed, O_3 generation can be considered far from populations in altitude, or over high seas. Because surface O_3 has detrimental effects on vegetation, animals and humans.⁷⁸ Another possibility is commercially available °OH generators (described earlier at the end of Section 3) which do not rely on tropospheric O_3 concentrations.

°OH also reacts with other gases and may generate secondary pollutants

Therefore, a rigorous atmospheric chemistry evaluation of rates and mixing is needed for further quantitative analysis of efficiency, costs, environmental and life cycle impacts, etc. This is a knowledge gap in the research field as great diversity exists among different atmospheric chemistry models which predict °OH variability, distribution and trends. This diversity

has been primarily attributed to the following factors: differences in chemical mechanisms that result in differences in the chemical drivers of °OH, differences in meteorology across models that arise either because models produce their own meteorology or are forced by reanalyzed meteorological fields. The quantitative analysis would only be possible once a robust atmospheric model becomes available. Alternatively, some semiquantitative and scenario-based analyses can be attempted to partially bridge this gap.

Water vapor also has a greenhouse effect and absorbs UV

The average residence time of water vapor in the atmosphere is much shorter than that of CH₄ (4–9 days^{79,80}), therefore, if CH₄ oxidation is enhanced, it is expected that the climate benefits should be higher, but this has to be quantified by further atmospheric chemistry modelling, which adds more complexity for the development of atmospheric models. Water vapor and artificial UV rays will not offset each other. Artificial UV is only proposed above oceans, or at altitude in locations that do not require adding additional water vapor. Increasing water vapor using downdraft towers is suggested in hot dry deserts where the natural UV levels are quite high and the use of artificial UV is not required.

Co-benefit of CH₄ removal

Some recent modelling work reveals that CH_4 removal provides great benefits for regional surface O_3 reduction in locations where it has detrimental effects, and thus plays a critical role in improving air quality. 81

Life cycle assessments of all methods proposed

In order to assess if the methods proposed have overall negative emissions, or if the production and deployment of the devices proposed generate more GHGs than they remove, life cycle assessments will be performed in future work. In particular, for devices that only remove CH₄ without any associated co-benefit, the amount of operation time needed to equalize the pollution associated with the manufacture and construction process has to be determined. For devices also producing renewable energy or other co-benefits, more complicated assessments are needed to account for all contributors.

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licens

Concluding remarks

There are different approaches to develop the much-needed negative emissions technologies. In this review paper, we discussed some strategies to remove atmospheric CH_4 by enhancing the natural ${}^{\circ}OH$ sink.

Inspirations can be found in observed or predicted enhancement of °OH atmospheric concentration by climate change and human activities. Change of humidity and introduction of artificial UV radiation are the two main topics here, which we believe deserve more attention from the scientific community to help evaluate their potential risks, impacts, costs and public acceptability.

It is worth pointing out that those strategies may be expensive and have externalities, so careful assessments (e.g., techno-economic analysis, life cycle assessment) will be required to compare the proposed schemes versus $\mathrm{CH_4}$ emission mitigation approaches. We believe that one of the main knowledge gaps for such assessments is the great diversity among different atmospheric chemistry models which predict °OH variability, distribution, and trends.

If the knowledge gap closes and evaluations prove those proposed schemes are viable, together with GHGs mitigation and CO_2 removal, large-scale CH_4 removal methods can help win time to fight climate change by slowing down warming and thus meet the targets of the Paris Agreement with limited temperature overshoot.

Acknowledgements

This research was supported by the European Commission H2020 Marie S Curie Research and Innovation Staff Exchange (RISE) award (Grant No. 871998), and the National Key Research and Development Plan (Key Special Project of Inter-governmental National Scientific and Technological Innovation Cooperation, Grant No. 2019YFE0197500).

References

- NOAA. Earth system research laboratories. https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/ (2021).
- IPCC. Climate change 2021: the physical science basis.
 Working Group I contribution to the Sixth Assessment Report
 of the Intergovernmental Panel on Climate Change. Figure
 SPM-2. Cambridge, UK: Cambridge University Press; 2021.
 https://doi.org/10.1017/9781009157896.001.

- https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/
- Ocko IB, SunT, Shindell D, Oppenheimer M, Hristov AN, Pacala SW, et al. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environ Res Lett. 2021;16:054042.
- NOAA. Increase in atmospheric methane set another record during 2021. National Oceanic and Atmospheric Administration; 2022. https://www.noaa.gov/news-release/increase-inatmospheric-methane-set-another-record-during-2021
- Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000–2017. Earth Syst Sci Data. 2020;12:1561–623.
- Pieprzyk B, Hilje PR. Influence of methane emissions on the GHG emissions of fossil fuels. Biofuels Bioprod Biorefining. 2019;13:535–51.
- Pandey S, Gautam R, Houweling S, van der Gon HD, Sadavarte P, Borsdorff T, et al. Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proc Natl Acad Sci. 2019;116:26376–81.
- Schwietzke S, Sherwood OA, Bruhwiler LMP, Miller JB, Etiope G, Dlugokencky EJ, et al. Upward revision of global fossil fuel methane emissions based on isotope database. Nature. 2016;538:88–91.
- Hmiel B, Petrenko VV, Dyonisius MN, Buizert C, Smith AM, Place PF, et al. Preindustrial ¹⁴CH₄ indicates greater anthropogenic fossil CH₄ emissions. Nature. 2020;578:409–12.
- UNEP. Global assessment: urgent steps must be taken to reduce methane emissions this decade. UN Environment Programme; 2021. https://www.unep.org/news-andstories/press-release/global-assessment-urgent-steps-mustbe-taken-reduce-methane
- 11. Global Methane Pledge. 2021. https://www.globalmethanepledge.org/
- Gasser T, Guivarch C, Tachiiri K, Jones CD, Ciais P. Negative emissions physically needed to keep global warming below 2°C. Nat Commun. 2015;6:7958.
- Nisbet EG, Fisher RE, Lowry D, France JL, Allen G, Bakkaloglu S, et al. Methane mitigation: methods to reduce emissions, on the path to the Paris agreement. Rev Geophys. 2020;58:e2019RG000675.
- Johannisson J, Hiete M. A structured approach for the mitigation of natural methane emissions—lessons learned from anthropogenic emissions. C — J. Carbon Res. 2020;6:24.
- Stolaroff JK, Bhattacharyya S, Smith CA, Bourcier WL, Cameron-Smith PJ, et al. Review of methane mitigation technologies with application to rapid release of methane from the Arctic. Environ Sci Technol. 2012;46:6455–69.
- Ussiri D, Lal R. The role of nitrous oxide on climate change. In: Soil emission of nitrous oxide and its mitigation. Dordrecht, The Netherlands: Springer Science & Business Media; 2013. https://doi.org/10.1007/978-94-007-5364-8_1
- Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, et al. Special topics mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options1. J Anim Sci. 2013;91:5045–69.
- De_Richter R, Ming T, Davies P, Liu W, Caillol S. Removal of non-CO 2 greenhouse gases by large-scale atmospheric solar photocatalysis. Prog Energy Combust Sci. 2017;60:68–96.

- Oeste FD, de Richter R, Ming T, Caillol S. Climate engineering by mimicking natural dust climate control: the iron salt aerosol method. Earth Syst Dyn. 2017;8:1–54.
- Boucher O, Folberth GA. New Directions: atmospheric methane removal as a way to mitigate climate change? Atmos Environ. 2010;44:3343–5.
- De_Richter RK, Oeste FD, Ming T, Caillol S. Iron salt aerosol and photocatalytic solar chimneys: two innovative breakthrough technologies to remove greenhouse gases. In: International conference on negative CO₂ Emissions 2018, Goteborg, Sweden, 22–24 May, 2018.
- Jackson RB, Solomon EI, Canadell JG, Cargnello M, Field CB. Methane removal and atmospheric restoration. Nat Sustain. 2019:2:436–8.
- George C, Ammann M, D'Anna B, Donaldson DJ, Nizkorodov SA. Heterogeneous photochemistry in the atmosphere. Chem Rev. 2015;115:4218–4258.
- Ming T, Richter R, de Dietrich Oeste F, Tulip R, Caillol S. A nature-based negative emissions technology able to remove atmospheric methane and other greenhouse gases. Atmos Pollut Res. 2021;12:101035.
- Prinn RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, et al. Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys Res Lett. 2005;32:L07809-n/a.
- Prinn RG. Ozone, hydroxyl radical, and oxidative capacity. In: Holland, HD, Turekian, KK., editors. Treatise on geochemistry, vols 4–9. Amsterdam, The Netherlands: Elsevier; 2003. p. 1–19.
- Rigby M, Montzka SA, Prinn RG, White JWC, Young D, O'Doherty S, et al. Role of atmospheric oxidation in recent methane growth. Proc Natl Acad Sci. 2017;114:5373–7.
- Nicely JM, Duncan BN, Hanisco TF, Wolfe GM, Salawitch RJ, et al. A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmos Chem Phys. 2020;20:1341–1361.
- 29. He J, Naik V, Horowitz LW. Hydroxyl radical (OH) response to meteorological forcing and implication for the methane budget. Geophys Res Lett. 2021;48:e2021GL094140.
- Matsumi Y. Quantum yields for production of O(¹D) in the ultraviolet photolysis of ozone: recommendation based on evaluation of laboratory data. J Geophys Res. 2002;107:ACH 1-1-ACH 1-12.
- Hofzumahaus A. Photolysis frequency of O₃ to O(¹D): measurements and modeling during the international photolysis frequency measurement and modeling intercomparison (IPMMI). J Geophys Res. 2004;109:D08S90.
- Paulson SE, Chung M, Sen AD, Orzechowska G. Measurement of OH radical formation from the reaction of ozone with several biogenic alkenes. J Geophys Res Atmos. 1998;103:25533–9.
- Atkinson R, Aschmann SM, Arey J, Shorees B. Formation of OH radicals in the gas phase reactions of O₃ with a series of terpenes. J Geophys Res. 1992;97:6065.
- Liu Y, Zhao Y, Wang J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects. J Hazard Mater. 2021;404:124191.
- 35. Pi L, Cai J, Xiong L, Cui J, Hua H, Tang D, et al. Generation of $\rm H_2O_2$ by on-site activation of molecular dioxygen for environmental remediation applications: a review. Chem Eng J. 2020;389:123420.

- Jiang Z, Wang L, Lei J, Liu Y, Zhang J. Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H₂O₂. Appl Catal B Environ. 2019;241:367– 74.
- 37. Bokare AD, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ Sci Technol. 2009;43:7130–5.
- Su P, Zhou M, Lu X, Yang W, Ren G, Ca J. Electrochemical catalytic mechanism of N-doped graphene for enhanced H₂O₂ yield and in-situ degradation of organic pollutant. Appl Catal B Environ. 2019;245:583–95.
- Stevenson DS, Zhao A, Naik V, O'Connor FM, Tilmes S, Zeng G, et al. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmos Chem Phys. 2020;20:12905–20.
- Lamarque J-F. Response of a coupled chemistry-climate model to changes in aerosol emissions: global impact on the hydrological cycle and the tropospheric burdens of OH, ozone, and NO_x. Geophys Res Lett. 2005;32:L16809.
- Johnson CE, Collins WJ, Stevenson DS, Derwent RG. Relative roles of climate and emissions changes on future tropospheric oxidant concentrations. J Geophys Res Atmos. 1999;104:18631–45.
- Brasseur GP, Kiehl JT, Müller J-F, Schneider T, Granier C, Tie XX, et al. Past and future changes in global tropospheric ozone: impact on radiative forcing. Geophys Res Lett. 1998;25:3807–10.
- Wolfe GM, Nicely JM, St. Clair JM, Hanisco TF, Liao J, Oman LD, et al. Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proc Natl Acad Sci. 2019;116:11171–80.
- Holmes CD, Prather MJ, Søvde OA, Myhre G. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions. Atmos Chem Phys. 2013;13:285–302.
- 45. Sorooshian S, Li J, Hsu K, Gao X. How significant is the impact of irrigation on the local hydroclimate in California's Central Valley? Comparison of model results with ground and remote-sensing data. J Geophys Res. 2011;116:D06102.
- Lo M, Famiglietti JS. Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle. Geophys Res Lett. 2013;40:301–6.
- UN. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. UN Department of Economic and Social Affairs; 2017. https://www.un.org/development/desa/ en/news/population/world-population-prospects-2017.html
- 48. Ebaid HMI, Ismail SS. Lake Nasser evaporation reduction study. J Adv Res. 2010;1:315–22.
- Abou El-Magd IH, Ali EM. Estimation of the evaporative losses from Lake Nasser, Egypt using optical satellite imagery. Int J Digit Earth. 2012;5:133–146
- Hassan A, Ismail SS, Elmoustafa A, Khalaf S. Evaluating evaporation rate from high Aswan dam reservoir using RS and GIS techniques. Egypt J Remote Sens Sp Sci. 2018;21:285–93.
- NOAA. Despite pandemic shutdowns, carbon dioxide and methane surged in 2020. NOAA Research News; 2021. https://research.noaa.gov/article/ArtMID/587/ArticleID/2742/ Despite-pandemic-shutdowns-carbon-dioxide-and-methanesurged-in-2020

- Steinbrecht W, Kubistin D, Plass-Dülmer C, Davies J, Tarasick DW, von der Gathen P, et al. COVID-19 crisis reduces free tropospheric ozone across the northern hemisphere. Geophys Res Lett. 2021;48:e2020GL091987.
- 53. Miyazaki K, Bowman K, Sekiya T, Takigawa M, Neu JL, Sudo K, et al. Global tropospheric ozone responses to reduced NO_X emissions linked to the COVID-19 worldwide lockdowns. Sci Adv. 2021;7:eabf7460.
- 54. Sicard P, De Marco A, Agathokleous E, Feng Z, Xu X, Paoletti E, et al. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci Total Environ. 2020;735:139542.
- Stevenson D, Derwent R, Wild O, Collins W. COVID-19 lockdown NO_x emission reductions can explain most of the coincident increase in global atmospheric methane. Atmos Chem Phys Discuss. 2021;2021:1–8.
- Morneault GJE. US Patent. US2013004381A1. Hydroxyl generator. 2013.
- 57. Engstrom GE. US Patent. US2016325004A1. Hydroxyl generation and/or ozone reduction system and method. 2016.
- Ming T, De_Richter R, Liu W, Caillol S. Fighting global warming by climate engineering: is the Earth radiation management and the solar radiation management any option for fighting climate change? Renew Sustain Energy Rev. 2014;31:792–834.
- Omer E, Guetta R, Ioslovich I, Gutman P-O, Borshchevsky M. Optimal design of an "energy tower" power plant. IEEE Trans Energy Convers. 2008;23:215–25.
- Altman T, Zaslavsky D, Guetta R, Czisch G. Evaluation of the potential of electricity and desalinated water supply by using technology of "Energy Towers" for Australia and America. Energy 2005.
- Zaslavsky D. Energy Towers. PhysicaPlus Israel Physical Society. 2006;7.
- Altmann T, Carmel Y, Guetta R, Zaslavsky D, Doytsher Y. Assessment of an "Energy Tower" potential in Australia using a mathematical model and GIS. Sol Energy. 2005;78:799–808.
- Abdelsalam E, Kafiah F, Tawalbeh M, Almomani F, Azzam A, Alzoubi I, et al. Performance analysis of hybrid solar chimney–power plant for power production and seawater desalination: a sustainable approach. Int J Energy Res. 2021;45:17327–41.
- Claus H. Ozone generation by ultraviolet lamps. Photochem Photobiol. 2021;97:471–6.
- Fernández MB, Tossi V, Lamattina L, Cassia R. A comprehensive phylogeny reveals functional conservation of the UV-B photoreceptor UVR8 from green algae to higher plants. Front Plant Sci. 2016;7:1698.
- 66. Bomastyk B, Petrovic I, Hauser PC. Absorbance detector for high-performance liquid chromatography based on

- light-emitting diodes for the deep-ultraviolet range. J Chromatogr A 2011;1218:3750–6.
- Smirnov JRC, Calvo ME, Míguez H. Selective UV reflecting mirrors based on nanoparticle multilayers. Adv Funct Mater. 2013;23:2805–11.
- Aglietti GS, Redi S, Tatnall AR, Markvart T. Harnessing high-altitude solar power. IEEE Trans Energy Convers. 2009:24:442–51.
- Fagiano L, Milanese M, Piga D. High-altitude wind power generation. IEEE Trans Energy Convers. 2010;25:168–180.
- Shepard DH. Power generation from high altitude winds. Patent US 4,659,940. 1987.
- Aglietti GS, Markvart T, Tatnall AR, Walker SJ. Solar power generation using high altitude platforms feasibility and viability. Prog Photovoltaics Res Appl. 2008;16:349–59.
- Canale M, Fagiano L, Milanese M. High altitude wind energy generation using controlled power kites. IEEE Trans Control Syst Technol. 2010;18:279–293.
- Aglietti GS, Redi S, Tatnall AR, Markvart T. High altitude electrical power generation. WSEAS Trans Environ Dev. 2008;4:1067–1077.
- Goelet J. System and method for solar-powered airship. Patent US 8.894,002. 2014.
- Ahrens U, Pieper B, Töpfer C. Combining kites and rail technology into a traction-based airborne wind energy plant. In: Ahrens, U., Diehl, M., Schmehl, R., editors. Airborne wind energy. Berlin, Heidelberg: Springer; 2013. p. 437–41. https://doi.org/10.1007/978-3-642-39965-7_25
- Tsujimoto M, Uehiro T, Esaki H, Kinoshita T, Takagi K, Tanaka S, et al. Optimum routing of a sailing wind farm. J Mar Sci Technol. 2009;14:89–103.
- Yeh N, Yeh P, Chang Y-H. Artificial floating islands for environmental improvement. Renew Sustain Energy Rev. 2015;47:616–22.
- Griffiths PT, Murray LT, Zeng G, Shin YM, Abraham NL, Archibald AT, et al. Tropospheric ozone in CMIP6 simulations. Atmos Chem Phys. 2021;21:4187–218.
- van der Ent RJ, Tuinenburg OA. The residence time of water in the atmosphere revisited. Hydrol Earth Syst Sci. 2017;21:779–90.
- Läderach A, Sodemann H. A revised picture of the atmospheric moisture residence time. Geophys Res Lett. 2016;43:924–33.
- Abernethy S, O'Connor FM, Jones CD, Jackson RB. Methane removal and the proportional reductions in surface temperature and ozone. Philos Trans R Soc A Math Phys Eng Sci. 2021;379:20210104.

Yuvin Wang


Yuyin Wang received her BSc degree from YangZhou University of in 2020. Currently, she is studying for a PhD under the supervision of Dr Wei Li at the University of Edinburgh. Her research mainly focuses on catalytic processes and materials for methane oxidation.

Prof Tingzhen Ming

Prof Tingzhen Ming is the Chair of Built Environment and Energy Engineering, at Wuhan University of Technology and subject editor of *Journal of Thermal Science*. His research interests include CFD, heat and mass transfer, urban planning, building and environment,

pollutant dispersion. Prof. Ming has published over 150 journal papers.

Dr Wei Li

Dr Wei Li joined the University of Edinburgh in 2021 as a Senior Lecturer in Chemical Engineering. He studied chemical engineering at the Nanjing University of Technology, obtaining his BEng and PhD in 2008. His expertise includes nanoengineering of photocatalytic materials and reaction

engineering of photocatalytic processes.

Dr Qingchun Yuan

Dr Qingchun Yuan is a lecturer in Chemical Engineering at Aston University. She has Master's degree in Chemical Engineering and Fuel Processing, and her PhD Degree was in Polymer Science and Engineering. Dr Yuan's expertise is in nanoparticle interface, and the applications in catalysis for fuels, renewable energy and greenhouse gas removal.

Dr Renaud de Richter

Dr Renaud de
Richter graduated from the engineering
school of chemistry of Montpellier
and received PhD degree from
University of Science and Technology
of Montpellier, France. His research
interests include the development of
methods for atmospheric greenhouse
gases removal (methane, nitrous
oxide, halocarbons, surface ozone) at a

climatically significant scale.

Philip Davies

Philip Davies is a Professorial Research Fellow at the School of Engineering, University of Birmingham, UK. He is particularly interested in technologies to harness renewable energy in world arid regions for atmospheric greenhouse gases removal. He has a BSc in Mechanical Engineering from Imperial College, London, and a doctorate from the University of

21523878, 2022. 6, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ghg.2191 by University of Birmingham, Wiley Online Library on [07/12/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/term

and-conditions) on Wiley Online Library

for rules of use; OA articles are gov-

Oxford.

Dr Sylvain Caillol

Dr Sylvain Caillol is Research
Director at CNRS. He received his
PhD degree in 2001 from the University
of Bordeaux. Subsequently he joined
Rhodia Company. In 2007 he joined the
CNRS at the Institute Charles Gerhardt
of the University of Montpellier
where he started a new research
topic dedicated to green chemistry and

biobased polymers.