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Fast cavity-enhanced atom detection with low noise and high fidelity

J. Goldwin,1, 2 M. Trupke,1, 3 J. Kenner,1 A. Ratnapala,1 and E. A. Hinds1

1Centre for Cold Matter, Imperial College, Prince Consort Road, London SW7 2BW, United Kingdom
2School of Physics and Astronomy, University of Birmingham,

Edgbaston, Birmingham B15 2TT, United Kingdom
3Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria

Cavity quantum electrodynamics describes the fundamental interactions between light and matter,
and how they can be controlled by shaping the local environment. For example, optical microcavities
allow high-efficiency detection and manipulation of single atoms. In this regime fluctuations of atom
number are on the order of the mean number, which can lead to signal fluctuations in excess of
the noise on the incident probe field. Conversely, we demonstrate that nonlinearities and multi-
atom statistics can together serve to suppress the effects of atomic fluctuations when making local
density measurements on clouds of cold atoms. We measure atom densities below 1 per cavity mode
volume near the photon shot-noise limit. This is in direct contrast to previous experiments where
fluctuations in atom number contribute significantly to the noise. Atom detection is shown to be
fast and efficient, reaching fidelities in excess of 97% after 10µs and 99.9% after 30µs.

INTRODUCTION

High finesse optical resonators can improve the sen-
sitivity of atom detection by increasing the lifetime of
photons and confining them to a small volume [1]. Long
photon lifetime, controlled by cavity length and mirror
reflectivity, increases the effective optical thickness of an
intra-cavity sample by a factor on the order of the finesse
F ≫ 1. Small mode volume, which depends only on the
geometry of the resonator, increases the energy density
per photon and therefore the Einstein coefficients describ-
ing transition rates. Thus the spontaneous emission rate
of an atom is increased by coupling it to a resonant cavity
[2]. Importantly, all the additional photons are emitted
into the cavity mode, making it possible to detect fluo-
rescence even at very low atom density. For sufficiently
small mode volumes, a single cavity photon becomes in-
tense enough to saturate the atomic transition. In this
regime vacuum fluctuations modify the spectral proper-
ties of the coupled atom-cavity system [3] in such a way
as to allow detection at the single-atom level [4–7].

Recently there has been growing interest in cold atom
experiments with atomic density distributions extending
throughout or beyond the range of the cavity field [8–
12]. For multiple atoms, the radiative behaviour can be
coherent [13, 14]. Although the gas may be dilute, the
common coupling to the electromagnetic field produces
effective long-range interactions between the atoms that
can lead to self-organisation [15, 16] and collective motion
[17], as well as super-radiant Rayleigh scattering and col-
lective atomic recoil lasing [18]. Recently experimenters
have exploited these effects to realise a quantum phase
transition from a Bose-Einstein condensate to a super-
solid [19].

A central parameter in describing cavity-enhanced de-
tection is the dimensionless single-atom cooperativity
[20], C1 = g2/(2κγ), where 2 g is the single-photon Rabi
frequency at the peak of the cavity intensity distribution,

2 κ is the cavity linewidth (full-width at half maximum),
and 2 γ is the natural atomic linewidth. The coopera-
tivity determines both the effect of a single atom on the
cavity spectrum, and the rate of fluorescence into the
cavity.
In the case of multiple atoms, the cooperativity is gen-

eralized by defining CN = C1 Neff , where the effective
atom number is [21]

Neff =

L
∫

0

∞
∫

−∞

∞
∫

−∞

|χ(r)|2̺(r) d3r (1)

with ̺(r) being the atomic density, L the cavity length,
and χ(r) = sin(2π z/λ) exp[−(x2 + y2)/w2] the cavity
field mode function (λ is the wavelength). It is important
to note that Neff is a random variable, generally distinct
from its mean value 〈Neff〉. When the atom cloud is much
larger than the cavity mode volume Vcav = πw2L/4, the
mean atom density is approximately uniform over the in-
teraction region, and 〈Neff〉 ≈ ̺(0)Vcav. At low densities,
single-atom physics dominates, while at higher densities
multi-atom effects become important [21]. Here we per-
form local density measurements on large dilute clouds of
atoms in the crossover regime, paying particular atten-
tion to signal fluctuations. We show that even at densi-
ties on the order of one atom per cavity mode volume,
the effects of atomic shot noise are heavily suppressed.
We then compare our results with state-of-the-art ex-
periments on single trapped atoms, demonstrating a fast
detection time and high fidelity.

RESULTS

Optical Noise Suppression

Our apparatus, shown schematically in Fig. 1, has been
described in detail in refs. [7, 22] (see also Methods). We

http://uk.arxiv.org/abs/1009.2916v2
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FIG. 1: Schematic of experiment (not to scale). Clouds of
87Rb atoms are laser cooled and dropped through a high-
finesse optical microcavity. In the experiment, the atomic
density is approximately Gaussian with a width three orders
of magnitude larger than the cavity mode waist, allowing us
to make a local density approximation for the atoms. The
system is probed either by monitoring the cavity reflection,
with Jin incident photons per second, or by observing fluo-
rescence into the cavity mode induced by a laser beam with
Rabi frequency Ω (and Jin = 0). In either case the output
stream of Jout photons per second is detected using a single
photon counting module.

detect atoms either by (i) measuring changes in the in-
tensity of a probe beam reflected from the cavity; or (ii)
detecting fluorescence when exciting the atoms uniformly
with a laser beam propagating transverse to the cavity
axis. We refer to these simply as reflection and fluores-
cence measurements, respectively. If atoms are present
and the cavity and lasers are resonant with the free-space
atomic transition, then the steady-state rate of photons
travelling from the cavity to the detector is [23]

Jout =



















Jin

(

b+ 2CN

1 + 2CN

)2

, reflection

2C′
N γ ξ

s

(1 + 2C′
N)2 + s

, fluorescence

(2)

where Jin is the number of incident probe photons per
second and b2 characterizes the reflection fringe contrast
in the absence of atoms. The cooperativities for reflection
(CN ) and fluorescence (C′

N ) are not generally the same
since they depend on the polarisation of the probe light
and the excitation light respectively [24] (see Methods).
In fluorescence, s = 1

2 (Ω/γ)
2 is the free-space saturation

parameter for excitation driven at a Rabi frequency Ω,
while ξ is the probability for an intracavity photon to pass
from the cavity into the fibre. Finally we have used the
facts that (g/κ)4 ≪ 1, and that the atomic excited state
fraction is small in our reflection measurements. For this
work g/(2π) = 98.4(1.6)MHz, κ/(2π) = 5200(100)MHz,
and γ/(2π) = 3MHz, giving C1 = 0.307(11).
It is important to note that Jout as described by Eq. (2)

is only linear in atom density for small values of the co-
operativity; for reflection measurements Jout saturates
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FIG. 2: Reflection measurements. (a) Detected photon counts
for 300 identical experiments. The atoms are released at
39.5ms. Counts increase from blue to red. Data were taken
with 2µs resolution, and the image was then re-binned to
1 ms. (b) The data in red are averages over the 300 drops
shown in (a), while the white curve is a fit to Eq. (2) assuming
a Gaussian dependence of CN on time; the dashed blue line
gives the value expected from a single atom maximally cou-
pled to the cavity mode. (c) Second order correlation g(2)(τ )
as a function of time delay τ . Red points are from data with
〈Neff〉 = 0.225(17), and blue points are taken without atoms;
error bars show the standard error of the mean at each de-
lay time from 50 trials. The solid curves are the theoretical
expectations. (d) Ratio of ensemble variance to mean ver-
sus time. The red curve is calculated from the raw data in
(a) for each 2µs time bin, and then a 100µs running average
is applied to smooth the result; the white line is the photon
shot-noise level.

with increasing CN , while for fluorescence Jout reaches
a maximum when C′

N = 1
2 (1 + s)1/2 and then rolls over

and vanishes. We will show that this allows us to oper-
ate in a regime where we remain sensitive to variations
in mean atomic density while damping out the effects of
large instantaneous fluctuations.

Figure 2(a) shows the results of repeated reflection
measurements of clouds falling through the cavity. A
circularly-polarized probe drives the atomic cycling tran-
sition, maximizing the atom-field coupling strength. At
early and late times, there are no atoms in the cavity, so
the reflected light is at its minimum value, determined by
the incident probe power and the empty cavity fringe con-
trast. The reflected intensity rises when there are atoms
in the cavity. These experimental runs are averaged in
Figure 2(b), which also shows a fit to the evolution ex-
pected from Eq. (2) with a peak 〈Neff〉 = 1.06(4), corre-
sponding to only 4.9(2)×108 atoms cm−3. For reference,
the dashed line shows the expected reflection with a sin-
gle atom maximally coupled to the cavity mode. Note
that the 10ms width of the curve reflects the size of the
cloud, which is determined by its temperature. By con-
trast, the typical transit time for a single atom passing
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through the width of the cavity mode is ∼ 14µs, so the
cloud is very large compared with the extent of the cavity
field. Individual transits are revealed in Fig. 2(c), where
we show the measured second order (intensity) correla-
tion, given by

g(2)(τ) =
k(t)k(t+ τ)

k(t)
2 (3)

where k is the number of photons counted during a time
window centred on t, and τ is the relative delay between
windows. Overbars denote an average over t using a
500µs segment of data, throughout which Neff is approx-
imately constant. The solid red curve shows the expec-
tation for a single atom crossing the cavity according to
Eq. (2). The only free parameter is the amplitude of
the peak, which accounts for having more than one atom
pass through the cavity during the trace, but with not all
atoms optimally coupled. In Fig. 2(d) we plot as a func-
tion of time the variance of the photon counts divided
by the mean, evaluated over the 300 repetitions of the
experiment. Although one might have expected to see
an increased variance with the arrival of the atom cloud,
there is in fact no sign of such an increase. We return to
this point below, when we see similarly low noise levels
in our fluorescence measurements.
Figure 3(a) shows the fluorescence signal. As the cloud

falls through the cavity we switch on a resonant excita-
tion beam whose (downward) propagation direction and
polarisation are both perpendicular to the cavity axis.
The photon count rate immediately jumps to a high level
as a result of the laser-induced fluorescence. Indepen-
dent reflection measurements determine that the initial
〈Neff〉 = 1.24(5). Although the atom number is nearly
constant over several ms during the reflection measure-
ments, the signal here decays roughly exponentially with
a time constant of order 100µs. This is because the atoms
are heated and pushed out of the cavity by the excitation
light [24], which is much more intense than the probe
light used in reflection measurements. In Fig. 3(b) we
plot how the variance of the fluorescence count over 250
repetitions varies with the mean number of counts. Once
again, we see that the fluctuations are very near the pho-
ton shot-noise limit, which is indicated by the solid line.
We reiterate that these results are in direct contrast to

similar experiments operating in the linear regime, i.e.,
when the photon counts are strictly proportional to atom
number or density. For example, we can compare our re-
sults in Fig. 3(b) with Fig. 2(b) of ref. [25], which used
micro-optics to detect atoms without a cavity. They ob-
served that the ratio of variance to mean doubled in the
presence of atoms. To calculate the noise level for flu-
orescence detection in the linear regime, one can apply
Mandel’s theory as described in ref. [26]. Atomic motion
is negligible over a single 1µs time bin, so we consider
each bin to have a fixed number of atoms N , producing
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FIG. 3: Fluorescence measurements. (a) Fluorescence pulse,
averaged over 250 drops. The exciting laser is pulsed on after
the peak atomic density has passed through the cavity. At
the start of the pulse, shown in detail in the inset, 〈Neff 〉 =
1.24(5). This is slightly larger than in Fig. 2 due to a higher
atom number in the initial MOT. (b) Variance of fluorescence
counts as a function of mean. Red circles are from the data
used in (a), and blue triangles are from a set where the drive
beam is pulsed on at a later time in the drop, with initial
〈Neff〉 = 0.50(2). The green line is the photon shot-noise
limit. The grey box corresponds to the inset in (a).

a Poissonian photon count k with a mean of α photons
per atom (the background count is negligible compared
to α). Since N fluctuates over repeated experiments, the
photon counts obey Var(k)/〈k〉 = 1 + αVar(N)/〈N〉. If
atoms are positioned randomly with a uniform probabil-
ity distribution, the number of atoms in a given volume
follows a Poisson distribution and Var(k)/〈k〉 = 1 + α,
independent of 〈N〉. In our experiment, the yield of flu-
orescence photons for one (hypothetical, maximally cou-
pled) atom is 0.42(2) in 1µs. Clearly this theory does
not describe our experiment, whose measured value of
[Var(k)/〈k〉 − 1] = 0.09(3) is much smaller.
Our measurements require a different analysis, as the

assumption of linearity is violated in Eq. (2) and the
variable Neff should be considered rather than N . We
proceed as follows. Our experiment operates with mean
intracavity photon number 〈n〉 ≡ 〈a†a〉 ≪ 1, and κ−1 ≪
g−1, meaning excitations of the cavity field result in im-
mediate emission of photons rather than reabsorption by
atoms. Over a sufficiently short time T , the probability
of emitting a photon is just 2κ〈a†a〉T . Then we have

Var(k)

〈k〉
= 1 + 2κTξǫ

Var((n))

〈〈n〉〉
(4)

where ǫ is the total collection efficiency from fibre to de-
tector, and T is assumed to be much longer than any cor-
relation times for the fluorescence (e.g. 1/γ, κ/g2). Dou-
ble brackets denote statistics taken over the conditional
distribution of n given a fixed Neff , and the distribution
of Neff itself. We obtain n via the master equation for
the density matrix, and use the results of ref. [21] for the
probability density for Neff (see Methods). The value
of 〈k〉 obtained in this way is almost identical to what
one obtains by simply setting CN = C1〈Neff〉 in Eq. (2).
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For the fluctuations we obtain Var(k)/〈k〉 = 1.095(8), in
excellent agreement with our observed value. A similar
treatment of the reflection measurements in Fig. (2) gives
Var(k)/〈k〉 = 1.005(2), consistent with the value 1.002(4)
from the data. Note that for the two types of measure-
ment the ratio Var(Neff)/〈Neff〉 = 3/8 is the same, but
the nonlinearity of Jout is quite different. Calculations
for both types of measurement, with the same 〈Neff〉 and
Jin adjusted to have equal numbers of signal photons,
show that the noise suppression is still much stronger for
reflection. This stems from the saturation of the reflec-
tion signal at large instantaneousNeff versus the roll-over
of the fluorescence. For both measurements we conclude
that the statistics of Neff and the nonlinearity of the in-
teractions are jointly responsible for the strong optical
noise suppression that we observe.

Discrete Detection

Our measurements do not involve trapping single
atoms within the cavity mode. However we have shown
that our signal fluctuations are near the photon shot noise
limit, effectively allowing us to neglect fluctuations in
Neff . This allows a direct comparison between our mea-
surements on falling clouds and experiments where noise
in the atom number is inherently absent due to prepara-
tion of single trapped atoms. In this context we discuss
the discrete detection problem, for example distinguish-
ing between hyperfine ground states. Since the detection
linewidth is three orders of magnitude smaller than the
level splitting, the |F = 1〉 ground state is effectively
dark in our system [24]. When atom number fluctua-
tions are suppressed, discrete detection with 〈Neff〉 = 1
is thus equivalent to the problem of determining whether
a single trapped atom fluoresces or not, which is rele-
vant for quantum information processing [28, 29]. We
therefore take detection of 〈Neff〉 = 1 as the bench-
mark for comparison with other experiments. From our
fluorescence measurements at 〈Neff〉 = 1.24(5), we ex-
trapolate a mean photon count rate at 〈Neff〉 = 1 of
S1 = 420(20)ms−1. Table I shows that this is high in
comparison with other atom detection experiments. Fol-
lowing ref. [26], we could define the single-atom efficiency
of the detector as η = 1 − exp(−S1T ). This is the prob-
ability of counting ≥ 1 photon during the measurement
time T , when an atom is present and assuming Pois-
sonian photon counts with negligible background. This
rises rapidly with our high count rate, reaching 98.5(3)%
in only 10µs.
For most applications, however, it is not enough to

detect the bright state (logical 1) efficiently; the detec-
tor must also be able to identify the dark state (logi-
cal 0) correctly. A more useful figure of merit is thus
the fidelity, which is the probability of a correct mea-
surement result. Let us take the detection of ≥ K pho-

Ref. S1 B F1max, T1max F2max

[26] 5.6 0.28 90.9, 544 97.5

[25] 36 0.311 97.6, 132 99.8

[27] 54.5 2.18 92.2, 60 98.1

[30] 0.13 0.05 72.1, 9853 80.5

[28] 94 0.05 99.773, 80 99.99982

[29] 190 1.4 97.87, 26 99.85

This work 420(20) 3.84(6) 97.46(13), 11.2(4) 99.79(2)

TABLE I: Comparison with other experiments. Rates are
in cts/ms, fidelities in percent, and T1max in µs. Note that
TKmax = K T1max for p = 1/2. References [26–29] use cavi-
ties, while refs. [25, 30] use optical waveguides without cavi-
ties. References [28, 29] describe non-destructive detection.

tons as indicating logical 1, and < K as logical 0. Then
for Poissonian distributions the single-photon fidelity is
FK=1 = (1− p) e−BT + p [1− e−(S+B)T ], where B is the
background photon counting rate and p is the probabil-
ity that the state being measured is logical 1. The first
(second) term is the probability of having logical 0 (1)
and identifying it correctly. The four logical possibilities
are shown schematically in Fig. 4(a). The red curve in
Fig. 4(b) shows the expected value of FK=1 in our experi-
ment over a data set for which 〈Neff〉 = 1.24 and p = 1/2.
The fidelity rises quickly as the detection of logical 1 be-
comes increasingly successful, but eventually falls due to
false positives from the background. Superimposed on
this curve are our measured values of the fidelity versus
detection time, which agree well with our expectations.
In general the maximum fidelity F1max increases with
S/B, reaching its peak at a time T1max proportional to
1/S for fixed S/B.
Table I compares our values of F1max and T1max with

those for other atom detection experiments. The high-
est fidelity by far is that of ref. [28], while our high
signal rates result in the shortest detection time. It is
worth noting that the measurements in refs. [28, 29] are
non-destructive, whereas the rest are carried out on res-
onance. Lossless fluorescence detection of single trapped
atoms in free space has been observed with 95% (98.6%)
accuracy in 0.3 ms (1.5 ms) [31, 32]. Additionally, recent
refinements to our cavity manufacturing process have in-
creased the finesse by two orders of magnitude [33]. This
suggests the possibility of single-atom strong coupling
with g > (κ, γ) and C1 in the hundreds, allowing non-
destructive measurements in our system as well.
A simple way to improve the fidelity is to increase the

detection threshold K. This leads to the general result

FK = (1− p)
Γ[K,BT ]

(K − 1)!
+ p

[

1−
Γ[K, (B + S)T ]

(K − 1)!

]

(5)

where Γ[K, a] is the incomplete gamma function. These
fidelities are plotted in Fig. 4 versus measurement time T
for the cases of K = 2 and 3. They peak at 99.79% and
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FIG. 4: Detection fidelity. (a) Calculating the fidelity. Given
two atomic states there are four possible outcomes of the ex-
periment. Columns (rows) correspond to the actual (identi-
fied) state. In each box the upper quantity is the probability
to have the state, and the lower is the probability to make
the identification; the total probability for the corresponding
outcome is the product of the two. Correct identifications
are in green (diagonal), and their sum equals the fidelity as
given by Eq. (5) in the text. (b) Detection fidelity FK(T )
for K = 1, 2, and 3 counts (red ◦, blue △, and green �).
Points are from 500 measurements with p = 1/2 and curves
show Eq. (5), assuming Poisson distributions with mean sig-
nal and background count rates obtained from the data at
the beginning of the pulse (the width of the curves reflects
the statistical uncertainties in these rates). The steps in the
data are in units of the minimum resolution of 0.2% for 500
trials.

99.98% when T = 22.4µs and 33.6µs respectively. The
data points again show that our measurements are consis-
tent with expectations. Similar methods were exploited
in [27], where two photons were required within a short
time window in order to register a logical 1 result. With
a 1µs detection window they found that 99.719(6)% of
observed 2-photon coincidences were due to atoms, and
described this percentage as the fidelity. In that exper-
iment however, there was only a 0.2% chance that the
logical 1 state would produce a 2-photon count in the de-
tection window. Thus, although the detection confidence
was high, the efficiency was low, resulting in a low fidelity
in the usual sense that we adopt here.

DISCUSSION

We have characterized a cavity-enhanced atom detec-
tor with low noise and high spatial resolution (set by the
small cavity mode waist). We have shown that the non-
linear, multi-atom nature of the interactions results in a
strong suppression of signal noise due to atomic fluctu-
ations. Our detector is fast and efficient, and suitable
for detecting dilute samples below the level of a single
atom per mode volume. Although we have focused here
on measurements of low atomic densities, the dynamic
range can be extended upwards simply by detuning the
cavity and/or the probe field.
We envision a variety of applications for making local

density measurements on cold atom clouds and quantum

gases. For example, small impurities can be detected for
studies of Fermi polaron physics [34] and quantum trans-
port [35]. Cavity-enhanced detection also allows a greater
collection efficiency for scattered photons than in conven-
tional high-numerical-aperture (NA) optical systems [20].
The maximum fraction of photons which can be captured
in such systems is approximately NA2/4, which even for
the best available lenses is an order of magnitude smaller
than the fraction 2CN/(1+ 2CN) which can be captured
by a cavity with CN ∼ 1. This could improve the speed
and efficiency of atom trap trace analysis, where laser-
induced fluorescence is used to detect radioactive atoms
for dating environmental samples over time scales not ac-
cessible with 14C [36]. Finally, the compatibility of our
detector with atom chips makes it attractive for study-
ing quantum gases in the Tonks-Girardeau regime [37].
Producing one-dimensional gases requires trapping po-
tentials of extremely high aspect ratio, as are typical with
atom chips, and strong interactions require low densities
which can be detected locally very quickly with our cav-
ity.

METHODS

Experiment

We work with 87Rb, near the D2 spectral lines at
λ = 780 nm. Our optical microcavity is formed be-
tween the end of a single-mode optical fibre and a spher-
ical surface microfabricated in silicon, both being coated
with multilayer dielectric mirrors. The resulting plano-
concave cavity mode has a length of L = 139(1)µm
and a waist whose e−1 field radius is w = 4.46(7)µm.
To our knowledge the only Fabry-Perot cavity with a
smaller mode waist is the all-fibre design of ref. [9]
(w = 3.9µm). Since C1 ∝ F/w2, a small waist makes
it possible to detect single atoms using a cavity of rel-
atively modest finesse. This relaxes the usual need for
very high mirror quality and reduces the sensitivity to
noise in the cavity length. As stated in the main text,
g/(2π) = 98.4(1.6)MHz, κ/(2π) = 5200(100)MHz, and
γ/(2π) = 3MHz, giving C1 = 0.307(11). We begin each
experimental sequence by cooling and trapping ∼ 2×107
87Rb atoms in a magneto-optical trap formed above a
mirror [38], followed by sub-Doppler cooling to 16µK in
optical molasses. We then release the atoms, which fall
through a hole in the mirror and pass through a cavity
mounted immediately below.
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Master Equation

The Hamiltonian describing our system is (~ = 1)

H = −iη(a− a†)− i

N
∑

j=1

[(

gja+
1

2
Ωj

)

σ†
j −H.c.

]

(6)

where we have used the rotating wave approximation and
neglected atomic centre-of-mass motion. The operator a
annihilates a cavity photon and σj = |g〉〈e| lowers the
jth atom from the excited state |e〉 to ground state |g〉,

and the pump strength η ∝ J
1/2
in [23]. We have expressed

H in a frame rotating with the angular frequency of the
laser, and used the fact that the cavity and fields are on
resonance with the free-space |g〉 → |e〉 transition. The
system evolves in time according to the master equation
for the density matrix ρ

d

dt
ρ = −i[H, ρ]−

N
∑

j=0

D[Aj ] ρ (7)

where D[Aj ] ρ = 1
2 (A

†
jAjρ + ρA†

jAj) − AjρA
†
j , A0 ≡

(2κ)1/2a, and Aj>0 ≡ (2γ)1/2σj .
For reflection measurements, under the assumption

〈a†a〉 ≪ 1 and with 〈σ†
jσj〉 ≪ 1 one obtains a coherent

intra-cavity field with amplitude |α| = 〈a†a〉1/2 obeying

α =
η

κ

1

1 + 2CN
(8)

The total field reflected from the cavity comprises a com-
ponent reflected immediately from the input/ouput mir-
ror which interferes with the fraction of the intra-cavity
field (8) being transmitted back out. This leads to Eq. (2)
for reflection.
For fluorescence we ignore correlations between atoms,

which are distributed randomly, and consider a single

atom with coupling g N
1/2
eff experiencing a Rabi frequency

Ω from the driving laser. The excited state population is

〈

σ†σ
〉

=
1

2

|Ω|2 /2

γ2
tot + |Ω|2 /2

(9)

where 2γtot is the total radiation rate, and we have as-
sumed that the external field is much stronger than the
cavity field |Ω| ≫ 2|g|n1/2. From the Purcell effect
γtot = (1 + 2C′

N ) γ, with a fraction 2C′
N/(1 + 2C′

N ) go-
ing into the cavity mode [2]. With the assumptions and
definitions in the text, we recover Eq. (2). To deter-
mine C′

N we solved the master equation for a toy model
including all 12 of the Zeeman substates of the F = 2
ground and F ′ = 3 excited states, but neglecting the
cavity. The equilibrium excited-state populations were
determined and the corresponding total decay rate of
σ± transitions was calculated (the quantisation axis was

taken along the cavity axis, so π transitions did not con-
tribute). The calculated dependence of Jout on the po-
larisation of the drive laser agreed well with experimental
results [24]. The ratio C′

N/CN has a weak dependence on
s. In this work C′

N/CN = 0.53(2). The validity of all our
results and conclusions were supported by direct numeri-
cal solution of Eqs. (6) and (7), as well as quantum jump
simulations [39–41]. For our parameters the intracavity
field is indistinguishable from a coherent state for any
fixed arrangement of atoms and either type of detection.

Probability Density for Neff

Carmichael and Sanders derived an expression for the
probability density P (G) dG for the collective dipole

G ≡ N
1/2
eff in ref. [21], focusing on the case of travelling-

wave cavities. The distribution depends on 〈Neff〉 and
must generally be obtained numerically. Taking into
account our standing wave geometry, and in the limit
〈Neff〉 ≫ 1, one can obtain an approximate distribution
for G. Transforming to Neff gives

P (Neff)dNeff = N exp

[

−
4

3

(Neff − 〈Neff〉)2

〈Neff〉

]

dNeff (10)

where N is a normalisation factor which approaches
2/(3π〈Neff〉)1/2 as Neff → ∞. Note that in this limit
one obtains by inspection Var(Neff)/〈Neff〉 = 3/8, which
holds for all 〈Neff〉 in a Fabry-Perot cavity, highlight-
ing the difference between Neff and the total number
of atoms in a small volume around the cavity. We
have used the full numerical distribution for analysing
our results with 〈Neff〉 = 1.24(5). However we note
that even in this regime the approximation (10) pre-
dicts Var(k)/〈k〉 = 1.081(6) for our fluorescence measure-
ments, which is still in agreement with our observations.

[1] Ye, J. & Lynn, T. W. Applications of optical cavi-
ties in modern atomic, molecular, and optical physics.
In Advances in Atomic, Molecular and Optical Physics,
Vol. 49, (ed. B. Bederson and H. Walther) 1-83 (Elsevier,
2003).

[2] Purcell, E. M. Spontaneous emission probabilities at ra-
dio frequencies. Phys. Rev. 69, 681 (1946).

[3] Jaynes, E. E. & Cummings, F. W. Comparison of quan-
tum and semiclassical radiation theories with application
to the beam maser. Proc. of the IEEE 51, 89-109 (1963).

[4] Thompson, R. J., Rempe, G. & Kimble, H. J. Observa-
tion of normal mode splitting for an atom in an optical
cavity. Phys. Rev. Lett. 68, 1132-1135 (1992).

[5] Childs, J. J., An, K., Otteson, M. S., Dasari, R. R.
& Felds, M. S. Normal mode line shapes for atoms in
standing-wave optical resonators. Phys. Rev. Lett. 77,
2901-2904 (1996).



7

[6] Münstermann, P., Fischer, T., Mauns, P., Pinske, P. W.
H. & Rempe, G. Observation of cavity-mediated long-
range light forces between strongly coupled atoms. Phys.
Rev. Lett. 84, 4068-4071 (2000).

[7] Trupke, M. et al. Atom detection and photon production
in a scalable, open, optical microcavity. Phys. Rev. Lett.
99, 063601 (2007).

[8] Brennecke, F. et al. Cavity QED with a Bose-Einstein
condensate. Nature 450, 268-271 (2007).

[9] Colombe, Y. et al. Strong atom-field coupling for Bose-
Einstein condensates in an optical cavity on a chip. Na-
ture 450, 272-276 (2007).

[10] Gupta, S., Moore, K. L., Murch, K. W. & Stamper-
Kurn, D. M. Cavity nonlinear optics at low photon num-
bers from collective atomic motion. Phys. Rev. Lett. 99,
213601 (2007).

[11] Teper, I., Vrijsen, G., Lee, J. & Kasevich, M. A. Backac-
tion noise produced via cavity-aided nondemolition mea-
surement of an atomic clock state. Phys. Rev. A 78,
051803(R) (2008).

[12] Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States
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