
 
 

University of Birmingham

Artificial intelligence in the management and
treatment of burns
Taib, Bilal; Karwath, Andreas; Wensley, K; Minku, Leandro; Gkoutos, Georgios; Moiemen, N.
S.
DOI:
10.1016/j.bjps.2022.11.049

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Taib, B, Karwath, A, Wensley, K, Minku, L, Gkoutos, G & Moiemen, NS 2023, 'Artificial intelligence in the
management and treatment of burns: a systematic review and meta-analyses', Journal of Plastic, Reconstructive
& Aesthetic Surgery, vol. 77, pp. 133-161. https://doi.org/10.1016/j.bjps.2022.11.049

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 17. May. 2024

https://doi.org/10.1016/j.bjps.2022.11.049
https://doi.org/10.1016/j.bjps.2022.11.049
https://birmingham.elsevierpure.com/en/publications/00094c1f-6a93-4a4e-9ed2-9f47a22ed667


Artificial Intelligence in the Management and Treatment of Burns: A Systematic Review 
and Meta-analyses 

 
Bilal Gani Taib MRCS 1 ,A Karwath PhD 2,3,4, K Wensley MRCS 1, L Minku PhD5, G.V.Gkoutos 

PhD2,3,4,8, N Moiemen FRCS (Plast)6,7,8 
 
 
1Burns and Plastic Surgery Department, Queen Elizabeth Hospital, Birmingham, UK.  
2Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK  
3Health Data Research UK Midlands Site, Birmingham, UK  
4University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK 
5School of Computer Science, University of Birmingham, Birmingham, UK 
6College of Medical and Dental Sciences, University of Birmingham, UK  
7Centre for Conflict Wound Research, Scar Free Foundation, Birmingham, UK 
8NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK 
 
 
 
 
Corresponding Author  
Bilal G Taib  
bilal.taib@nhs.net 
 
Department of Burns & Plastic Surgery  
Queen Elizabeth Hospital, 
Mindelsohn Way,  
Birmingham, B15 2TH 
 
+441216272000 
 
 
 
*Part of this research has been presented at the International Society for Burns Injury 20th 
International Congress June 2021 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract  
 
Introduction and Aim 
Artificial Intelligence (AI) is already being successfully employed to aid the interpretation of 
multiple facets of burns care. In light of the growing influence of AI this systematic review 
and diagnostic test accuracy meta-analyses aims to appraise and summarise the current 
direction of research in this field. 
 
Method  
A systematic literature review was conducted of relevant studies published between 1990 
to 2021 yielding 35 studies. 12 studies were suitable for a Diagnostic Test Meta-Analyses.  
 
Results  
The studies generally focussed on burn depth (Accuracy 68.9%-95.4%, Sensitivity 90.8% 
Specificity 84.4%), burn segmentation (Accuracy 76.0%-99.4%, Sensitivity 97.9% and 
specificity 97.6%) and burn related mortality (Accuracy >90%-97.5% Sensitivity 92.9% and 
specificity 93.4%). Neural networks were the most common machine learning algorithm 
utilised in 69% of the studies. The QUADAS-2 tool identified significant heterogeneity 
between studies.  
 
Discussion  
 
The potential application of AI in the management of burns patients is promising, especially 
given its propitious results across a spectrum of dimensions, including burn depth, size, 
mortality, related sepsis, and acute kidney injuries. The accuracy of the results analysed 
within this study are comparable to current practices in burns care. 
 
Conclusion  
 
The application of AI in the treatment and management of burns patients, as a series of 
point of care diagnostic adjuncts, is promising. Whilst AI is a potentially valuable tool a full 
evaluation of its current utility and potential is limited by significant variations in research 
methodology and reporting. 
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Introduction  
 
The World Health organisation estimates that 300,000 patients die from burns each year (1). 
Significant morbidity is associated with both acute and chronic sequelae of large burns. 
Inaccurate diagnosis when treating burns patients can result in fatal consequences or a 
plethora of long-term complications; often the first healthcare professional to assess and 
manage a burns patient is not part of the Burns Team. 
 
Machine Learning (ML) is a subset of Artificial Intelligence (AI), pertains algorithms able to 
detect patterns directly from data, a task, typically, beyond the capabilities of humans or 
traditional statistical methods (2). ML algorithms are generally classified into supervised and 
unsupervised approaches. The former class is trained on datasets with known results, 
sometimes termed ground truth, and aims to predict results on previously unseen datasets 
while the latter attempts to identify patterns, clusters or associations within unlabelled data 
(3).  Advances in image analysis have meant that ML algorithms can accurately segment 
images and identify regions of interest such as burnt tissue to allow estimates of burn size/ 
segmentation and or focus on these areas to estimate a burn depth(4). 
 
Healthcare professionals are starting to adopt ML-based approaches in the field of burns. 
These algorithms have been shown to accurately detect burn depths, survivability of burns 
and anticipate patients being at risk of sepsis or acute kidney injury faster and more 
accurately than current guidelines and technologies (5–8).  
 
Despite the growing influence of AI in the field of burns, to the best of our knowledge, there 
is no overview of the research to date.  This is vital if healthcare professionals are to 
interpret and apply ML principles in clinical practice. This systematic review and diagnostic 
test accuracy meta-analyses aims to appraise the current evidence base for the use of AI in 
the management and treatment of burns. 

Methodology 

In this systematic review all studies that compared the performance of machine learning 
algorithms to a reference standard were selected for inclusion across any original study in 
the field of burns: 
 

• The population received one or multiple index tests compared to a single reference 
standard.  

• Diagnostic case control studies that selectively recruit patients according to disease 
status  

• Retrospective and prospective studies. This includes studies where previously 
acquired images are assessed and then prospectively reviewed.  

 
 
Participants and Target Conditions  
 
Due to the anticipated paucity of evidence all human studies (adult and paediatric) were 
included regardless of sample size (Table 1).  



 
Study target conditions included, but were not limited to, assessment of burn size including 
segmentation, burn depth and burn mortality.  

Inclusion  Exclusion  

Human studies (adult and paediatric) Animal studies or In Vitro studies  

Application of ML in any burns related 
treatment pathway 

Target conditions beyond the scope of 
burns related care 

Original studies  No full text available  
 Non- english language studies  

 Non-ML studies  

 Review articles  
Table 1: Inclusion and Exclusion criterion of studies.  
 
Reference Standard and Index Tests  
 
There is great variability in the reference standard for assessing burn depth which includes 
clinician analysis, laser doppler imaging and time to heal for the burn wounds. Hence the 
inclusion of variable reference standards is permitted. Similarly, there is no single and 
generally accepted ML algorithm able to solve the various aspects of burns care. Hence, all 
ML algorithms were considered in this systematic review.   
 
 
Search Methodology  
 
All studies published between 1990 to the present date were sought. A comprehensive 
search of MEDLINE (OVID and SCOPUS) and EMBASE (SCOPUS) was performed using a 
combination of Medical Subject Headings (MeSH). The search strategy in is shown below.  
 

Burn* OR Plastic Surgery OR Reconstructive Surgery  
AND  
Artificial Intelligence OR Machine Learning OR Big Data  
 
Burn* OR Plastic Surgery OR Reconstructive Surgery  
AND  
Neural Network OR Support Vector Machine OR Decision Tree OR Nearest 
Neighbour  

 
Burn* OR Plastic Surgery OR Reconstructive Surgery  
AND  
Supervised Learning OR Unsupervised Learning  
 
Burn* OR Plastic Surgery OR Reconstructive Surgery  
AND  
Computer Aided Diagnosis OR Image Segmentation  

 
Following the search and analysis of the abstracts, studies were populated into Zotero 
(George Mason University, USA) for full text review. The final list was cross-checked against 



a previous systematic review on Artificial Intelligence in Plastic Surgery as well as reference 
lists of all included studies in the Systematic Review (9).  
 
Data Collection and Analysis  
 
Selection of studies  
 
Both a clinical reviewer and methodological reviewer applied the inclusion criteria to full 
text articles. These articles formed the corpus of the systematic review. To allow the 
calculation of sensitivity and specificity, only studies where the true positive (TP), true 
Negative (TN), false positive (FP) and false negative (FN) could be obtained were included in 
the diagnostic test meta-analysis (DTAm) part of this study. Study acquisition is illustrated in 
the PRISMA Flow Chart (Figure 1).  
 
 

 
 
 
 
 
Figure 1: PRISMA Flowchart for the Diagnostic Test Accuracy Meta-Analyses for Artificial 
Intelligence in the Management and Treatment of Burns. * 
*Please note the 12 DTAm articles and the 23 articles excluded during the data extraction 
make up the 35 articles for the systematic review component. The excluded 23 articles did 



not contain enough information for meta-analytical purposes but are useful for a narrative 
review.   
 
Data Extraction and Management  
 
All studies eligible for the study were reviewed by our team and relevant features were 
input into our data extraction spreadsheet. Variables collated include the aim of the study, 
population, the ground truth, the type of ML algorithm employed, input features of the 
algorithm and the validation method or train and test split of the data as well as the 
performance results. Multiclass problems, such as depth of burns, were categorised into 
superficial partial thickness equivalent versus deep dermal and full thickness burns due to 
the variable nature of the nomenclature used. The mapping of the categories is shown in 
Table 2. In studies comparing multiple ML algorithms or parameter settings for a single data 
set, the best performing algorithm and parameters quoted by the paper' authors were 
chosen. Proof of concept studies where only the validation results are exhibited were 
included in the systematic review for descriptive analysis.  
 
For five studies where the original confusion matrices are not included in the publication, 
the 2x2 matrices were reverse engineered based on the data provided Table 2 (6,10–13).  
 
 



Author Analysis Comment 2 Class Mapping 

      Positive 
(severe) 

Negative (non-
severe) 

Serrano (2005) (14) Depth   DD , FT SPT 

Abubakar (2020) (15) Depth   2nd/3rd Degree 1st Degree 

Acha (2003) (11) Depth Reverse Analysis based on recall result in paper DD to FT SPT 

Suvarna (2013) (5) Depth   2nd/3rd Degree 1st Degree 

Yadav (2019) (16) Depth   Skin Graft Non-grafting  

Patil (2009) (17) Survival   Death Alive 

Abubakar (2019) (18) Segment   Burn No burn 

Cirillo (2019) (19) Depth   DPT+FT SPT+IPT  

Dubey (2019) (10) Segment Reverse analysis estimated on 40% test set Burn No burn 

Stylianou (2015) (6) Survival Reverse analysis estimated on averages results ANN (Sensitivity=Specificity) Death Alive 

Kuan (2018) (12) Depth Reverse analysis estimated on 30% test set DD , FT SPT 

Wang (2020) (13) Depth Reverse analysis estimated on 15% test set Moderate, 
Deep 

Shallow 

Table 2:  The mapping of discriminators for the 12 studies included in the meta-analysis and identification of those studies from which the True 
Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) were reverse engineered based on data from the paper.  
 
* Deep Dermal (DD), Full Thickness (FT), Superficial Partial Thickness (SPT), Deep Partial Thickness (DPT), Intermediate Partial Thickness (IPT) 



Assessment of Methodological Quality  
 
The risk of bias and applicability of included studies in the meta-analysis was assessed using 
the COCHRANE group recommended QUADAS-2 (Quality Assessment of Diagnostic accuracy 
Studies-2) tool (19). 
 
Statistical Analysis 
 
Due to the scarcity of the evidence only 8/12 studies, on burn depth, underwent a full 
DTAm. All analyses were performed using MetaDTA, an online application which uses a 
random effects bivariate binomial model where sensitivity and specificity are jointly 
modelled (20,21). The hierarchical summary receiver operating characteristic (HSROC) 
parameters were estimated using the bivariate model parameters. Estimates of I2 statistics 
were not calculated as they do not account for the heterogeneity of the different positivity 
thresholds (22). Hence heterogeneity was interpreted through how close the studies lay 
near the HSROC curve line of best fit and comparisons between the 95% prediction and 
confidence interval ellipse around the summary point (summary sensitivity and specificity 
modelled on the bivariate model at a notional threshold). The 95% predictive region is 
useful when estimating where future studies would lie on the HSROC curve graph. Global 
test measures fail to distinguish between false positive and false negative results hence 
ranges were provided where applicable (23). Since sensitivity and specificity for each study 
are interpreted over different thresholds comparing different data sets single summary 
analysis should be viewed with caution. Hence, coupled Forest Plots demonstrating the 
sensitivity and specificity for each study with 95% confidence intervals were depicted. 
 
Co-variates, such as ML algorithm type, image or patient selection, QUADAS-2 score and 
whether a reverse analysis was conducted, were used for the sensitivity analysis in this 
DTAm.   
 
For illustrative purposes the burn survival (n= 2) and burn segmentation (n=2) studies’ 
sensitivity and specificity estimates were also plotted on coupled forest plots.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results  
 
A total of 35 studies examining the use of AI/ML in the management and treatment of burns 
in humans from 1996 till 2021 were considered (Table 3). The studies generally focus on 
burn depth (n=15), mortality (n=6), segmentation (n=5), infection (n=3) and miscellaneous 
(kidney injury, burns vs bruises, burns vs pressure ulcers, scarring and open wounds n=6). 
Only one study focussed solely on paediatric patients (19).  
 
Accuracy of burn depth prediction ranges from 68.9% to 95.4%. Similarly, burn 
segmentation accuracies vary 76.0%-99.4%. Ache et al. demonstrated that burn depth 
predictions improves when the multiclass problem is mapped into a two-class discriminator 
(11). Burn mortality prediction is more conclusive with accuracies >90%-97.5%.  
 
69% (24/35) of studies use some form of artificial neural network either as a standalone 
algorithm, feature selector for input into the rest of the algorithm or in multi-ensemble 
algorithms. Different types of neural networks exist with fuzzy logic neural networks used to 
solve burn depth analysis or for limited datasets ‘off the shelf’ neural networks typically of 
the ResNet or VGG variety. Other popular machine learning algorithms include k-Nearest 
Neighbour and Support Vector Machines.  
 
Three studies compare machine learning algorithms to logistic regression with comparable 
results for burn depth and mortality. However, when predicting the plasma concentration of 
antibiotics in burns patients, ML algorithms were found to exhibit a superior performance 
(6,12,24). Tran et al. and Jimenez et al., used automated and evolutionary algorithms which 
demonstrated superior diagnostic test accuracies and less features were selected when 
compared to more traditional machine learning algorithms ). It is also worth noting that 
Yeong et al. and Dubey et al. combine existing medical imaging technologies (Optical 
Coherence Tomography and Reflectance Spectrometry) with ML algorithms to improve 
feature selection and accuracy of burn depth and segmentation (10,25).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Author Aim Study Type Population Ground Truth  

Machine 
Algorithm +/- 
Comparators Input Output 

Train/Validation
/ 
Test Split Summary Statistics  Conclusion 

Chauhan 2020 
India(26) 

To create a 
customised body 
part-specific 
artificial 
intelligence 
model for burn 
severity 
assessment from 
colour images 

Retrospectiv
e 

Non Burn 
Body Part 
Images- 
Datasets  
Burn Images- 
Google 
Images and 
iStock Images 
Total 
Augmented 
Burn Images 
Training 396 
from 141 and 
Test 63 
images 

Medical 
Expert 
Review of 
Images 

CNN (ResNet 
50) to identify 
body part 
then SVM to 
categorise 
depth 

Image of body 
part defined by 
CNN 

Burn Depth- 
Mild, 
moderate 
and severe  

70% Training and 
Validation 
30% Test 
 
Random 
Sampling 

Sensitivity= 77.60% 
PPV= 78.0% 
Average Accuracy= 84.9%   
F1 Score77.8% 

A highly customised body part specific approach 
that could be used to deal burn region 
segmentation issues.  

Chauhan 2020 
India (27) 

To demonstrate 
the use of 
advanced AI 
techniques for 
colour images-
based burn 
region 
segmentation  

Retrospectiv
e 

434 Images 
from Google 
Images and 
iStock photos 

Medical 
Expert 
Review of 
Images 

ResNet 101 
Atrous 
Convolution 
CNN Image 

Burn 
Segmentatio
n 

 Training / 
Validation= 
316/76 
Test= 42 

Sensitivity= 83.4% 
Specificity= 95.7% 
Accuracy= 93.4% 

The paper demonstrates an atrous convolution 
neural network for efficient automated burn 
region segmentation. 

Yadav 2019 
India (16) 

To develop an 
automated 
classification 
system for burn 
identification as 
graft and non-
graft  

Retrospectiv
e 

74 Images 
(increased to 
pick out areas 
of interest see 
test/train) 
Derived from 
Virgen del 
Rocío Hospital 
database 

Assupmtion 
that it is 
similar to 
other Spanish 
papers from 
the region 
1 week 
Clinician 
Follow Up SVM 

Image Channels 
(Hog Featured 
Image, Hue, 
Kurotsis, 
Chroma, 
Skewness) 

Class I- 
Superficial 
Dermal No 
Graft, Class 
II- Deep 
Dermal or 
Full Thickness 
Requiring 
Graft  

Training=20 
Test= 74 

Sensitivity= 87.8% 
Specificity= 83.3% 
Accuracy= 82.4% 

The novelty of the work lies within the automatic 
burn classification based on different features. 

Khan 2020 
Pakistan (28) 

The main 
objectives of this 
research work 
are to segment 
the burn wounds 
and classification 
of burn depths 
into 1st, 2nd and 
3rd degrees 
respectively  

Retrospectiv
e 

450 Images 
3-52 years old 
Burn Centre 
of Allied 
Hospital 
Faisalabad 
and Internet 
images 

Medical 
Expert 
Review of 
Images CNN 

Image 
Segmentation 
and then 
feature 
extraction 
based on 
colour, texture 
and shape 

Burn Depth 
1st-3rd 
degree 

Training= 65% 
Test= 35% 

Overall Accuracy79.4% 
1st Degree 87.7% 
Second Degree 84.5%  
Third Degree 66% 

From the obtained results of this research work, 
non- expert doctors will be able to apply the 
correct first treatment for the quality evaluation 
of burn depths. 

Kuan 2018 
Malaysia (12) 

The objective of 
this paper is to 
conduct a 
comparative 
study of different 
types of 
classification 
algorithms on 
the classification 

Retrospectiv
e 

164 Images 
Hospital 

Medical 
Expert 
Collated 
Images 

Logistic or 
Multi-Class 
Classifier  

Image Colour 
and Texture 

Burn Depth 
(Superficial, 
Superficial 
Partial 
Thickness, 
Deep Dermal, 
Full 
Thickness)  

Training = 70% 
Testing = 30% 
 
10 fold Cross 
Validation  

Logistic or Multi-Class 
Classifier 
Average Accuracy = 
68.9% 
Superficial Partial 
Thickness= 62.2% 
Deep Partial Thickness= 
68.9% 
Full Thickness= 75.6% 

Simple logistic regression analysis provided 
comparable results to logistic regression and the 
multiclass classifier. 



of different burn 
depths by using 
an image mining 
approach  

Suvarna 2013 
India (5) 

To develop  an 
automatic skin 
burn wound 
analyser to aid 
the diagnosis of 
burn victims  

Retrospectiv
e 

120 Images 
Hospital and 
Internet  

Medical 
Expert 
Review of 
Images 

Template 
Matching vs 
k-NN and 
SVM Image 

Burn Depth 
Grades 1 
(Superficial 
Dermal), 
Grade 2 
(Partial 
Thickness) 
and Grade 3 
(Full 
Thickness) 

3 fold Cross 
Validation 

SVM Overall Accuracy 
90% 
Grade 1 85% 
Grade 2 87.5% 
Grade 3 92.5% 

The novelty of the work reported here is that it is 
simple, can be built using readily available devices 
such as camera and laptop and can therefore be 
used as some form of telemedicine. 

Wantanajittiku
l 2011 
Thailand(29) 

To develop an 
automatic 
system with the 
ability of 
providing the 
first assessment 
to burn injury 
from burn colour 
images  

Retrospectiv
e 

5 patient 
images from 
Department 
of Health 
from which 
there are 34 
derived 
segmented 
mages 

Medical 
Expert 
Review of 
Images SVM Burn Images  

Burn Depth - 
2nd and 3rd 
Degree 

Training 80% (4 
images)  
Test 20% (1 
image) 
 
Cross Validation 
4-fold Accuracy= 75.3% 

SVM yielded the best results over k-NN and Bayes 
classifiers.  

Jiao 2019 
China (30) 

To develop a 
deep learning 
technology to 
diagnose burn 
size and depth 
via segmentation 
of images 

Retrospectiv
e 

1150 Images 
of 'fresh' burn 
wounds from 
Wuhan 
Hospital No 3 

Medical 
Expert 
Review of 
Images 

CNN (ResNet 
101) used to 
train SVM  Burn Images  

Burn Depth 
(Superficial, 
SPT, DD, FT)  
Burn Size 
(<5%, 5% < 
%TBSA< 20%, 
%TBSA> 20% 
) 

Training= 1000 
Pictures  
Test= 150 
pictures  

Average Dice's Co-
Efficient (Burn Size) = 
83.7% 
Average Dice's Co-
Efficient (Burn Depth)= 
85.14% 
 
Paper surmises 84.51% 
total accuracy 

This article proposes a new segmentation 
framework for burn images based on deep 
learning technology. 

Abubakar 2019 
United 
Kingdom (18) 

To discriminate 
between unburnt 
and burnt skin  

Retrospectiv
e 

680 burnt skin 
and 680 of 
healthy skin 
Internet 
Image 
Acquisition  

Author 
Review 

CNN 
ResNet 101 
with SVM Images 

Healthy or 
Burnt skin 

Pre trained 
model 

Sensitivity = 99.4% 
Specificity = 99.6% 
Accuracy=99.5% 

This study has shown that machine learning can 
be used to discriminate between skin burn injury 
and normal skin with high accuracy  

Abubakar  
2019 (Transfer 
Learning) 
United 
Kingdom (31)  

To distinguish 
between burnt 
skin and bruises  

Retrospectiv
e 

32 Burns 
Images from 
Bradford 
Teaching 
Hospital 
scaled to 700 
regions of 
interest  
100 Skin 
bruise images 
scaled to 900 
images 

Medical 
Expert 
Review of 
Images 

CNN ResNet 
152 with SVM 

CNN feature 
extraction  

Burn or 
Bruise 

Pre trained 
model- Transfer 
learning 

Sensitivity= 100% 
Specificity= 100% 
Accuracy= 100% 

SVM achieved perfect identification accuracy with 
ImageNet model features.  



Abubakar 
(Burns Depth) 
2020 
United 
Kingdom (15) 

To develop a 
native burn 
depth evaluation 
using deep 
learning features 
to objectively 
predict those 
burns that that 
require surgical 
intervention and 
those that do not  

Retrospectiv
e 

Images from 
the internet 
(1st Degree) 
and Bradford 
Teaching 
Hospitals (2nd 
and 3rd 
Degree) 
 
Pre-
augmented 
743  
Post 
augmented 
1560  

Laser Doppler 
Imaging (2nd 
and 3rd 
Degree 
Burns) 

CNN ResNet 
50 used to 
train SVM 

CNN feature 
extraction  

Burn Depth 
(Normal Skin, 
1st Degree-
3rd Degree 
Burns) 

10 fold Cross 
Validation Accuracy= 95.4% 

State of the art prediction accuracy with a 
decision made in less than a minute whether the 
burn injury required surgical intervention such as 
skin grafting or not. 

Abubakar 
(Caucasian vs 
African skin 
burns) 2020 
United 
Kingdom (32) 

Comparative 
analysis of 
healthy skin 
versus burnt skin 
in Caucausian 
and Africans 

Retrospectiv
e 

32 Caucasian 
burn patients 
(1360 
augmentation
) from 
Bradford 
Teaching 
Hospitals 
60 African  
burn patients  
(700 
augmentation
) from Federal 
Teaching 
Hospital 
Gombe 

Author and 
Medical 
Experts 

CNN VGG-16 
used to train 
SVM 

CNN feature 
extraction  

Burnt Skin or 
Healthy Skin 

10 fold Cross 
Validation 

Caucasian Skin  
Sensitivity= 98.9% 
Specificity= 99.6% 
Accuracy= 99.3% 
 
African Skin Accuracy  
Sensitivity= 98.5% 
Specificity= 99.3% 
Accuracy= 98.9% 
 
Combined Accuracy = 
98.8% 

Training local models for each ethnic group (or 
race) tends to be more robust than a single global 
model for all skin colours.  

Abubakar 
(Pressure Ulcer 
vs Burn) 2020 
United 
Kingdom (33) 

ML to 
differentiate 
between a burn 
and a pressure 
ulcer 

Retrospectiv
e 

29 Pressure 
Ulcer Images 
from the 
Internet 
augmented to 
990 
31 burn 
images from a 
local teaching 
hospital 
augmented to 
990  
990 images of 
healthy skin 

Author and 
Medical 
Experts 

CNN ResNet 
152 with SVM 
classifier 

CNN feature 
extraction  

Healthy skin, 
Burn or 
Pressure 
Ulcer 

10 fold Cross 
Validation 

Sensitivity= 99.1% 
Specificity= 100% 
Accuracy= 99.6% 

Machine learning can be used to diagnose skin 
abnormalities.  

Acha 2003  
Spain (11) 

To separate burn 
wounds from 
healthy skin, and 
the different 
types of burns 
(burn depths) 
from each other 

Prospective 
Component 

62 patient 
images taken 
on admission 
from Virgen 
del Rocío 
Hospital 

Medical 
Expert Follow 
Up (Time to 
Heal) 

Fuzzy-
ARTMAP 
Neural 
Network 

Segmented 
Burn Images 

Burn Depth 
(Superficial 
Dermal, Deep 
Dermal and 
Full 
Thickness) 

Training=250 
49x49 images  
Test = 62 images 
<24 hours 
 
5 fold Cross 
Validation Average Accuracy= 82.3% 

The study has a very good method for segmenting 
and classifying images into their burn depths. 

Acha 2013  
Spain (34) 

A  psychophysical 
experiment and 
a 
multidimensional 

Prospective 
Component 

94 patients 
images taken 
on admission 
from Virgen 

Medical 
Expert Follow 
Up (Time to 
Heal) k-NN 

Feature 
Extractions 
from prior 

Burn Depth  
grafts vs non 
grafts and 3 
depths 

Train = 20 
Test= 74 
 

2 Depth Results 
Sensitivity = 71% 
Specificity= 94% 
PPV= 93% 

 Mathematical features extracted from the 
psychophysical experiments can help classify 
burns depths. 



scaling (MDS) 
analysis are 
undergone to 
determine the 
physical 
characteristics 
that physicians 
employ to 
diagnose a burn 
depth. 
Subsequently, 
these 
characteristics 
are translated 
into 
mathematical 
features to 
classify burns .  

del Rocío 
Hospital 

experiment 
(psychosocial) 

(Superficial 
Dermal, Deep 
Dermal and 
Full 
Thickness) 

Leave on out 
validation 

NPV=75% 
Accuracy= 83.8% 

Serrano 2005 
Spain (14) 

To create a 
computer aided 
diagnosis tool for 
the classification 
of burns 

Prospective 
Component 

35 burn 
images  
<24 hours 
from injury  
 from Virgen 
del Rocío 
Hospital 

Clinician 1 
week follow 
up 

Fuzzy-
ARTMAP 
Neural 
Network 

Manually 
segmented 
burns images 
then 6 input 
descriptors; 
Lightness, hue, 
standard 
deviation of the 
hue 
component, u* 
chrominance 
component, 
standard 
deviation of the 
v component 
and skewness 
of lightness 

Burn Depth 
(Superficial 
Dermal, Deep 
Dermal and 
Full 
Thickness) / 

Accuracy 
Superficial Dermal= 100% 
Deep Dermal= 84.6% 
Full Thickness= 77.8%  
Overall 88.6% 

An automatic system to classify burns into their 
depths is proposed using digital photographs 
taken by clinicians using a pre-approved protocol.  

Badea 2016 
Romania (35) 

To describe a 
convolutional 
neural network 
approach to the 
identification of 
burn areas from 
color image 
patches  

Retrospectiv
e 

53 patients 
(611 Images 
and 200494 
patches) 
1 day-62 days 
old burns 
8 months-17 
years old 

Medical 
Expert 
Review of 
Images CNN Burn Images 

Burn 
Segmentatio
n 

Training= 37% 
(74763) 
Test =63% 
(125731) Accuracy 75.9% 

The proposed approach achieves an overall 
performance comparable to the literature-
reported average performance of a specialist 
surgeon. 

Yeong 2005 
Taiwan (25) 

To develop a 
non-invasive 
objective system 
for the 
prediction of 
burn healing 
time, based on 
optical 
information 
using reflectance 
spectormetry 

Retrospectiv
e 

35 Burn 
wounds in 35 
patients  
6-79 years old 
Assessment 3-
4 days after 
initial burn 
Mechanism 
includes Scald, 
contact and 
flame 
Male: Female 
1.2:1 

Indirect 
healing 
within or 
more than 14 
days 

Radial Basis 
Function 
Neural 
Network 

Spectroscopic 
Analysis 

Burn Healing 
Time <14 
days  

Leave one out 
cross validation  

Accuracy= 86% 
Sensitivity= 75% 
Specificity=97% 

The authors have developed a non-invasive burn 
depth assessment tool that can be used by 
inexperienced clinicians. 



Cirillo 2019 
Sweden (19) 

To predict time 
independent 
Burn Depth using 
Artificial 
Intelligence 

Not clearly 
stated 

23 burn 
images used 
to extract 676 
different 
regions of 
interest 
Images were 
obtained <2 
days, 2-4 
days, 5-7 days 
Age <16 years 
old 
Linköping 
University 
Hospital 

Time to Heal 
superficial 
partial 
thickness 
healed within 
7 days, 
superficial to 
intermediate 
partial 
thickness 
healed 
between 8 
and 13 days, 
intermediate 
to deep 
partial 
thickness 
healed within 
14 to 20 days, 
and deep or 
full-thickness 
burn healed 
after ≫21 
days or 
underwent 
surgery. 
Perfusion 
images if 
available 
were also 
utilised.  

CNN 
ResNet 101 Burn Image 

Intermediate 
partial 
thickness, 
intermediate 
to deep par 
tial thickness, 
deep partial 
and full 
thickness, 
normal skin, 
and 
background 

Pre-Trained 
Models 
10 fold Cross 
Validation 

Accuracy= 90.5% 
Sensitivity= 74.4% 
Specificity=94.3% 
Augmented values were 
lower  

The application of AI with state-of-the-art CNNs is 
a useful tool in guiding initial treatment of burn 
wounds. The next step forward is semantic 
segmentation so clinicians can also obtain the 
burn size as well as the depth.  

Acha Pinero 
2005 
Spain (36) 

The aim of the 
system is to 
separate burn 
wounds from 
healthy skin, and 
to distinguish 
among the 
different types of 
burns (burn 
depths)  

Prospective 
Component 

62 patient 
images taken 
on admission 
from Virgen 
del Rocío 
Hospital 

Medical 
Expert Follow 
Up (Time to 
Heal) 

 Fuzzy Artmap 
Neural 
Network 

lightness, hue, 
standard 
deviation of the 
hue 
component, u* 
chrominance 
component, 
standard 
deviation of the 
v* component, 
and skewness 
of lightness  

Burn depth 
(Superficial 
dermal, Deep 
Dermal and 
Full 
Thickness) 

Training= 250  
images obtained 
prior 
Testing= 62 
images  
 
5 fold cross 
validation 

Accuracy 
Superficial Dermal = 
86.36% 
Deep Dermal= 83.33% 
Full Thickness= 77.27% 

This paper describes an effective burn colour 
image segmentation and machine learning burn 
depth classification system. 

Wang 2020 
China (13) 

To improve early 
judgement of 
burn depth 

Retrospectiv
e 

484 early 
wound photos 
segmented to 
5637 images 
<80 years old 
Images taken 
within 48 
hours 
Across 5 
hospitals 

Physician 
assessed time 
to heal 
(Shallow 0-10 
days, 
Moderate 11-
20 days, 
>20days deep 
or those 
requiring skin 
grafts) 

CNN ResNet 
50 Burn Images Burn Depth 

Training 70%, 
Validation 15%, 
Test 15% 

Sensitivity= Shallow 73%, 
Moderate 81%, Deep 
93% 
PPV= Shallow 84%, 
Moderate 81%, Deep 
82% 
Overall AUC= 95% 

This study describes a new method to diagnose 
burns using artificial intelligence and burn images. 



Dubey 2018 
India (10) 

To analyse data 
from Optical 
coherence 
tomography 
(OCT) of burnt 
skin using 
machine learning  Prospective 

68 human skin 
tissue (34 
Normal Skin 
and 34 Burnt 
Skin) 
Chemical, 
electrical or 
fire 

Author 
Analysis  

Decision Tree, 
Neural 
Network, 
Random 
Forest, 
Extreme 
Learning 
Machine 
(ELM), 
Average 
Neural 
Network 
(avNNet) and 
SVM via a 3 
tier Multi-
Ensemble 
model 

Features 
extracted from 
OCT analysis 
using Principal 
Component 
Analysis 

Burn 
Segmentatio
n 

Training 60% 
Test 40% 
 
10 fold Cross 
Validation 

Sensitivity= 92.8% 
Specificity= 92.3% 
Accuracy= 92.5% 

 The paper demonstrates that a multi-ensemble 
classifier is able to detect abnormality burnt 
human skin in vivo using data from OCT. 

Estahbanati 
2002 
Iran (37) 

To create an 
Artificial Neural 
Network to 
predict survival 
of burns patients 

Retrospectiv
e 

1082 patients 
admitted to a 
burns centre 
in Tehran 
<10 to >90 
years old 
60% female 
and 40% male 
TBSA 5-100% 

Hospital 
records NN 

age, sex, TBSA, 
data of 
admission 
(month and 
season of year 
the burn in- 
jury has been 
incorporated, 
since burn 
injury is more 
common and 
often more 
extensive in the 
cold season), 
lapse time 
(time from 
burn to 
admission to 
hospital), 
refereed or 
non-refereed 
status, 
inhalation 
injury, 
haematology 
and bio- 
chemistry lab 
values, medical 
outcome, 
number and 
type of surgical 
episodes 
(debridement 
or skin graft) 
were obtained 

Burn 
Mortality 

Training 75% 
Test 25% 

Sensitivity= 80% 
Accuracy= >90% 

This study describes an Artificial NN used for 
prediction of mortality in  burn patients. 

Cobb 2018 
USA (38) 

To identify 
predictors of 
survival for burn 
patients at the 

Retrospectiv
e 

31350 
patients 
670 hospitals 
Mean Age 

Hospital 
Records 

Stochastic 
gradient 
boosting 
(SGB) 

Top 5 for SBG 
model were 
younger age, 
absence of 

Burns 
Mortality 

Training 66% 
Test 34% 

SBG Specificty= 74% 
RF Specificity= 71% 
 

Patient and hospital factors are predictive of 
survival in burn patients. It is difficult to control 
patient factors, but hospital factors, better 



patient and 
hospital level 
using machine 
learning 
technique 

40.5 years old 
Burn 
Mortality 
California 
2006-2011, 
Florida 2009-
2013 and New 
York 2009-
2013 
registries 

decision tree 
and random 
forest (RF) 

electrolyte 
imbalance or 
coagulopathy, 
admission on a 
weekend, and 
absence of 
renal failure 
Top 5 for RF 
Model  were 
absence of 
electrolyte 
imbalance or 
coagulopathy, 
younger age, 
absence of 
congestive 
heart failure, 
and presence 
of weight loss. 

SBG AUC= 93% 
RF AUC= 90% 

predicted by RF, can inform decisions about 
where burn patients should be treated. 

Frye 1996  
USA (39) 

Whether artificial 
intelligence 
could predict the 
burn outcome 
and length of 
stay (weeks) for 
patients 

Retrospectiv
e 

1585 patients 
1988-1995 
South 
Alalabama 
Medical 
Centre 

Hospital 
Records NN 

Age, Sex, TBSA, 
Transport to 
Hospital, 
Location at 
time of Injury, 
Inhalation +/- 
Length of Stay 

Burns 
Mortality and 
Length of 
Stay 

Training 90%= 
1420 
Testing 10%= 158 

Accuracy 
Length of Stay 72% 
Mortality 95% 

Increasing age, TBSA and an inhalational 
component had the greatest impact on mortality 
whereas area of burn impacted on length of stay. 

Jimenez 2014  
Spain (40) 

To describe a 
novel rule-based 
fuzzy 
classification 
methodology for 
survival/mortalit
y prediction in 
severely burnt 
patients 

Retrospectiv
e 

99 ICU 
Patients 
1999-2002  

Hospital 
Records 

Traditional 
ML 
algorithms 
(Fuzzy 
classifier, DT, 
NB, ANN) vs 
Evolutionary 
algorithm for 
diversity 
reinforcemen
t (ENORA) 
and the non-
dominated 
sorting 
genetic 
algorithm 
(NSGA-II) 

Burn Size, Burn 
Depth, 
Infection, Age, 
Weight, Sex 
and Co-
Morbidities  

Burns 
Mortality and 
Length of 
Stay 

10 fold Cross 
Validation  

ENORA  
Accuracy= 92.3% 
Sensitivity= 93.6% 
Specificity= 93.9% 

 
Evolutionary algorithms improve the accuracy and 
interpretability of the classifiers, compared with 
other non-evolutionary techniques. 

Stylianou 2015  
United 
Kingdom (6) 

A comparison of  
logistic 
regression and 
machine learning 
for predicting 
burns mortality  

Retrospectiv
e 

65764 Burns 
Patients 
(Flame, flash, 
scald, contact, 
chemical and 
other) 

iBiD Hospital 
Database 

Artificial 
neural 
network, 
support 
vector 
machine, 
random 
forests and 
naıve Bayes 
vs Logistic 
Regression 

Classifier tuning 
with age, age 
squared and 
TBSA 

Burns 
Mortality 

Train 70%= 
46626 
Test 30% = 19985 
Data resampled 
10 times  

Sensitvity=Specificity 
Sensitivity=  
ANN- 92.2% 
LR-91.9% 
 
Specificity=  
ANN- 93.4% 
LR- 92.3% 
 
AUC 
ANN-97.4% 
LR- 97.1% 

An established logistic regression model performs 
as well as more complex machine learning 
methods.  



Patil 2009 
India (17) 

To predict the 
survivability of 
the burn 

Retrospectiv
e 

180 Patients 
2002-2006 
Swami 
Ramanand 
Tirth Hospital 

Hospital 
Records Decision Tree 

Age, sex and 
size of burn for 
8 different 
body parts 

Burns 
Mortality 

Train 58%= 104 
Test 42%= 76 
10 fold Cross 
Validation 

Sensitivity = 97.5% 
Specificity= 97.2% 
Accuracy= 97.4% 

The results may be further improved by depth of 
burn, heat source of burn and pre-existing 
diseases.  

Tran 2019 
USA (41) 

Evaluate the 
clinical utility for 
ML in 
augmenting the 
predictive power 
of both 
traditional and 
novel indicators 
of acute kidney 
injury (AKI) 
within 24 hours.  

Retrospectiv
e 

n=50 
>18 years old  
>=20% TBSA 
Burns ICU 

Kidney 
Disease: 
Improving 
Global 
Outcomes 
Criteria  k-NN 

Neutrophil 
Gelatinase 
associated 
Lipocalin 
(NGAL), N- 
terminal B-type 
natriuretic 
peptide , 
creatinine or 
urine output 
<24 hours 

Predication 
of AKI within 
24 hours of 
admission 

60-80% Train  
20-40% 
Validation 
 
Up to 10 Fold 
Cross Validation 

NGAL, creatinine, UOP, 
and NT-proBNP average 
cross validation accuracy 
98% 

Performance of urine output and creatinine for 
predicting AKI can be enhanced with a ML 
algorithm using a k-NN approach.  

Rashidi 2020 
USA(8) 

To determine if a 
burn-trained ML 
algorithm could 
be generalized to 
a non-burned 
population and 
evaluate the 
value of 
including novel 
renal injury 
biomarker 
combinations to 
enhance AKI 
prediction <24 
hours 

Retrospectiv
e Cohort and 
Prospective 
Cohort  

Cohort A 
n=50 
>18 years old  
>=20% TBSA 
Burns ICU 
 
Cohort B 
n=51 with 
>=20% TBSA 
or non burn 
related 
trauma 

Kidney 
Disease: 
Improving 
Global 
Outcomes 
Criteria  

5 ML 
Algorithms 
trialled 
Logistic 
regression 
(LR), k-NN, 
RF, SVM and 
a multi-layer 
perceptron 
(MLP) deep 
neural 
network 
(DNN) 

Neutrophil 
Gelatinase 
associated 
Lipocalin 
(NGAL), N- 
terminal B-type 
natriuretic 
peptide , 
creatinine and 
urine output  

Predication 
of AKI within 
24 hours of 
admission 

Training= Cohort 
A n=50 
Test= Cohort B 
n=51 
Cross Validation 

Accuracy DNN (NGAL, 
urine output and 
creatinine)= 100% 

The AI algorithm helped predict AKI 61.8 (32.5) 
hours faster than the Kidney Disease and 
Improving Global Disease Outcomes (KDIGO) 
criteria for burn and non-burned trauma patients. 

Tran 2020 
USA (7) 

Traditional 
indicators of 
sepsis exhibit 
poor predictive 
performance. To 
address this 
challenge, we 
developed the 
Machine 
intelligence 
Learning 
optimizer (MILO) 

Retrospectiv
e 

211 (92 
Septic) 
>18 years old  
>=20% TBSA 
Across 5 
Hospital ICUs 

Sepsis as 
defined by 
the 2007 
American 
Burn 
Association 
guidelines 

Multivariate 
Logistic 
Regression vs 
Traditional 
Machine 
Learning 
Algorithms vs 
Automated 
ML (MILO)- A 
combination 
of supervised 
and 
unsupervised 
algorithms. 

MILO= 5 
variables (Heart 
Rate, body 
temperature, 
haemoglobin, 
blood urea 
nitrogen (BUN), 
and total CO2)  
Traditional ML 
Logistic 
Regression= 16 
variables (MAP, 
RR, body 
temperature, 
GCS, WBCs, Hb, 
HCT, platelets, 
Na+, K+, BUN,, 
creatinine, 
BUN/creatinine
, glucose, total 
CO2, and MOD 
score 
Multivariate 
Logistic 
Regression= 7 Sepsis 

80% Training  
20% Validation 
 
Cross Validation  

Multivariate Logistic 
Regression AUC= 88% 
Accuracy = 86% 
AUC = 96% 
Senstivity= 98% 
Specificity = 82% 
 
MILO k-NN 
Accuracy = 90% 
AUC = 96% 
Senstivity = 96% 
Specificity = 88% 

The deployment of MILO not only accelerates the 
development of ML models, but quickly helps 
identify optimal features and algorithms for burn 
sepsis prediction. 



variables (WBC, 
Hb, HCT, 
Sodium, and 
Platelets as 
predictors of 
sepsis) 

Yamamura 
2004 
Japan (42) 

NN to determine 
the non linear 
relationship 
between 
aminoglycoside 
concentration 
and burn severity 

Retrospectiv
e 

30 patients 
23-85 years 
old  
1993-2003 

Concentratio
n of 
arbekacin in 
plasma via 
immunoassay  NN 

Dose, body 
mass index, 
parenteral fluid 
and creatinine 
concentration 
provides 
information 
about peak 
plasma 
concentration 
in addition to 
one for burn 
severity (burn 
area except for 
area of skin 
graft) 

Plasma 
concentratio
n of 
arbekacin 

Leave one out 
cross validation  

Rate of Corrective 
Prediction=86.6% 
Sensitivity=66.7% 
Specificity=95.2% 

The artificial neural network model showed 
superior predictive performance for plasma 
concentration prediction of arbekacin based on 
patents’ physiological parameters compared to 
predictions made using a linear model. 

Yamamura 
2008 
Japan (24) 

To predict the 
response of 
aminoglycoside 
antibiotics 
(arbekacin: ABK) 
against 
methicillin-
resistant 
Staphylococcus 
aureus (MRSA) 
infection in burn 
patients  

Retrospectiv
e 

25 patients  
Age 23-85 
TBSA 53.7 +/- 
19.8 (11.5-
80.1)  
Nippon 
University 
Medical 
Hospital 

Assessment 
of laboratory 
parameters 
white blood 
cells, C 
reactive 
protein and 
number of 
bacteria 

NN vs Logistic 
Regression  

Maximum 
concentration 
of Arbekacin 
Sulfate, serum 
creatinine, 
duration of 
dose, blood 
sugar, burn 
area after skin 
graft operation 

Response of 
Arbekacin 
Sulfate 
against MRSA 

Leave one out 
cross validation  

Accuracy = 88% (note 
logistic regression was 
60%) 

Based on the patients’ physiologic data, ANN 
modelling would be useful for the prediction of 
the ABK response in burn patients with MRSA 
infection 

Berchialla  
2014  
Italy (43) 

To study the 
factors 
associated with 
an increased risk 
for developing 
pathological 
scarring after 
burns  

Retrospectiv
e 752 

Medical 
Experts from 
Standard 
Reporting 
Form 

Bayesian 
Network 

Gender, Age, 
TBSA, Full 
Thickness TBSA, 
Burn 
Mechanism, 
Anatomical 
area, Surgical 
or Medical 
Treatment, 
Number of 
Surgical 
Procedures, 
Type of Surgical 
Approach, Type 
of Skin Graft 
(Mesh), Wound 
Healing Time, 
Excision and 
Coverage Time, 
Scar Type 

Normal vs 
Pathological 
Scar Type 
Probability 

Training 703 
patients=2440 
Anatomical Burn 
Sites  
Validation 49 
patients = 162 
anatomical sites 

Type of Surgical 
Approach, Number of 
Surgical Procedures and 
Burn Treatment impact 
the outcome node the 
most 
Error Rate for Validation 
sample 24.8% 

The Bayesian Network output can support the 
physician in the prognosis of hypertrophic scars. It 
can vary the clinical scenario to provide detailed 
prognostic information.  



Liu  
2018 
USA (44) 

Predicting the 
ability of wounds 
to heal given any 
burn size and 
fluid volume 

Retrospectiv
e 

121 patients 
>18 years old  
>20% TBSA 

Surgeon 
Analysis 

Decision Tree 
and Neural 
Network 

Days since 
admission, 
Fluid (L), TBSA 
and Age 

Open wound 
size ((Sum of 
TBSA + 
Surface Area 
of donor 
sites) - SA 
Healed)) 

10 fold Cross 
Validation 

>90% Goodness of fit 
<4% abolsute error for 
combined Decision Tree 
and Neural Network 
Model 

ML performed better than the traditional 
statistical methods employed using a four-variable 
analysis. Further the ML was able to differentiate 
between survivors and non survivors by their 
wound healing rates.  

 
Table 3: Summary table of 35 articles that demonstrate the use of Artificial Intelligence in the Management and Treatment of Burns in humans.  
 
* Artificial Intelligence (AI), Machine Learning (ML), Intensive Care Unit (ICU), k nearest neighbour (k-NN), Convolutional Neural Network (CNN), Support Vector Machine (SVM), Positive Predictive Value (PPV), Negative Predictive Value (NPV), Logistic 
Regression (LR), Area Under Curve (AUC), Total Burn Surface Area (TBSA), Neural Network (NN), Random Forest (RF), Mean Arterial Pressure (MAP), Respiratory Rate (RR), Glasgow Coma Scale (GCS), White Blood Cells (WBC), Haemoglobin (Hb), 
Haematocrit (HCT), Blood Urea Nitrogen (BUN), Multiple Organ Dysfunction (MOD), LoS (Length of Stay) 
 
Where applicable only the highest scoring machine learning algorithm is depicted in the results table. 
 
 
 
 
 



Meta-Analysis  
Burn Depth 
 

A total of 8 studies were included in the diagnostic test accuracy meta-analysis. Table 4 
illustrates the weighted sensitivities and specificities. 
 

Author Year TP FN FP TN N Sens Spec Weight_Spec Weight_Sens 

Serrano 2005 18 4 0 13 35 0.82 1.00 6.97 9.27 

Abubakar  2020 1002 29 17 503 1551 0.97 0.97 15.70 14.35 

Suvarna  2013 67 5 6 28 106 0.93 0.82 10.02 13.08 

Yadav 2019 36 5 8 25 74 0.88 0.76 11.43 12.52 

Acha 2003 19 3 5 35 62 0.86 0.88 11.61 9.87 

Cirillo 2019 209 25 32 183 449 0.89 0.85 16.20 14.26 

Kuan 2017 15 8 9 13 45 0.65 0.59 12.19 11.93 

Wang 2020 549 36 70 190 845 0.94 0.73 15.88 14.73 
 

Table 4: The weighted sensitivity and specificity of each of the burn depth studies included 
in the analysis.  
 
The summary point of the 8 studies estimates a sensitivity of 90.8% (95% confidence 
intervals 84.6%-94.6%) and specificity 84.4% (73.6%-91.3%). The positive post-test 
likelihood ratio of 5.8 (3.2-10.5) and negative likelihood ratio of 0.11 (0.06-0.20) indicates 
diagnostic value in these tests. The negative likelihood ratio (for more superficial burns not 
requiring intervention) is stronger than the positive likelihood ratio. The suggested 
Cochrane Thresholds are used as a comparator (Positive Likelihood Ratio>10 and Negative 
Likelihood Ratio <0.1) (23).  
 
 
Figure 2 allows an appreciation of the heterogeneity between the studies as depicted by the 
distance from the HSROC curve and the distance from the summary point. The 95% 
confidence interval doesn’t include several studies such as Kuan et al. which has a much 
lower specificity and sensitivity as well as a large variance, as shown in the coupled Forest 
Plot (Figure 3), than its counterparts(12). This is reflected on the HSROC curve where it 
occupies a discrete position away from the rest of the data. The study by Abubakar et al. on 
the other hand depicts a very high sensitivity and specificity with small variance (Figure 3) 
suggesting its diagnostic accuracy of burn depth is very high, yet it also lies outside of the 
95% confidence interval(15). The much larger predictive region further reinforces the notion 
that future studies can lie some distance away from the curve influenced perhaps by 
the heterogeneity in study design and application.  



 
Figure 2: HSROC curve of burn depth (8 studies) the solid point represents the summary 
estimate surrounded by the larger 95% predictive region and the smaller 95% confidence 
region.  
 

 



Figure 3: Coupled forest plot of sensitivities and specificities of the burn depth studies 
included in the Diagnostic Test Accuracy Meta-Analysis with 95% confidence intervals in 
brackets.  
 
 
The QUADAS-2 results for each study (‘Risk of Bias’ and ‘Applicability Concern’ domains) are 
highlighted below (Table 5). The seven domains are superimposed onto a table.  All studies 
demonstrated a significant element of uncertainty or a high risk of bias or applicability 
reflecting the lack of a standardised orthodox approach to reducing bias. The heterogeneity 
and variable reporting of studies limited the comparisons one can draw from them. A 
sensitivity analysis is shown in the Supplementary Material based on the QUADAS 2 
outcomes and for those studies where we calculated the confusion matrices.   
 

STUDY 

Risk of bias Concerns regarding applicability    

PATIENT 
SELECTION  

INDEX 
TEST   

REFERENCE 
STANDARD 

FLOW 
AND 

TIMING 

PATIENT 
SELECTION  

INDEX 
TEST   

REFERENCE 
STANDARD 

   
Serrano 
(2005)                  Low 
Abubakar 
(2020)                  High 
Acha 
(2003)                  Unclear 
Suvarna 
(2013)                   
Yadav 
(2019)                   
Cirillo 
(2019)                  
Kuan 
(2018)                   
Wang 
(2020)                   

 
Table 5: QUADAS-2 scores for the Burn Depth studies. Red represents a high risk of bias, 
green low and grey unclear.  
 
 
Burn Mortality/Survival  
 

Author Year TP FN FP TN N Sens Spec Weight_Spec Weight_Sens 

Patil 2009 39 1 1 35 76 0.98 0.97 0.18 13.61 

Stylianou 2015 234 20 1300 18431 19985 0.92 0.93 99.82 86.40 

 
Table 6: The raw data of each of the burn mortality studies included in the analysis.  
 
The summary sensitivity of 92.9% (89.3%-95.3%) and specificity 93.4% (93.1%-93.8%) with a 
positive likelihood ratio of 14.1 (13.3-15.0) and negative likelihood ratio of 0.08 (0.05-0.12) 
suggests that the two studies are accurate at predicting burns mortalities. The raw data 



(Table 6) and the forest plots reflect this. The forest plot (Figure 4) for Patil et al. (smaller 
sample size) shows greater variance of the two studies despite the Stylianou et al. study 
data being calculated through reverse engineering estimates(6,17).  

 
Figure 4: Coupled forest plot of sensitivities and specificities of the mortality studies 
included in the Diagnostic Test Accuracy Meta-Analysis with 95% confidence intervals in 
brackets. 
 
 
Burn Segmentation  
 

Author Year TP FN FP TN N Sens Spec Weight_Spec Weight_Sens 

Abubakar 2019 676 3 4 377 1060 1.00 0.99 51.67 69.32 

Dubey 2019 12 2 1 13 28 0.86 0.93 48.33 30.68 

Table 7: The raw data of each of the burn segmentation studies included in the analysis. 
 
The study by Abubakar et al shows an extremely high sensitivity and specificity highlighting 
a very accurate model (CNN ResNet 101 with SVM Classifier) on the test set (Table 7)(18). 
This is higher than the multi-ensemble algorithm employed by Dubey et al (10).  
 
The summary sensitivity of 97.9% (78.9%-99.8%) and specificity 97.6% (88.4%-99.5%) with a 
positive likelihood ratio of 40.7 (7.7-215.9) and negative likelihood ratio of 0.02 (0.02-0.26) 
suggests that the studies are accurate at distinguishing between health and burnt skin.  
 
The forest plot (Figure 5) for Dubey et al. like Patil et al. shows greater variance of the two 
studies, which is very likely caused by the smaller sample size (10,17). It is worth noting that 
for the Dubey et al. study data was obtained through reverse engineering the confusion 
matrix.  
 
 



 
Figure 5: Coupled Forest plot of sensitivities and specificities of the segmentation studies 
included in the diagnostic test accuracy meta-analysis with 95% confidence intervals in 
brackets. 
 
 
 
Discussion  
 
Artificial Intelligence offers a promising method for the development of diagnostic and 
predictive tests at several key points in the burns management pathway. From estimating 
burn depth, size via segmentation, outcomes (including need for surgery, survival and 
pathological scarring), early prediction of sepsis and acute kidney injuries, machine learning 
is ubiquitously examining multiple facets of burn care.  
 
The results collated within this study are comparable to current practices in burns care. 
Burn depth estimations are quoted as typically varying between 64%-84% for experienced 
clinicians (36,45,46). The 15 burn depth studies included in this review provide a 
comparable estimate of 68.9%-95.4%. 

If only the ML studies that examine acute wounds within 24 hours are included the accuracy 
range is still between 81.32-88.6% (11,30,34,36) more than the 62% accuracy quoted by 
Hoeksema et al. for clinicians (47). Assuming that inexperienced physicians, who typically 
make the initial referrals, have an even lower accuracy figure this would further attenuate 
clinical decision making. Hence it is not unfathomable to infer that inexperienced clinicians 
would benefit from a predictive ML tool that can aid their decision making. The summary 
statistics of 90.8% sensitivity and specificity 84.4% of the 8 burn depth studies included in 
the meta-analysis are lower than for laser doppler imaging (sensitivity 94.5%, specificity 
97.2%)(48). However, laser doppler imaging is typically used after 48 hours and has a high 
acquisition and maintenance cost. Further several factors can influence the accuracy namely 



movement artefact, room temperature, tainting from wound dressings and user error(49). 
But these technologies can co-exist as there are examples of ML being combined with 
existing imaging technologies such as reflectance spectrometry and optical coherence 
tomography(10,25).  

For burn mortality and burn segmentation artificial intelligence represents an extremely 
accurate diagnostic test with summary statistics of sensitivity and specificity of 92.9% and 
93.4% the former and 97.9% and 97.6% for the latter. The burns mortality accuracies are 
particularly promising as the input features are centred around easily obtainable data; age 
and TBSA amongst others (6,17). The summary statistics presented in this study for 
predicting survival are higher than the Modified Baux Score, an aid used to ascertain 
survivability of burns patients (sensitivity: 59.8%; specificity: 82.9%) (50). Burn 
segmentation, a potential precursor to burn size estimation, is also useful not only as a 
prognostic factor for survival, but also for accurate estimation of fluid replacement in burns.  
Overall, burns mortality is reducing with improvements in burn care. However, sepsis 
remains one of the biggest causes of burn mortality and morbidity. It is difficult to 
differentiate between a septic response and the inflammatory cascade that burns patients 
exhibit. Tran et al. were able to exploit this difference with just 5 input features (90% 
accuracy) using an automated ML algorithm that identified its own patterns within the data 
which was superior to more traditional statistical methods (7). Acute kidney injuries are 
another important source of burn morbidity. Rashidi et al. demonstrated that earlier 
detection is possible, on average 61.8 hours earlier, compared to the application of Kidney 
Disease and Improving Global Disease Outcomes (KDIGO) criteria(8). This early window for 
intervention should improve burn patient outcomes, particularly for large resuscitation 
burns in which several treatments are required to restore fluid homeostasis and organ 
perfusion.  
 
The use of AI as a diagnostic test has evolved over time. This is evident in the area of image 
analysis, e.g. for the task of burn segmentation and burn depth prediction. The advent of 
more powerful hardware and advances in ML algorithms renders AI sometimes superior to 
clinician-based analyses in certain scenarios (51–53). Before the era of deep learning and 
CNNs, analysis approaches required the extraction of image features that are subsequently 
used as input to machine learning algorithms. In contrast, CNNs are able to construct 
relevant features automatically during the training process. One drawback of neural 
network-based methods lies with their requirement for large image datasets enabling the 
learning of these relevant features. The number images required in the model training can 
be reduced when employing transfer learning, i.e. the use of pre-trained models able to 
detect relevant image features. Augmentation, re-use of rotated and scaled task-specific 
images has a similar effect. Both these techniques allow for models to exhibit comparable 
performances to novel networks trained from new(54). 

Heterogeneity of Included Studies  

Different studies examining the same topic use different datasets with different ML 
algorithms, different ground truths, different test/train/validation splits and different 
outcomes. It is therefore not surprising that significant heterogeneity exists as indicated by 



the QUADAS-2 scores and the difference in size between the 95% confidence region and 
95% predictive region around the summary points of the HSROC curves.  

Table 8 categorises the different forms of methodological heterogeneity.  

Input Algorithm Reporting 

• Image sources range 
between those from clinical 
settings to internet searches 
each with different reliability 
of ground truths.  

• For burn depth 
heterogenous wounds may 
be more difficult to 
segment.  

• Several studies combine 
cropped images from the 
same patient in the training 
and testing cohorts hence 
this is not independent data 
and the risk of overfitting 
might lead to artificially high 
accuracies.   

• Some studies employ image 
augmentation whilst others 
do not  

• Variable terminology and 
thresholds for burn depth 
are used.  

• Timing of image acquisition 
varies between studies as do 
other features of the 
acquisition protocol and 
anatomic region burnt.  

• Various definitions of 
ground truth exist between 
studies. Even if the same 
definition is used between 
studies variation may exist 
due to differences in 
management protocols. 
Some studies take the 
requirement of a skin graft 
as a ground truth for burn 
depth analysis. Some units 
may manage burns more 
aggressively hence more 

• Various different types of 
ML algorithms used either 
alone or in combination.  

• Variability of validation or 
sampling methods to 
train/validate/tes, more 
general cross validation or 
even external validation. 

 

• Some papers depict 
their validation results 
as their test output.  

• Confusion matrices are 
not always provided. 

• Train/Validation/Test 
split is not always 
documented.   



burns patients will undergo 
skin grafting in that cohort 
which will skew the ML 
output.   

 

Table 8: Methodological Sources of Heterogeneity  

The Double Entendre  

Part of the advantages of ML algorithms can be attributed to their generalisability as 
predictive tools or diagnostic tests. A hypothetical example of this is when a burn depth ML 
algorithm is applied to a low-resolution image of unknown origin and one taken 
professionally in a clinical setting. These pictures may represent completely different burns 
of varying mechanisms on different body parts, on different skin tones and taken on 
different quality cameras to name a few variables. The fact that the ML algorithms are 
potentially capable of reasonably analysing the images despite the various acquisition 
protocols, input features and ground truths is a testament to its versatility (15).  

Limitations of Observed Studies  

Some of the key limitations observed across the investigative studies include the lack of a 
publicly available burn-related image database for burn depth and segmentation analysis. 
Such a dataset could serve as validated ground truth, which could be used for example for 
any segmentation task. Furthermore, a strictly defined and published protocol, ideally 
including a defined chronological and normed image capturing of the wound with respective 
standardized annotations, would be beneficial for the data collection procedure definition. 
We anticipate that the images of infected burn wounds may cater for other research 
streams in the field of Burns ML. 
 
A further limitation lies within the lack of adequate performed validation procedures, 
including but not limited to the proper separation of training and test patients in image 
segmentation tasks. Finally, a cost-analysis of the effectiveness of ML in the management 
and treatment of burns would be beneficial. This can be quantified through cost savings in 
early discharge, timing of interventions versus the cost of equipment, maintenance, and 
personnel (training and implementation).  

QUADAS-2 is a versatile tool for judging the quality of diagnostic test papers. We used it to 
inform our sensitivity analysis, but its implementation was not straightforward since it is not     
tailored to AI diagnostic studies.  Since their inception, the CONSORT-AI (Consolidated 
Standards of Reporting Trials) and SPIRIT-AI (Standard Protocol Items: Recommendations for 
Interventional Trials) have published preferred reporting guidelines for trials using AI 
(55,56). We suggest, based on an integration of their recommendations with the ones made 
in this review, adapting the QUADAS-2 signalling questions to better appraise studies. 
Examples of these along the ML pathway are shown below in Figure 6. 



 

Figure 6: Potential ML Flowchart and signalling questions.  

Study Limitations 
There are several limitations to this study. Despite trying to categorise studies based on 
their outcomes significant intra-group heterogeneity exists between the small number of 
studies considered. Overall, this indicates that any results from the meta-analysis should be 
treated with caution. Ideally each study sub-type  (burn depth, burn mortality and burn 
segmentation) should exhibit similar or even the same acquisition protocols, thresholds and 
ground truth definition. For burn depth, the gold standard ground truth definition would 
originate from the histopathological analysis, however, this is not often possible due to the 
risk of introducing infection, causing scarring (particularly for shallower burns) and delay 
wound healing. A burns community based concensus approach would be required on 
ground truths i.e. for burn depth and segmentation so that ML algorithms can be accurately 
scrutinised against a robust dataset. 
 
The reverse calculation of values in the confusion matrices for some studies may have 
introduced bias through assumptions made as suggested by the sensitivity analysis for burn 
depth. Additionally, in order to compare studies, which depicted three burn depths with 
those employing two burn depths, certain labels may have altered. For example, 2nd degree 
burns encompass a vast array of burn depths, some of which may need a graft or require 



longer to healing time. Labelling these injuries with being in the more severe category may 
not be a true reflection of the burns datasets analysed.  
 
Conclusion 
The application of AI in the treatment and management of burns patients, as a series of 
point of care diagnostic adjuncts, is promising, particularly in lower resource settings or 
outside the expertise of burns centres.  
 
Whilst AI is a potentially valuable tool a full evaluation of its current utility and potential is 
limited by significant variations in research methodology and reporting. It is only by 
addressing these limitations, that clinicians will be able to drive forward the use of AI and 
incorporate it into the burns clinical repertoire.  
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Supplementary Material 

Sensitivity Analyses  

 



 
 
Supplementary Figure 1: Sensitivity analysis HSROC curve, 95% confidence and predictive 
region superimposed on the original HSROC curve after removal of the Kuan et al and Yadav 
et al. burn depth studies which showed the greatest risk of bias.  



 
 
Supplementary Figure 2: Sensitivity analysis HSROC curve, 95% confidence and predictive 
region superimposed on the original HSROC curve after removal of the Kuan et al., Wang et 
al. and Acha et al. burn depth studies whose confusion matrices were reverse engineered 
from available data. 


