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PM2.5 source apportionment using organic marker-based chemical mass 
balance modeling: Influence of inorganic markers and sensitivity to 
source profiles 

Yingze Tian a, Xiaoning Wang a, Peng Zhao a, Zongbo Shi b, Roy M. Harrison b,c,* 

a State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and 
Engineering, Nankai University, Tianjin, 300071, China 
b School of Geography Earth and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 
c Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A Chemical Mass Balance model is 
applied to particulate matter from 
Chengdu, China. 

• Inclusion of both inorganic and organic 
source tracers gives better results. 

• There is considerable sensitivity to 
organic source profiles adopted. 

• Recent, locally sampled source profiles 
give the best outcomes.  

A R T I C L E  I N F O   

Keywords: 
Particulate matter 
Source apportionment 
CMB based on organic markers only (OM-CMB) 
CMB based on a combination of organic and 
inorganic markers (IOM-CMB) 

A B S T R A C T   

A Chemical Mass Balance (CMB) model has been applied to source apportionment of PM2.5 in the Chinese 
megacity of Chengdu. The study explored the sensitivity of the CMB model to the adoption of different organic 
source profiles, and to the use of organic markers only (OM-CMB), compared with using a combination of organic 
and inorganic markers (IOM-CMB). A comprehensive comparison of OM-CMB and IOM-CMB shows that PM2.5 
mass concentrations from gasoline vehicles, diesel vehicles, industrial coal combustion, biomass burning, 
cooking, and SOA which shared same markers in the two methods are in fair to good agreement between the two 
methods, with the relative biases ranging from 2.2% to 17.3%. The average contributions of sulfate and nitrate 
sources are more sensitive to the choice of model because inorganic ions were not inputted directly into the OM- 
CMB. The temporal variations of PM2.5 contributions from sulfate, nitrate, SOA, gasoline vehicles, and biomass 
burning, characterized by unique markers and low collinearity, were in good agreement between the OM-CMB 
and IOM-CMB results with the Pearson’s r above 0.91 (p < 0.01). However, resuspended dust estimates from OM- 
CMB had a relatively weak correlation with that from IOM-CMB (Pearson’s r = 0.73, p < 0.01), due to the 
different tracers used. When replacing the source profile for industrial coal combustion with that for residential 
sources, the contributions of resuspended dust and residential coal combustion were higher, and the contribu-
tions of other sources were lower compared with the result for the industrial coal combustion. Different source 
profiles for gasoline vehicles showed considerable sensitivity of the model to the choice of source profile, even 
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when using data from within a single emissions study. Our results emphasize the value of combining inorganic 
and organic tracers in minimizing error, and in using up-to-date locally-relevant source profiles in source 
apportionment of PM.   

1. Introduction 

Atmospheric fine particles (PM2.5) have long been shown to have 
pronounced effects on human health, air quality, and climate change 
(Bell et al., 2014; Aguilera et al., 2021; Weber, 2020; Li et al., 2022; Wen 
et al., 2022). PM2.5 is comprised of a complex mixture of chemical 
components, including both inorganic and organic components (Dael-
lenbach et al., 2020; Thurston et al., 2022). As a significant constituent 
of PM2.5, organic matter (OM) is comprised of thousands of compounds 
which show distinctive physical and chemical properties (Robinson 
et al., 2007; Zhang et al., 2013; Zhao et al., 2013). It has been shown that 
organic molecular markers in the PM, such as n− alkanes, polycyclic 
aromatic hydrocarbons (PAHs), hopanes, levoglucosan (LEVOG), car-
boxylic acids, cholesterol (CHOL) and so on, can assist in distinguishing 
PM sources (Oros and Simoneit, 2000; Ke et al., 2008; Pereira et al., 
2017). What’s more, simultaneously detecting the organic compounds 
and inorganic components (elements, ions and carbon fractions) of 
PM2.5 can provide more information towards source identification 
(Harrison et al., 1996). 

To design effective PM2.5 reduction strategies in polluted regions 
currently and to reduce the health burden attributable to ambient PM 
pollution (Faridi et al., 2022), more refined and accurate source 
apportionment results for PM2.5 are urgently needed. Many studies have 
estimated the potential source contributions to PM2.5 in megacities using 
various methods, such as receptor models (Huang et al., 2014; Lu et al., 
2018; Song et al., 2021), and air quality models (Li et al., 2020; McDuffie 
et al., 2021). Receptor models are useful tools for source apportionment 
based on the PM2.5 chemical composition. Receptor models can be 
classified into two main classes: i) Chemical Mass Balance (CMB) model, 
and ii) multivariate factor analysis models, including Principal 
Component Analysis/Multiple Linear Regression (PCA/MLR), UNMIX, 
and Positive Matrix Factorization (PMF). Factor analysis models extract 
source profiles and their contributions over sets of receptor samples 
without inputting source profiles, so they require a relatively large 
number of receptor samples, and sources were identified according to 
the assessment of mathematical parameters and evaluation of the 
physical reality of the factor profiles (Xu et al., 2021a). PMF is generally 
recognized as the superior model in this class as it uses weightings to 
accord the greatest importance to those variables measured with the 
lowest uncertainty. The CMB model needs both the measured data of 
receptor and the source profiles, so the physical meaning of the source 
categories is clearer. A detailed intercomparison using data from Beijing 
concluded that CMB gave the most detailed and plausible results 
compared to PMF (Xu et al., 2021b). The CMB has been used for source 
apportionment of PM at many locations, worldwide (Zheng et al., 2002; 
Perrone et al., 2012; Yin et al., 2015; Wu et al., 2020; Wong et al., 2021). 

Multicollinearity, arising when two different sources have similar 
profiles, often disturbs the estimation of the CMB modeling. For PM2.5 
source categories characterized by specific organic tracers but no spe-
cific inorganic tracers, or characterized by large fractions of organic 
components and few inorganic components, the CMB model with the 
input of inorganic species only is unable to reliably predict the source 
contributions. For example, to estimate the contributions from food 
cooking and vegetative detritus, and to distinguish gasoline vehicles and 
diesel vehicles, organic markers need to be included in the CMB 
modeling. Organic molecular markers have consequently been used 
widely in source apportionment studies (Marmur et al., 2006; Schauer 
and Cass, 2000; Schauer et al., 1996; Robinson et al., 2006; Chow et al., 
2007; Arhami et al., 2018; Esmaeilirad et al., 2020; Tian et al., 2021a; 
Mancilla et al., 2021). An organic molecular marker-based chemical 

mass balance (OM-CMB) method has been used to quantify source 
contributions to carbonaceous aerosols (Ke et al., 2008; Perrone et al., 
2012; Villalobos et al., 2017; Lu et al., 2018; Xu et al., 2021a). The 
OM-CMB method performs well in the source apportionment of organic 
carbon (OC), but the source contributions to PM2.5 are typically calcu-
lated by the multiplication of the OC contributions by the ratios of OC to 
PM2.5 mass in the source profiles, and it does not directly estimate 
contributions of inorganic secondary ions when apportioning PM2.5 
sources because the inorganic species are not inputted in the CMB 
modeling (Ke et al., 2008; Xu et al., 2021a). If a combination of inor-
ganic and organic markers is used in the CMB modeling (IOM-CMB), the 
contributions to PM2.5 of all source categories can be directly estimated, 
but this method has not been widely used. Thus, it is advantageous to 
explore using a combination of inorganic and organic markers in the 
CMB modeling of PM2.5 through comparing the IOM-CMB modeling 
based on a combination of organic and inorganic markers with the more 
conventional OM-CMB modeling based on organic markers only. 

In addition, several studies have applied the OM-CMB model for 
source apportionment of PM in China (Zheng et al., 2005; Liu et al., 
2016; Guo et al., 2013; Wang et al., 2009; Xu et al., 2021a). However, 
the organic source profiles they used were mainly derived from mea-
surements made in the United States, which may be less representative 
of the local sources and current conditions of the sources in China. Xu 
et al. (2021a) used the organic source profiles determined in China to 
ensure that the source profiles used in the CMB model are representa-
tive. The CMB results may vary when using different source profiles, so it 
is necessary to study the influence of adopting different organic and 
inorganic source profiles on the CMB modeling, namely the sensitivity of 
CMB to source profiles, so as to investigate the value of using local and 
updated organic and inorganic source profiles. 

Therefore, this paper aims at exploring using a combination of 
inorganic and organic markers in the CMB modeling of PM2.5, and the 
influence of adopting different organic source profiles. PM2.5 source 
apportionment was conducted by CMB modeling based on organic 
markers (OM-CMB) and by a combination of organic and inorganic 
markers (IOM-CMB). Commonly used markers (including OC, elemental 
carbon (EC), ions, elements) and organic markers (including polycyclic 
aromatic hydrocarbons, n-alkanes, hopanes, levoglucosan, palmitic acid 
(PALMIA), stearic acid (STEARA), and cholesterol) in PM2.5 collected in 
a Chinese megacity were analyzed. Source apportionment of OC was 
conducted by the OM-CMB approach, and then the source contributions 
to PM2.5 were indirectly estimated. In addition, source apportionment of 
PM2.5 was directly conducted by the IOM-CMB method, and source 
contributions to PM2.5 estimated by the OM-CMB and the IOM-CMB 
methods were compared. Finally, the sensitivity to different source 
profiles for coal combustion and gasoline vehicles were tested. 

2. Methodology 

2.1. Sampling 

PM2.5 samples were collected from a megacity in China, Chengdu 
(102◦54′ to 104◦53′ E, 30◦05′ to 31◦26′ N), from January to December in 
2018. Chengdu is located on the Chengdu Plain, at the western edge of 
the Sichuan Basin. Because of the basin’s terrain and meteorology, there 
is an inversion layer all year round, which is not conducive to the hor-
izontal and vertical mixing of air pollutants and it is easy to form a dense 
air pollution layer at the surface. As the capital of Sichuan province, 
Chengdu is a centre of economic development and transportation in 
Southwestern China, with continuous development of industry and 
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changes in traffic conditions. 
The sampling site (Fig. S1) is at the Environmental Protection 

Building (EPB, 104◦04′ E, 30◦35′ N), which is located in a mixed resi-
dential and commercial area of the downtown city. There is no obvious 
industrial emission near the building. The sampling site is located on the 
rooftop of the EPB building, which is approximately 25 m above ground 
level. Daily samples were collected and the sampling duration was 22 h. 
The sampling was stopped during rainy days. There were a total of 64 p. 
m.2.5 samples collected in 2018. 

The samples were collected using two medium-volume air samplers 
(TH-150, Wuhan Tianhong, China) with a flow rate of 100 L/min. The 
sampling instrument flow was calibrated before sampling in each sea-
son, and the flow error was maintained within ±2.5%. Polypropylene 
(90 mm in diameter) and quartz filters (90 mm in diameter) were used to 
collect particulate matter. After sampling, the quartz filters were kept in 
aluminum foil bags and stored at − 4 ◦C. Quartz filters were baked in an 
oven before use to remove organic interference. 

Quartz filters were baked in an oven before use to remove organic 
interference. Before and after sampling, all the filters were equilibrated 
at the same environmental condition of constant temperature (20 ±
1 ◦C) and RH (50 ± 5%) for 48 h in a balance room before weighing. 
Each filter was weighted by a sensitive microbalance with balance 
sensitivity ±0.010 mg. After weighing, the loaded filters were stored at 
− 20 ◦C in the fridge for the subsequent chemical analysis. 

2.2. Chemical analysis and quality assurance and quality control (QA/ 
QC) 

Source specific inorganic and organic markers were analyzed, 
including OC, EC, ions, elements, PAHs, n-alkanes, hopane, levogluco-
san, fatty acids, and cholesterol. The particles collected on the poly-
propylene filters were used for the analysis of elements including Si, Ca, 
Al by inductively coupled plasma-atomic emission spectrometer (ICP- 
AES) (ICAP 7400 ICP-AES; Thermo Fisher Scientific, USA). A 1/8 
portion section of each polypropylene filter was cut into small pieces and 
placed into closed microwave digestion vessel with acid solutions 
(HNO3: HCl: H2O2 = 1: 3: 1), then was decomposed with the microwave 
digestion instrument and analyzed by the ICP-AES (Feng et al., 2021). 

The quartz filters were used for the analysis of the water-soluble ions 
(NH4

+, Cl− , NO3
− and SO4

2− ), carbon fractions (OC and EC) and organic 
markers. A 1/8 portion of each quartz filter was cut and placed in a 
centrifuge tube with 8 ml of distilled deionized water and the solutions 
were refrigerated for 24 h, filtered and analyzed with a Thermo ICS900 
Ion Chromatograph (Thermo Electron) (Tian et al., 2013). Carbon 
components including OC and EC were measured by a thermal/optical 
carbon aerosol analyzer (DRI, 2001A, Atmoslytic Inc.) based on the 
IMPROVE thermal/optical reflectance (TOR) protocol. A quartz filter of 
0.588 cm2 was heated to the temperatures of 140, 280, 480, and 580 ◦C 
to detect OC1, OC2, OC3, and OC4 in a pure helium atmosphere. Then, 
the temperature was increased to 540, 780, and 840 ◦C for EC1, EC2, and 
EC3 analyses in a 2% O2 atmosphere. Organic pyrolysed carbon (OPC) 
was also detected after adding oxygen. According to the IMPROVE 
thermal/optical reflectance protocol, OC is defined as OCl+OC2+OC3 
+OC4+OPC, and EC is defined as ECl+EC2+EC3-OPC. 

Organic compounds, including 10 n-alkanes, 14 PAHs, 3 hopanes, 2 
fatty acids, levoglucosan and cholesterol, were measured by gas 
chromatography-mass spectrometry (GC-MS). The full names and cor-
responding abbreviations of the components are summarized in Table 1. 
A quarter of each quartz filter was cut and put into a tube prior to 
analysis of PAHs, n-alkanes, and hopane. It underwent a sonicated 
extraction with 20 mL dichloromethane and n-hexane (v/v 1:1) under 
ice bath conditions twice, each for 15 min, and filtration into a round- 
bottomed flask by a 0.22 μm filter. After passage through a pre- 
activated solid phase extraction cartridge and elution with n-hexane, 
the solution was concentrated under reduced pressure on a rotary 
evaporator to near dryness (less than 5 ml), and was reduced to less than 

1 ml by a slow nitrogen blow. Then, the internal standards were added to 
the samples and the final volumes were adjusted to 1 ml before injection 
in the GC. The internal standards included a mixture of naphthalene-d8, 
acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12 
(100 ng for each), 100 ng hexamethylbenzene, and 1 μg n-tetracosane- 
d50. 

Another quarter of the quartz filters was cut and put into tubes to 
analyze fatty acids and cholesterol. The 5 ml methanol and 10 ml 
dichloromethane (v/v 1:2) were added into the tubes and sonicated, 
extracted for 10 min and repeated 3 times. The solution was filtered into 
a round-bottomed flask using a 0.22 μm filter. After concentration by a 
rotary evaporator to near 5 ml, the solution was concentrated to 1 ml by 
a high purity nitrogen gas stream. The extract was derivatized by BSTFA 

Table 1 
Full names and abbreviations of the components used in the OM-CMB and IOM- 
CMB; and the markers for each source category (which had high MPIN values) 
estimated by the two methods.  

Components Abbreviations Used in 
OM- 
CMB 

marker Used in 
IOM- 
CMB 

marker 

organic carbon OC   Yes  
element carbon EC   Yes  
ammonium NH₄⁺   Yes  
chloride Cl⁻   Yes  
nitrate NO₃⁻  SN Yes SN 
sulfate SO₄2⁻  SS Yes SS 
aluminum Al   Yes  
silicon Si   Yes  
calcium Ca  RD Yes  
polycyclic 

aromatic 
hydrocarbons 

PAHs     

phenanthrene Phe Yes  Yes  
anthracene Ant Yes  Yes  
fluoranthene Flt Yes  Yes  
pyrene Pyr Yes  Yes  
benz(a)anthracene BaA Yes  Yes  
chrysene Chr Yes  Yes  
benzo(b) 

fluoranthene 
BbF Yes  Yes  

benzo(k) 
fluoranthene 

BkF Yes  Yes  

benzo(e)pyrene BeP Yes  Yes  
benzo(a)pyrene BaP Yes  Yes  
dibenz (a,h) 

anthracene 
DBA Yes  Yes  

Indeno (1,2,3-cd) 
pyrene 

IPY Yes  Yes  

benzo (ghi)perylene BghiP Yes GV Yes GV 
coronene Cor Yes  Yes  
hopanes      
17α(H)-22,29,30- 

Trisnorhopane 
C27a Yes  Yes  

17α(H),21β(H)-30- 
Norhopane 

C29 ab Yes ICC Yes ICC 

17α(H),21β(H)- 
hopane 

C30ab Yes DV Yes DV 

n-alkanes 
n-tetracosane C24 Yes  Yes  
n-pentacosane C25 Yes  Yes  
n-hexacosane C26 Yes  Yes  
n-heptacosane C27 Yes  Yes  
n-octacosane C28 Yes  Yes  
n-nonacosane C29 Yes  Yes  
n-Triacontane C30 Yes  Yes  
n-hentriacontane C31 Yes  Yes RD 
n-dotriacontane C32 Yes  Yes  
n-tritriacontane C33 Yes  Yes  
Others 
levoglucosan LEVOG Yes BB Yes BB 
palmitic acid PALMIA Yes  Yes  
stearic acid STEARA Yes CK Yes CK 
cholesterol CHOL Yes  Yes   
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plus 1% TMCS at 70 ◦C for 2 h, and used for analyzing the concentrations 
of n-alkanoic acids and cholesterol (He et al., 2006). The internal stan-
dard (hexamethylbenzene) was added to the samples. The last quarter of 
the quartz filters was cut and put into a tube to analyze levoglucosan 
through a high-performance anion-exchange chromatography with 
pulsed amperometric detection (HPAEC-PAD) (Herisau, Switzerland) 
with a Hamilton RCX-30 250 column. The sample was extracted with 
7.0 mL of deionized water and the liquid was then filtered through a 
0.22 μm filter and characterized using high-performance anio-
n-exchange chromatography with pulsed amperometric detection 
(HPAEC-PAD) using an anion-exchange analytical column (Carb2 
150/4.0), and a guard column (Carb2 GUARD/4). The eluent A was 200 
mM NaOH and 10 mM NaAc and the initial flow rate was maintained at 
0.08 mL/min. The eluent B was ultrapure water and the initial flow rate 
was maintained at 0.42 mL/min. Column temperature is 30 ◦C. 

The organic markers (PAHs, hopanes, n-alkanes, fatty acids and 
cholesterol) were analyzed by GC-MS (7890B/5977 B, Agilent, USA) 
using a 30 m × 0.25 mm diameter DB-5MS capillary column (0.25 μm 
film thickness). The carrier gas was pure helium (purity of 99.99% or 
more) at a constant flow rate of 1.0 mL/min. For PAHs and hopanes, 
inlet and transfer line temperatures were set to 230 ◦C and 280 ◦C 
respectively. For fatty acids and cholesterol, inlet and transfer line 
temperatures were set to 280 ◦C. For n-alkane analysis, inlet and transfer 
line temperatures were set to 300 ◦C. EI mode was used and the ioni-
zation energy level was 70eV. 

Field and laboratory blanks and spiked standard recoveries were 
measured to correct the corresponding data. Field blanks were collected 
with the pump turned off during the sampling campaign and the only 
difference between samples and field blanks was that air was not drawn 
through field blanks. Then field blanks were analyzed under the same 
operating procedure as the samples. Different surrogate compound 
including each n-alkane, PAHs mixture, each hopane (O2Si Smart So-
lutions, USA); standards for PALMIA, STEARA, and CHOL (Dr. Ehren-
storfer, Germany); and standard for LEVOG (U.S. Pharmacopeia, USA) 
were added into blank samples for the determination of the recovery 
ratio. The recovery values of all target components showed a low rela-
tive standard deviation. In addition, the first sample of every ten samples 
was re-examined and the precision was found to be within 10%. The 
recoveries were 103.3 (mean)±5.0% (s.d.) for elements, and 105.3 ±
9.5% for ions. For carbon fractions, a system stability test (three-peak 
detection) is required before and after detecting samples and the relative 
standard deviation should not exceed 5%. The recoveries of PAHs, n- 
alkanes, hopanes, levoglucosan, fatty acids and cholesterol ranged from 
84.7 ± 11.9%, 99.5 ± 8.3%, 110.7 ± 17.2%, 101.3 ± 0.1% and 74.9 ±
9.9%, respectively. Considering that losses of semi-volatile compounds 
can occur during the equilibration of quartz filters, low molecular 
weight PAH and n-alkane data were not utilised in this study. 

In addition, the chemical species were reconstructed using the 
following equations referred to in the IMPROVE Report V (Hand et al., 
2011): 

Ammonium sulfate= 1.375
[
SO2−

4

]
(1)  

Ammonium nitrate= 1.29
[
NO−

3

]
(2)  

Organic matter (OM)= 1.8[OC] (3)  

Crustal material= 2.2[Al] + 2.49[Si] + 1.63[Ca] + 2.42[Fe] + 1.94[Ti] (4)  

Other= PM − sulfate − nitrate − organic matter − crustal material − EC
(5) 

It should be noted that the average OM/OC ratios may change with 
locations and seasons, and the ratios can be estimated through aerosol 
mass spectrometer (AMS) elemental analysis (Xu et al., 2021a). Due to 
the lack of related data in Chengdu, the OM/OC ratio was selected as 1.8 
as suggested in the IMPROVE Report V (Hand et al., 2011). The 

regression analysis between reconstructed PM2.5 mass versus measured 
daily PM2.5 concentrations was also used as a test (as shown in Fig. S2), 
indicating that they were well correlated. 

2.3. Chemical mass balance (CMB) modelling 

Two methods were used to conduct the source apportionment of 
PM2.5. The organic marker-based CMB (OM-CMB) model was used in 
this study to apportion the sources of OC and PM2.5 (Schauer et al., 1996; 
Villalobos et al., 2017). This model was applied to determine the pri-
mary source contributions (including gasoline vehicles, diesel vehicles, 
industrial coal combustion, resuspended dust, biomass burning, cook-
ing, and vegetation detritus) to OC, and the contributions of the primary 
emission sources to PM2.5 were calculated using the ratios of PM2.5 mass 
to fine OC in each source. The SO4

2− and NO3
− were not included in the 

OM-CMB modeling, but they were measured in the profiles of above 
primary sources, so the contributions of secondary SO4

2− and NO3
− were 

calculated by the difference between the measured concentrations and 
the amount estimated in the primary source emissions (Zheng et al., 
2002). In other words, the identified primary emissions of sulfate, ni-
trate ion were subtracted from measured atmospheric ionic species 
concentrations, and then they were converted to ammonium sulfate and 
ammonium nitrate using the equations (1) and (2) above. In addition, 
the secondary organic carbon (SOC) was considered as the unresolved 
source, and was calculated as the difference between measured OC and 
the sum of all significant contributions to OC (Villalobos et al., 2017). 

For the inorganic and organic marker-based CMB (IOM-CMB) model, 
PM2.5 source apportionment was conducted based on inorganic and 
organic source profiles as showed in Table 1. The profiles of gasoline 
vehicles, diesel vehicles, industrial coal combustion, resuspended dust, 
biomass burning, cooking, soil dust, sulfate, and nitrate were inputted 
into the CMB model, and their contributions were directly obtained. The 
SOC was also calculated as the difference between measured OC and the 
sum of all primary contributions to OC, and then was converted to SOA 
through equation (3). In addition, if the source profile of vegetation 
detritus is used in the IOM-CMB modeling, most outputs did not match 
the evaluation parameters (which are described in the following para-
graph). Thus, the other difference from the OM-CMB modeling is that a 
soil dust profile was used in the IOM-CMB modeling. The soil dust 
profiles used in this study were collected from uncovered park, green-
belt, and farmland, where vegetation abounds and were strongly influ-
enced by vegetation detritus. Although they are two different source 
categories, their profiles are similarly characterized by high loadings of 
C31 and C33 n-alkanes (Tian et al., 2021b) due to vegetation influence. 
Details of the source profiles used in the two methods will be discussed 
in Section 2.4. The components introduced into the OM-CMB and 
IOM-CMB are summarized in Table 1. 

To ensure the reliability of the fitting results, the following reliability 
parameters were used to evaluate the model outputs of the two methods. 
The percent mass explained by the model is typically between 80 and 
120%. For goodness-of-fit parameters, high r2 (>0.8) and low χ2 (<4) 
were required (Zheng et al., 2002; Lee et al., 2008; Xu et al., 2021a). In 
addition, the MPIN (modified pseudo inverse normalized) matrix was 
checked to determine the marker of each source category. 

In addition, an independent estimation of the SOA was also con-
ducted by the EC tracer method (defined as the SOAEC) to compare with 
the SOA estimated the OM-CMB and IOM-CMB. Assuming EC totally 
comes from primary sources and the OC/EC ratio in primary sources is 
relatively constant, SOCEC was estimated as in Turpin and Huntzicker 
(1995): 

SOCEC =OC − EC ∗ (OC/EC)pri (6)  

SOAEC = 1.8[SOCEC] (7)  

where OC and EC are the measured ambient concentrations; (OC/EC)pri 
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is the OC/EC ratio in primary aerosols. Minimum R Squared (MRS) 
method is used to quantify (OC/EC)pri, which has a clear quantitative 
criterion for the (OC/EC)pri calculation (Hu et al., 2012; Wu and Yu, 
2016). According to Fig. S3, the (OC/EC)pri is 2.3 in this work. 

For quantitative comparisons between the two methods, the consis-
tency of average values was estimated by the relative biases (Equation 
(8)), and the consistency of temporal variations were estimated by the 
Pearson’s r. 

Relative biases=
|COM − CIOM |

(COM + CIOM)/2
(8)  

2.4. Source profiles 

The source profiles applied in this study include: (1) gasoline vehi-
cles, diesel vehicles, coal combustion, resuspended dust and soil dust 
which were reported in our previous publication (Tian et al., 2021b); (2) 
biomass burning (Wang et al., 2009; Pirovano et al., 2015), cooking 
(Zhao et al., 2015), and vegetative detritus (Rogge et al., 1993; Hilde-
mann et al., 1991) from other publications; and (3) ammonium sulfate 
and ammonium nitrate which were used to represent secondary sulfate 
and nitrate. To test the sensitivity of CMB results to source profiles, two 
different profiles of coal combustion (residential vs. industrial coal 
combustion as in Tian et al., 2021b) and seven different profiles of 
gasoline vehicles (as in Tian et al., 2021b) vs. those from U.S. non-
catalyst vehicles in Schauer et al. (2002) and from Chinese gasoline 
vehicles in Cai et al. (2017) were evaluated for CMB modelling. Inor-
ganic ions and elements were not showed in the Cai et al. (2017), so only 
OM-CMB can be compared. 

3. Results and discussion 

3.1. p.m.2.5 chemical composition 

The daily concentrations of the PM2.5 and mass closure of main 
species are shown in Fig. 1a. PM2.5 concentrations ranged from 28 to 
237 μg m− 3. For the mass closure of PM2.5 chemical composition 
referred to the equations (1)–(5), the fractions were in the order of OM 
(29%) > nitrate (24%) > crustal material (23%) > sulfate (15%) > EC 
(5%). Furthermore, the daily concentrations of organic components are 
shown in Fig. 1b. Their concentrations were in the order of 

∑
10n-al-

kanes (213 ± 73 ng m− 3) > levoglucosan (264 ± 208 ng m− 3) >
∑

unsaturated fatty acids and cholesterol (60 ± 20 ng m− 3) >
∑

14PAHs 
(9 ± 13 ng m− 3) ≈

∑
3hopanes (9 ± 5 ng m− 3). The concentrations of n- 

alkanes, levoglucosan, PAHs and hopanes showed similar temporal 
variations with PM2.5 concentrations, while unsaturated fatty acids and 
cholesterol showed different variations. Meteorological parameters 
(wind speed, temperature and precipitation) for the study area are 
shown in Fig. S4. The concentrations of PM2.5 and most components 
were higher during the dry season (Jan. to Apr., Nov. to Dec.) than 
during the wet season (Jun. to Oct.), due to less favorable meteorolog-
ical conditions for dispersion and deposition during the dry season. 
Furthermore, PAHs are mainly emitted from combustion activities. 
Hopanes are often found in traffic exhaust and coal combustion emis-
sions (Oros and Simoneit, 2000). N-alkanes can arise from abrasion 
products from vegetation leaf surfaces (characterized by the predomi-
nance of > C29 odd n-alkanes) and fossil fuel combustion (Han et al., 
2018). The levoglucosan is the marker of biomass burning. The 

Fig. 1. (a) Daily mass closure results for PM2.5, and daily measured concentrations of PM2.5. (b) Daily mass concentrations of organic compounds in PM2.5.  
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unsaturated fatty acids and cholesterol are usually the markers of food 
cooking. The temporal variations of the inorganic and organic markers 
can indicate the variation of source contributions. 

3.2. Average source contributions to OC and PM2.5 and comparison 

The annual average of the source contributions to OC estimated by 
the OM-CMB is shown in Fig. 2a. The highest contributor for OC was 
SOC (34%), followed by biomass burning (17%), diesel vehicles (10%), 
industrial coal combustion (9%), gasoline vehicles (8%), resuspended 
dust (8%), vegetation detritus (8%), and cooking (6%). Then, as 
described in the methods section, for the OM-CMB model, the source 
contributions to PM2.5 were converted from the contributions to OC. The 
average source contributions and conversion ratios are summarized in 
Table S1. For the IOM-CMB model, the source contributions to PM2.5 
were directly estimated. Fig. 2b and c describe the annual average 
source contributions to PM2.5. The percentage contributions estimated 
by the OM-CMB and IOM-CMB were respectively for gasoline vehicles 
(4% vs 4%), diesel vehicles (10% vs 11%), industrial coal combustion 
(15% vs 15%), resuspended dust (12% vs 17%), biomass burning (5% vs 
6%), cooking (3% vs 2%), vegetation detritus (4% vs 5%), SOA (9% vs 
10%), sulfate (10% vs 7%), and nitrate (20% vs 18%). 

In this study, except for the soil dust and vegetation detritus, similar 
source profiles were shared by the OM-CMB and IOM-CMB. A compar-
ison of the contributions estimated by the two CMB methods was con-
ducted, and the relative biases were calculated for comparisons, as 
shown in Fig. 2d. Among the primary source categories, the average 
contributions of the gasoline vehicles, diesel vehicles, industrial coal 
combustion, biomass burning and cooking estimated by the two 
methods were generally consistent, with the relative biases being 8.0%, 

5.9%, 2.2%, 17.3% and 10.9%, while the average contributions of 
resuspended dust and dust/vegetation detritus showed larger differ-
ences for the two methods with relative biases being 33.3% and 26.5%. 
The markers for each source category which had high MPIN values 
estimated by the two methods are summarized in Table 1. The markers 
of the gasoline vehicles, diesel vehicles, industrial coal combustion, 
biomass burning and cooking were same in the OM-CMB and IOM-CMB, 
indicating that the primary sources sharing same markers in the two 
methods showed consistent average contributions. It can be seen that 
the average contributions of sulfate and nitrate from the OM-CMB were 
higher than those from the IOM-CMB, with the relative biases being 
27.3% and 12.1%. The high relative biases may result from the fact that 
the sulfate and nitrate sources from the OM-CMB are the measured 
values after subtracting the summed mass of sulfate and nitrate emitted 
from the selected primary sources as described in the section 2.3, while 
those from the IOM-CMB were directly estimated by the CMB model. 
The difference of average contributions of sulfate and nitrate might be 
caused by uncertainties in the estimation of primary source contribu-
tions (such as in resuspended dust). 

3.3. Daily contributions to OC and PM2.5 

The daily percentage contributions to OC estimated by the OM-CMB 
model are shown in Fig. 3a, and the daily percentage contributions to 
PM2.5 estimated by the two methods are shown in Fig. 3b and c. The 
daily absolute contributions are shown in Fig. 4. The highest daily 
contributions of gasoline vehicles reached 6 μg m− 3 for OC, and reached 
21 and 20 μg m− 3 for PM2.5 estimated by the OM-CMB and IOM-CMB 
models, respectively. The percentage contributions of gasoline vehi-
cles showed obvious higher contributions during the cold period, 

Fig. 2. (a) The average of percentage contributions to OC estimated by the OM-CMB. (b) The annual average of percentage contributions to PM2.5 estimated by the 
OM-CMB. (c) The annual average of percentage contributions to PM2.5 estimated by the IOM-CMB. (d) Comparison of contributions to PM2.5 estimated by the OM- 
CMB and IOM-CMB. GV: gasoline vehicles; DV: diesel vehicles; ICC: industrial coal combustion; RD: resuspended dust; BB: biomass burning; CK: cooking; VD: 
vegetation detritus; SD: soil dust; SOA: secondary organic aerosol; SS: sulfate; SN: nitrate. 
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Fig. 3. (a) Daily contributions to OC estimated by the OM-CMB; (b) Daily contributions to PM2.5 estimated by the OM-CMB; (c) Daily contributions to PM2.5 
estimated by the IOM-CMB. 
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Fig. 4. Comparisons among temporal variations of source contributions estimated by the OM-CMB and IOM-CMB, and corresponding markers. rOM-IOM: Pearson’s r 
between temporal variations of source contributions estimated by the OM-CMB and IOM-CMB methods. rOM-marker: Pearson’s r between temporal variations of 
source contributions estimated by the OM-CMB and corresponding markers. rIOM-marker: Pearson’s r between temporal variations of source contributions estimated 
by the IOM-CMB and corresponding markers. 
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especially during heavy pollution in January. The highest daily contri-
butions of diesel vehicles were 4 μg m− 3 for OC, and 28 (OM-CMB) and 
24 (IOM-CMB) μg m− 3 for PM2.5 which also occurred in January. Studies 
have shown that vehicles emit more PM under poor combustion con-
ditions, such as cold starts at low temperature (Schauer et al., 2003). The 
highest industrial coal combustion contribution to OC was 3 μg m− 3, and 
to PM2.5 reached 33 and 39 μg m− 3. The percentage contributions of 
industrial coal combustion show a slightly higher contribution in the dry 
season than the wet season (dry 15.3% vs. wet 13.6%), which may be the 
result of differing emissions or meteorology in the two seasons. Hydro-
power supplies a large percentage of Chengdu’s electricity demand 
during the wet season, while coal combustion is needed for electricity 
generation during the dry season (Shi et al., 2016). The highest daily 
contributions of biomass burning can reach 8 μg m− 3 for OC, and both 
17 μg m− 3 for PM2.5. Biomass burning showed higher fractions during 
autumn (September, October and November) and winter (January, 
February and December), due to residential use and local straw burning 
activities. A high vegetation detritus/soil dust contribution was mainly 
observed during spring (April), while the resuspended dust showed 
weaker seasonal variation. According to Fig. S4, the wind speed was 
stronger and the precipitation was less during spring in Chengdu. Strong 
wind can enhance the dispersion of PM from local sources, but also can 
result in the resuspension of dust and vegetation detritus (Dillner et al., 
2006). Dry surfaces, strong wind speeds and more vegetation impacts 
during spring can explain the higher contributions of vegetation detritus 
and soil dust (Tian et al., 2021b). The resuspended dust can be caused by 
high wind strength and intensive human activities (such as road dust 
caused by heavy traffic, construction dust caused by building activities, 
etc.), which can explain its weaker seasonal variation than soil dust. 

The SOC was an important contributor for OC which can reach 14 μg 
m− 3, and the highest daily contributions of SOA to PM2.5 reached 26 and 
25 μg m− 3 estimated by the OM-CMB and IOM-CMB models, respec-
tively. The highest daily contributions to PM2.5 reached 28 and 21 μg 
m− 3 for sulfate, and 75 and 66 μg m− 3 for nitrate, estimated by the OM- 

CMB and IOM-CMB models, respectively. The highest percentage con-
tributions (%) of SOA and sulfate were observed during August to 
October. Their formation is associated with photochemical processes 
which are more efficient because of high insolation and temperatures 
during August to October as shown in Fig. S4 (Liu et al., 2014). The SOA 
and sulfate also showed higher contributions during January. Although 
photochemical reactions may be generally weak during January, high 
precursor concentrations, humidity and PM during winter may enhance 
the aqueous phase and heterogeneous reactions (Zhang et al., 2013; 
Chen et al., 2014; Cheng et al., 2016; Tian et al., 2016). The highest 
fraction of nitrate occurred when the temperature was low (as shown in 
Fig. 1). Although photochemical reactions are favorable in summer 
(July and August), nitrate may decompose at higher temperatures due to 
the thermodynamic instability of ammonium nitrate (Hasheminassab 
et al., 2014), and the high relative humidity during wintertime in 
Chengdu can enhance the secondary formation of nitrate through het-
erogeneous reactions (Liu et al., 2019). 

3.4. Comparisons of temporal variations of source contributions and 
markers 

The temporal variations of source contributions estimated by the 
OM-CMB and IOM-CMB methods were compared, and then the contri-
butions were also compared with the corresponding markers which had 
high MPIN values, as shown in Fig. 4. As shown in Fig. 4 a to g, among 
the primary source categories, the daily variability of biomass burning 
and gasoline vehicles from two methods showed the most consistent 
temporal variations (with the Pearson’s r both being 0.93 (p < 0.01)). 
The biomass burning and gasoline vehicle contributions also showed 
similar temporal variations with their corresponding markers, with the 
Pearson’s r ranging from 0.82 (p < 0.01) to 0.93 (p < 0.01). The marker 
of gasoline vehicles was Benzo [ghi]Perylene (BghiP) and the marker of 
biomass burning was LEVOG, which were very different from other 
sources, so their low collinearity with other sources can explain the 

Fig. 4. (continued). 
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consistent results. The temporal variations of diesel vehicles and in-
dustrial coal combustion of the two methods were moderately consis-
tent, with the Pearson’s r being 0.82 (p < 0.01) and 0.81 (p < 0.01), 
respectively. Consistent markers were identified for these two sources by 
the OM-CMB and IOM-CMB as listed in Table 1; however, the collin-
earity between source profiles of diesel vehicles and industrial coal 
combustion may cause uncertainties. For example, they are both char-
acterized by high loadings of C24, C25 alkanes and medium-ring PAHs 
(Tian et al., 2021b). 

According to Fig. 4e, cooking contributions estimated by the two 
methods showed a relatively weak correlation with each other (Pear-
son’s r = 0.77, p < 0.01), and with the corresponding marker (Pearson’s 
r = 0.65, p < 0.01 and 0.68, p < 0.01). Except for the cooking, the 
STEARA (marker of the cooking) also exists in the source profiles of 
gasoline vehicles and biomass burning. Cooking contributions were 
generally low, so they may be easily influenced by the gasoline vehicles 
and biomass burning contributions, resulting in the relatively large 
differences of the two methods. The contributions of resuspended dust 
estimated by the two methods showed high relative biases (33.3% in 
Fig. 2d) and relatively weak correlations (0.73, p < 0.01 in Fig. 4f), 
probably because different markers (C31 for OM-CMB and Ca for IOM- 
CMB) were identified for CMB modeling. The vegetation detritus from 
OM-CMB and the soil dust from IOM-CMB also showed high relative 
biases (26.5% in Fig. 2d) and weaker correlations (0.74% in Fig. 4g), 
because different source profiles were used in the OM-CMB and IOM- 
CMB modeling, although the same marker (C33) was identified for the 
two methods. 

What’s more, the temporal variations of sulfate and nitrate were 
highly consistent with each other and with the trends of corresponding 
markers with all the Pearson’s r values above 0.93. The consistent 
temporal variations of contributions indicate they were well estimated 
by the two methods due to the low collinearity. As shown in Fig. 4, the 
temporal variations of the SOA from two methods were also strongly 
correlated with each other (Pearson’s r = 0.91, p < 0.01). They were 
compared with the temporal variations of SOAEC which was indepen-
dently estimated by the EC tracer method as described in the method 
section. The Pearson’s r values were 0.69 (p < 0.01) between SOAIOM 
and SOAEC, and were 0.57 (p < 0.01) between SOAOM and SOAEC, 
indicating that the SOA estimated by the IOM-CMB was more consistent 
with the SOAEC than that estimated by the OM-CMB, because EC was 
used in the IOM-CMB. 

3.5. Sensitivity of source apportionment to source profiles 

The CMB results may vary when using different source profiles, so in 
this part, different profiles for two major sources - coal combustion and 
gasoline vehicles - were used to test the sensitivity to source profiles as 
mentioned above. The result of the IOM-CMB which used the residential 
coal combustion instead of industrial coal combustion profile is shown 
in Fig. 5a. Compared with the result for the industrial coal combustion, 
the contributions of resuspended dust and residential coal combustion 
were higher, and the contributions of other sources were lower. The 
difference between two coal combustion profiles was that the residential 
coal combustion showed higher OC and organic compounds and lower 
crustal elements than the industrial coal combustion (Tian et al., 2021b). 
The lower crustal elements in the residential coal combustion may 
explain the overestimation of the resuspended dust, whose markers were 
mainly crustal elements, when using its profile. Residential coal com-
bustion is an important source category in northern China, but this is not 
so in the urban areas of the cities in southern China. In Chengdu, most 
coal is used in industrial activities, and less than 1% of coal was used for 
residential activities in 2018 (CBS, 2019). 

For the gasoline vehicle profiles, most results did not meet the 
goodness-of-fit criteria when using the noncatalyst vehicle profile 
measured by Schauer et al. (2002). In addition, five source profiles, all 
from within the same study (Cai et al., 2017), and all from gasoline 

vehicles, but of different types, were compared in the CMB model. The 
results (Fig. 5b–5(f)) showed considerable sensitivity to the profile used 
(Tian et al., 2021b), with the gasoline vehicle contribution ranging from 
1% to 8%, although changes to other source contributions were rela-
tively small. 

4. Conclusions 

To explore the use of a combination of inorganic and organic markers 
in the CMB modeling of PM2.5, and the influence of adopting different 
organic and inorganic source profiles, a comprehensive comparison of 
PM2.5 source apportionment using organic marker-based OM-CMB as 
well as organic and inorganic marker-based IOM-CMB was conducted. 
The average contributions of the gasoline vehicles, diesel vehicles, in-
dustrial coal combustion, biomass burning and cooking which shared 
the same markers in the two methods were consistent. The average 
contributions of sulfate and nitrate sources showed relatively high 
relative biases because inorganic ions were not inputted into the OM- 
CMB. The temporal variations of PM2.5 contributions from sulfate, ni-
trate, SOA, gasoline vehicles, and biomass burning were in good 
agreement between the OM-CMB and IOM-CMB results. The OM-CMB 
and IOM-CMB are powerful to apportion sources characterized by 
unique markers (such as biomass combustion) and low collinearity. The 
diesel vehicle and industrial coal combustion estimates were moderately 
consistent between the two methods. The daily contributions of resus-
pended dust and cooking estimated by the OM-CMB and IOM-CMB 
showed a poor correlation. The discrepancy in resuspended dust be-
tween OM-CMB and IOM-CMB may be due to the different tracers in 
their source profiles. Conceptually, the IOM-CMB model is better for 
apportionment of PM2.5 as it does not depend upon the very variable 
sulfate and nitrate content of various primary emissions. 

In addition, when testing the sensitivity to source profiles for two 
coal combustion and several gasoline vehicle profiles, this analysis 
highlights not only that CMB is quite sensitive to the source profiles used 
as inputs, but also that it is essential to use up-to-date local knowledge of 
fuels and technologies in order to obtain reliable results. In this case, the 
application of a source profile for industrial coal combustion and for 
current vehicle technologies was necessary, and the use of old or generic 
library source data is liable to lead to significant errors. 

CMB modeling based on organic and inorganic markers is powerful 
for source apportionment. Identifying the source profiles that represents 
local sources is a core and complex effort and may limit the widespread 
application of this method. Furthermore, due to the possible degradation 
of organic molecular tracers, the use of organic tracers in receptor 
models can cause uncertainty. For example, studies have suggested that 
LEVOG can be oxidized by the OH radical (Hoffmann et al., 2010), so the 
biomass burning contribution will be underestimated using the LEVOG 
as the marker in the CMB model especially during summertime (Hen-
nigan et al., 2010), but it is still an ideal marker compound for biomass 
burning due to its high emission factors and relatively high concentra-
tions in the ambient aerosols (Hoffmann et al., 2010). In future research, 
the source profiles library, especially for organic compounds, should be 
enriched and localized to achieve more precise source appointment, and 
reducing the influence of degradation on the CMB modeling requires 
in-depth study. 
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Fig. 5. (a) The result of the IOM-CMB which used the source profiles for residential coal combustion instead of industrial coal combustion measured by Tian et al. 
(2021b). (b) to (f) The results of the OM-CMB which used the source profiles for gasoline vehicles measured by Cai et al. (2017). 
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