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Abstract
Atom interferometers (AIs) are promising tools for precision measurement with
applications ranging from geophysical exploration and tests of the equivalence
principle of general relativity to the detection of gravitational waves. Their
optimal sensitivity is ultimately limited by their detection noise. We review
resonant and near-resonant methods to detect the atom number of the inter-
ferometer outputs, and we theoretically analyze the relative influence of various
scheme dependent noise sources and the technical challenges affecting the
detection. We show that for the typical conditions under which an AI operates,
simultaneous fluorescence detection with a charge-coupled device sensor is the
optimal imaging scheme. We extract the laser beam parameters such as detun-
ing, intensity, and duration required for reaching the atom shot noise limit.

Keywords: atom interferometry, fluorescence detection, atom shot noise limit,
atom cloud imaging

1. Introduction

In the late eighties the invention of laser cooling [1] pushed the development of atom
interferometry (AI) [2]. Since then, atom interferometers (AIs) have been used in basic science
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for the measurement of the  m ratio [3], the fine structure constant [4], and the Newtonian
gravitational constant [5, 6], as well as for tests of the equivalence principle of general relativity
(EP) [7, 8]. Fundamental science applications based on AI have been proposed such as very
precise space EP tests [9], low frequency gravitational wave detectors [10], and laboratory tests
of dark energy [11]. In applied science, research and development efforts have been focused on
the development of inertial and gravitational sensors based on AIs such as accelerometers [12],
gyroscopes [13], gravimeters [14], and gravity gradiometers [15]. These quantum sensors will
allow more precise measurements of Earthʼs gravitational potential for climate-change studies,
novel mapping of city undergrounds, and searches for new mineral and oil resources.

AIs rely on the optical control of the atom wave functions through the precise use and timing
of laser pulses (see figure 1) and on the translation of the AI differential phase ϕ into the
population unbalance among the possible energy, or momentum state, of the output cloud atoms.
In the case of an AI as illustrated in figure 1, the expected renormalized population imbalance ζ is
given by − +N N N N( ) ( )1 2 1 2 , with N1 and N2 the atom numbers of the two AI output clouds; it
is a function of ϕ. The population unbalance and therefore the AI differential phase are evaluated
by measuring the output cloud atom numbers during the final detection sequence.

The detection noise in the atom number measurement is one of the main noise sources
limiting the sensitivity of AIs. Even if other noise sources might be present, such as wavefront
distortion or phase noise in the AI laser pulses, the ability to reduce the detection noise of the
cloud atom number down to the atom shot noise limit is necessary to build AIs that work at their
optimal design sensitivity.

Some previous theoretical and experimental work has been carried out to examine the
conditions to reach optimal detection for matter–wave optics [16, 17]. However, a detailed
analysis of the errors affecting the detection noise of AIs, particularly with a large atom number
but small optical depth, is currently missing. In section 2 we study the technical challenges and
error sources affecting fluorescence, absorption, and dark imaging detection for different
detection sequences, with the scope to identify a detection method which could be limited by
the atom shot noise only. In sections 3–4 we show how simultaneous fluorescence detection of
both output clouds by charge-coupled device (CCD) imaging poses less stringent technical
requirements on the detection beam noise, and we identify the optimal detection parameters

Figure 1. Working schematics for a light pulse atom interferometer with π and π 2 the
beam pulses, ‘D’ the detection beam, and ‘dc’ the output atom clouds.
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such as detection time, detuning, saturation ratio, CCD pixel size, and number to reach the atom
shot noise limit.

2. Near resonant detection methods for atom interferometry

AIs typically operate with large atom numbers in the range of ≈105–107 but optically thin clouds
with optical depths τ between a few 10−3 and a few 10−2. To detect the atom number of these
output clouds, the most often adopted detection methods in AI are near resonance ones, where a
detection laser beam illuminates the atoms with a laser frequency that is near the resonant
frequency of the atomic transition to interrogate. The atom number is then detected by measuring
the scattering dispersion or absorption of photons as in fluorescence, absorption, or dark imaging
detection. Other possible detection methods are far off resonance ones, which are based on the
phase shift and polarization rotation induced by the atoms on the beam photons when these have a
frequency far from the interrogated atomic resonance. However, these detection methods are
generally not used in AI because they require very high optical densities that cannot be achieved
in beam-based or free-fall AIs. Therefore we do not include them in this work.

In the near resonant methods the scattered and transmitted photons (see figure 2) are
intercepted by a lens with numerical aperture NA, and then through some optics they are
imaged onto a photo detector such as a CCD or a photodiode. Furthermore, in dark-ground
imaging, the detection beam is blocked by an additional disk positioned in the centre of the
Fourier plane, and only the fluorescence and the diffracted light are imaged on the photodetector
[16]. From these measurements, once all the detection parameters are known, the cloud atom
number N can be derived.

This estimate of N is affected by a number of noise sources, like atom shot noise and photon
shot noise with standard deviations σ = NN and σ = np d , respectively, where nd is the photon
number counted by the photodetector during the detection time. The noises on laser intensity I and
frequency ν of the detection laser beam induce an error on the estimate of N as well. We assume
these noises to be Gaussian and with standard deviations σI and σΔ, respectively.

The noise optimization of the detection method depends very much on the atom number
and the optical depth of the imaged clouds. A typical AI has output clouds characterized by a
small optical depth with σρ ≪ 1D2 [16], where σ is the atomic scattering cross section and ρ D2
the column atom density of the cloud along the beam axis. For a spherically symmetric
Gaussian density distribution with standard deviation σρ, the maximum column atom density

Figure 2. Detection scheme for: (a) fluorescence and (b) absorption and dark imaging,
with the last differing only by the presence of the blocking beam disk ‘bd’. The
photodetector is ‘pd,’ ‘db’ the detection beam, and L1 and L2 a focusing lens system.
The detected photon number is nd, np is the incoming photon number, and ns is the
scattered photon number.
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along the detection beam optical axis is ρ πσ= ρN (2 )Dmax2
2 . In the following, we assume

N to be in the range ×10 – 2 105 7 and the cloud size σρ in the range 1–5mm, which are typical
values for Rb87 , Rb85 , Cs133 , and K39 AIs [18–22]. The AI large cloud sizes and
the corresponding small optical depths are due to the long interrogation time necessary to
achieve high enough sensitivities; high atom numbers are detrimental to the efficiency
of molasses cooling and result in higher temperatures and therefore in larger final cloud sizes.
We also assume an imaging lens with a numerical aperture of =NA 0.2 and the use
of Rb87 atoms. At resonance, e.g. for circularly polarized light, σ is σ = × − −2.9 10 m0

13 2 [23].
Under these assumptions, because the optical depths τ σ ρ= Dmax0 2 are in the range of

≈ × ×− −(2 10 , 4 10 )3 2 , the hypothesis of small τ is valid.
Given the assumed small optical depths, we can exclude the dark-ground imaging from the

analysis. In fact, for σρ ≪ 1D2 , the fluorescence signal dominates the coherent diffraction at
near-resonance [16], and dark ground imaging is fully equivalent to fluorescence detection.

Absorption imaging is also excluded because of the technical challenges to image enough
photons on a CCD and reach the atom shot noise limit. Indeed, only for a minimum number of
scattered detected photons n( )d min, the contribution to the detection noise of the atom shot noise
σN dominates over the contribution of the photon shot noise σnd

by a factor β. The parameter β
can be freely chosen. For a detection as close as possible to the fundamental limit of atom shot
noise, we require β = 3, for which the total noise on the measured atom number is given at 95%
by the atom shot noise. Larger values of β are not very beneficial since, for only small gains on
the signal-to-noise ratio (SNR), they will impose much stronger constraints on the experimental
parameters, as we will show later. For low optical depths, we are now showing that n( )d min for
absorption is much larger than n( )d min for fluorescence and technically difficult to detect by
CCD imaging. In absorption imaging, one usually measures the transmittance T as defined by
n nd p, with np the number of the incoming photons and nd the photonʼs number reaching the
detector, which is given by [16]:

σρ= − ≈ −n n n kNexp ( ) (1 ), (1)d p D p2

with σρ=k ND2 , where σ is the scattering cross section (see equation (A.2)). The total noise on
the measured transmittance T due to the atom and photon shot noises is equal to
σ σ κ σ= + n2 ( )T p p N

2 2 . Considering also that the transmittance T for a cloud with a Gaussian
density profile has a minimum value ≈ −T k N1min max with σ πσ= ρk (2 )max

2 , the atom shot
noise contribution to σT is dominant over the contribution of the photon shot noise by at least a
factor β only for β> =n n k N( ) 2 ( )d d min max

2 2 . Under our numerical assumptions, with
σ =ρ 5 mm and with =N 106, n( )d min is ≈ ×5.2 1011, which, assuming a CCD sensor with a
maximum pixel well depth of10 photons pixel5 , requires a minimum pixel number of ×5.2 106

per cloud to be imaged. For an AI with two or more clouds (as in [9]) to be imaged, CCDs with
such a pixel number are not yet easily available on the market.

On the other hand, n( )d min for fluorescence is easily detectable with a CCD. Indeed, for
small optical depths [16], we find that α=n Nd , with α a proportionality constant, depending on

the atom cross section and the duration and intensity of the probe beam (see equation (A.1)).

The total detection noise on nd for fluorescence is σ α σ+p N
2 2 2 , which, independently of the

expression of α, has the atom shot noise contribution dominant by a factor β over the photon
shot noise for β> =n n N( )d d min

2. It is interesting to notice that for fluorescence detection,

4
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n( )d min increases with the atom number, which is the opposite of what is required for absorption
detection. With our assumptions and for fluorescence detection, n( )d min is ×9 106, which
requires only a 90 pixel CCD, assuming a pixel well depth of 10 photons pixel5 . Another
advantage of fluorescence detection over absorption is that, as shown in figure 2, it allows one
to implement optical molasses by positioning a retro-reflecting mirror along the beam axis. In
particular, we can set up red detuning molasses to avoid the heating of the atoms at resonance,
implement Doppler cooling, and so keep them in the detection volume for longer times.

Even if detection with a photodiode is technically simpler than with a CCD and allows
shot noise limited absorption detection, using a CCD is still preferable, since it allows one to
record the spatial information of the output clouds. This information can be useful for some
applications, because it can be used to estimate the angular velocity of the AI [19, 24]. It also
allows one to resolve different output clouds if they are simultaneously imaged. From the
discussion in this section, we conclude that for AI and CCD imaging, fluorescence is more
technically feasible than absorption imaging, which would require very large pixel numbers.

3. Sequential versus simultaneous fluorescence detection

Given fluorescence as the chosen detection method, the AI output clouds can be imaged in a
sequential or simultaneous way: in sequential imaging, the hyperfine state populations of the
atoms in the AI output clouds are estimated in a time sequence one after the other; in
simultaneous imaging, the atoms in different hyperfine states are in spatially distinguishable
clouds which are imaged at the same time. Sequential imaging is simpler to realize than
simultaneous, but, as we discuss in section 3.1.1, because of atom loss to unwanted transitions,
it requires a longer interrogation time and is constrained by a maximum allowed laser detuning
with respect to the resonance. As we discuss in section 3.1.2, it is also affected by the laser
frequency and intensity noise, requiring dedicated detection beam stabilization. As we show in
section 3.2, simultaneous fluorescence detection with CCD imaging instead allows one to
measure the atom cloud population at the atom shot noise limit with less stringent technical
requirements on the stability of the detection-beam parameters.

3.1. Limitations of sequential imaging

In sequential imaging, the AI output clouds are imaged in two ways: if the clouds are spatially
separated, they are imaged one after the other as they fall under gravity, illuminated by one
detection beam in front a photo detector. In the other method, the superimposed clouds have the
atoms in distinct hyperfine ground states, and their populations are imaged one after the other
by using different detection beams tuned to different detection frequencies.

3.1.1. Constraints on detection time and detuning frequency. In the two-level model of
detection (see appendix A), for the example of Rb87 , the atoms in a hyperfine F = 2 ground state
cycle through the excited ′ =F 3 state, emitting the photons to be detected by the photodetector.
However, in a realistic multi-level model, some atoms might be excited to secondary hyperfine
states and then subsequently lost through non-closed transitions. In the case of Rb87 atoms with
the D2 line hyperfine structure represented in figure 3 [23], a detection beam with a frequency
red detuned by Δ with respect to the = → ′ =F F2 3 transition induces not only the desired

5
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fluorescence transition but also the = → ′ =F F2 2 and = → ′ =F F2 1 ones. As represented
in figure 3 (dashed red arrow), some of the atoms in these ′ ≠F 3 excited states spontaneously
decay to the F = 1 ground state, which is decoupled from the detection light. If the AI output
state clouds are physically superimposed, a repumper beam cannot be used to cycle back the
atoms from the F = 1 to the F = 2 ground state. In this case, the leakage to the F = 1 state is
effectively an atom loss for the AI population estimation and modifies the number of scattered
photons versus time ns(t) of the two-level atom. By modifying ns(t), this atom loss implies an
increase of the minimum detection time Δtmin as a function of the red detuning Δ, setting
constraints on the allowed Δ and saturation ratio =s I Isat to reach the atom shot noise limit,
where Isat is the saturation intensity as defined [23, 25]. In the model which includes atom loss
through non-closed transitions, Δtmin is given by:

⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥
⎥Δ

Γγ
γ
γ

= −
−

t
I

I

n

N

2
log 1

( )
, (2)min

sat

lost

lost

d

s min
1

where Γ is the natural line-width (FWHM) of the considered transitions, which, in the case of
Rb87 , is π ×2 6.06 MHz [23]. The parameters γ γ Δ= ( )d and γ γ Δ= ∑ ( ) brlost i i i are

respectively proportional to the scattering cross sections of the detection fluorescence transition
and of all the lost non-closed transitions. The function γ Δ( ) is the function given by:

⎛
⎝⎜

⎞
⎠⎟γ Δ Δ

Γ
= + +

−
I

I
( ) 1 4 , (3)

sat

2

2

1

where Δ Δ Δ= −i di is the detuning with respect to the non-detection hyperfine transitions, and
Δdi is the frequency difference of these transitions with respect to the detection one. Finally, bri

is the spontaneous emission branching ratio to non-closed transitions (see appendix C). From
section 2, n( )s min is given by Ωn( )d min , with β=n N( )d min

2, where Ω ≈ NA 42 is the fraction
of solid angle intercepted by the imaging lens of numerical aperture NA.

In some cases the requirements on the photon shot noise are too strict, and Δtmin does not
exist because all the atoms are lost to non-closed transitions before scattering enough photons to
reach the atom shot noise limit. For a given choice of β and saturation ratio s, this happens for

Figure 3. Schema of the modeled transitions for the Rb87 D2 lines. lt1, and lt2 are the
loss transitions; ‘dt’ the detection one; and ct1 and ct2 are closed depumping transitions.
The detection beam is ’db,’ and ‘rb’ is the repumper one.
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detuning larger than some detuning Δmax, which is found by numerically solving the following
equation in Δmax:

β
Ω

γ Δ
γ Δ

=
( )
( )

. (4)d max

lost max

2

Equivalently, for a chosen β and detuning parameter Δ, there is a maximum allowed saturation
ratio smax to reach the atom shot noise limit.

For the alkali atoms, small saturation ratio s and small detuning Δ, γ γlost d is of the order of
10−3. Under these conditions Δtmin can be described by:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥Δ Δ

γ
γ

β
Ω

≈ +( )t t 1
2

, (5)min min l
lost

d
2

2

with Δ( )tmin l2
the minimum detection time to reach the atom shot noise limit for the two-level

model without atom loss (see appendix A), given by:

Δ
Γ γ

β
Ω

=( )t
I

I

2 1
. (6)min l

sat

d
2

2

Assuming =NA 0.2 and β = 3, at resonance and for saturation ratio s = 0.2, Δtmin is ≈6%
larger than Δ( )tmin l2

but becomes much larger for increasing red detuning Δ and s, e.g., up to a
factor of three for Δ Γ≈ 1.2 and s = 2, because more atoms are lost to non-closed transitions.
Under our numerical assumptions, in figure 4 we plot Δtmin versus the red detuning Δ with
respect to the ′ =F 3 hyperfine level of Rb87 for different saturation ratios s. The branching ratio
to the non-closed transition is 50% and 83%, respectively, for the hyperfine level ′ =F 2 and

′ =F 1 (see table C1). Figure 4 shows that, for red detuning Δ π⩾ ×2 7.4 MHz, it is impossible
to reach atom shot noise detection, because all the atoms are lost to non-closed transitions
before reaching the atom shot noise limit. For comparison, we plot as well the curve for the
simple two-level system of equation (6) as a continuous line, which shows a much reduced

Figure 4. Minimum detection time Δtmin for Rb87 for different saturation ratios s: ‘a’,
‘b’, and ‘c’ refer to s of 0.2, 1, and 6. The continuous line ‘d’ is Δt( )min l2 for the two-
atom level model for s = 0.2.
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detection time for large detuning. In figure 5 we plot the maximum allowed red detuning Δmax

as a function of the saturation ratio s showing that, for large detunings, it is necessary to have a
low intensity detection beam to reach the atom shot noise limit. The same figure means that, as a
function of the detuning, there is a maximum allowed saturation ratio. A detection sequence
based on simultaneous imaging with a repumper beam does not pose such constraints on the
maximum allowed red detuning and, with respect to the simple two-level model and for a given
detection time, requires a smaller saturation ratio to reach the atom shot noise limit (compare,
e.g., figures 4 and 8). Such a simultaneous imaging sequence is thus preferable to sequential
imaging.

3.1.2. Constraints on frequency and power noise of detection beam. The laser frequency and
power noises also induce noise on the detection. We show now that for sequential detection, the
requirements on these noise sources to reach the atom shot noise limit can be technically
challenging and make simultaneous detection a preferable alternative detection method (see
section 3.2). If σΔ is the standard deviation of the laser frequency noise between the readouts of
the output clouds, its induced error on nd, σ σΔ( )n

2
d

is given by:

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟σ α

Δ
σ α

Δ
σ

= ∂
∂

+ ∂
∂σ Δ

Δ
Δ

( ) N N
2

, (7)n
2

2
2

2

2

2 4

d

with the second order derivative of α with respect to Δ [26] being the dominant term for low
detuning. The constraints on the laser noises are derived from their induced error on the
detected photons nd. In fact, by requiring that ασ β σ> σΔ( )N nd

, the constraints on σΔ to reach the
atom shot noise limit are given for small detuning Δ by:

σ Γ
β

<
+

Δ
N

1

4 (2 )
(8)

I

I

1 4

sat

Figure 5. Maximum detuning as a function of the saturation ratio s for Rb87 .
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and for larger Δ by:

⎛
⎝⎜

⎞
⎠⎟σ

β
Γ
Δ

Δ
Γ

< + +Δ
N

I

I

1
8

1 4 . (9)
sat

2 2

2

Similarly, the constraints on the fractional standard deviation σ II of the laser intensity noise
between the output readings to reach the atom shot noise limit can be derived, and are given by:

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟

σ
β

< +
+ Δ

Γ
I N

I

I

1
1

1

1 4
. (10)I

sat
2

2

In figure 6 we plot the maximum laser frequency noise σΔ for Rb87 with the numerical
assumptions of section 2. In this figure, the curve on the requirements on σΔ is mainly given by
the first derivative of α in Δ, which has a local maximum in correspondence to the inflection point
of α as a function of Δ. Considering our numerical assumptions, to reach the atom shot noise limit,
σ I| |I has to be smaller than 0.04% for zero detuning and 0.033% for large detuning.

Even if a long detection time works effectively as a low pass filter, which averages out the
high frequency noise of the detection beam, the low frequency components still affect the
detection. These requirements on laser frequency and intensity noise need electronic
stabilization, and it has already been done in some experiments [15]. This electronic
stabilization, however, can prove to be technically challenging, because the relative long time
between the detection pulses requires stabilization at low frequencies, where technical noise
tends to dominate.

Therefore, alternative approaches should be explored to reduce these laser noise
requirements and to allow short detection times.

Figure 6. Requirements on the laser frequency noise σΔ versus the detuning frequency Δ
for =T 1(s) for different values of the saturation ratio: ‘a’, ‘b’, and ‘c’ refer to values of
s of 0.2, 1, and 6, respectively.
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3.2. Advantages and constraints of simultaneous imaging

An alternative approach to detect the output clouds of the AI is to image them all at the same
time with a common probe beam. During this simultaneous imaging, the output clouds have to
be separated in space to be resolved. Very cold atom clouds could have a momentum spread in
the beam splitting direction of the AI small enough that the output clouds will move apart along
diverging trajectories and, after some time, become distinguishable. Otherwise, for warmer
clouds, state-selective optical molasses can be used to control the motion of the different output
clouds and separate them just before detection. During detection, a repumper beam is also used
to transfer all the atoms of the output clouds to the same hyperfine ground level as shown in
figure 3 so that a common detection beam can be used to detect both clouds. The use of this
repumper beam prevents any atom loss through non-closed transitions, as it happens for
sequential imaging, and decreases the minimum detection time Δtmin required to reach the atom
shot noise limit. Simultaneous imaging introduces a new noise source associated with cross
cloud shadowing (see figure 9), which, however, we show in section 3.2.2, still allows one to
reach the atom shot noise limit. Simultaneous imaging does not require as much laser
stabilization as sequential imaging and results in a less constrained detection scheme. Because
the AI phase is a function of the population unbalance between the AI outputs ζ and therefore is
a relative measurement, the additional complexity of using a repumper beam comes with the
advantage that simultaneous imaging allows common mode rejection of the effects of the laser
frequency and intensity noises of the detection and repumper beams in the AI phase estimate.

3.2.1. Reduced constraints on detection time. Simultaneous imaging, thanks to the repumper
beam, can be modeled with the simple two-level atom (see appendix A) and has its minimum
detection time Δt( )min l2 , given by equation (6), which does not depend on the number of atoms
to detect. For example, with the assumptions of section 2 and a saturation ratio s = 0.2, Δt( )min l2

is μ≈400 s for zero detuning and, as shown in figure 8, increases with the detuning but becomes
smaller for larger saturation ratios.

Figure 7. Requirements on the fractional standard deviation σ II for the different values
of the saturation ratio: ‘a’, ‘b’, and ‘c’ refer to the value of s of 0.2, 1, and 6 respectively.
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3.2.2. No constraints from cross cloud shadowing. In simultaneous imaging, the output clouds
share the same detection beam and, as shown in figure 9, cast shadows onto each other. These
shadows effectively reduce the number of scattered photons with respect to the shadow-free
case, introducing a systematic error. The systematic error on the estimate of the population
unbalance between the two AI output cloud ζ, induced by the cross cloud shadowing δζ is given
by the difference between the ‘real’ value ζ and the measured one. This measured population
unbalance is given by ζ = − +n n n n( ) ( )m s s s s1 2 1 2 , with n s1 and n s2 the photons scattered
from the first and second output cloud. This approach to estimate ζ cancels out the effect of the
atom number fluctuations between experimental runs, hence reducing the overall phase noise.
For small optical depths, δζ is a function of the relative atom number of one output cloud
ξ = N N1 with respect to the total atom number = +N N N1 2 and is given by (see appendix B):

δ Λ ξ ξ ξ
τ Λ ξ ξ

= − − −
− + − −ζ 2

(1 )(1 2 )
1 (1 (1 ))

, (11)

where τ is twice the optical depth associated with the maximum column density ρ Dmax2 and Λ is
defined in appendix B. In figure 10, for the assumptions of section 2, with σ =ρ 5 mm,

= ×N 3 106, Δ = 0, and s = 0.2, we plot the error on the population unbalance δζ in unit of the
error on ζ due to the atom shot noise only, σζ( ) N , versus the values of ξ. The error σζ( ) N is

Figure 8.Minimum detection time Δt( )min l2 for different saturation ratios s: ‘a’, ‘b’, and
‘c’ refer to the values of s of 0.2, 1, and 6, respectively. The continuous line ‘d’ is Δtmin

for the two-level atom model with losses for s = 0.2.

Figure 9. Simultaneous readout of two clouds. The detection beam is ‘bd’; ‘Sdb’; the
shadowed detection beam; and n s1 and n s2 the scattered photon number.
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itself a function of ξ and equal to ξ ξ− N2 (1 ) . The plotted function δ σζ ζ( ) N has a local
maximum at ξ ≈ 0.15, which shows that the cross-cloud shadowing induced error is just ≈4%
of the error coming from the atom shot noise. Cross cloud shadowing therefore does not
substantially limit the detection.

To conclude, as discussed above, simultaneous cloud detection is an alternative detection
method to the sequential fluorescence imaging, which allows greater flexibility in the detection
parameter choices to reach the atom shot noise limit. Indeed, simultaneous imaging does not
have constraints that are as strong on the detection frequency and intensity noises because of
their common mode rejection; furthermore, simultaneous imaging does not pose any limitation
on the maximum allowed red detuning, and it requires a smaller interrogation time or saturation
ratio for a shot noise limited detection.

4. CCD as imaging sensor for simultaneous imaging

The previous analysis assumed the choice of CCD imaging over photodiode imaging. Indeed,
CCD imaging allows one to record the spatial information of the output clouds. As shown
below, this spatial information relaxes the requirements on the minimum distance between the
output clouds to avoid cross readouts down to the atom shot noise limit. Furthermore, as shown
recently [19, 24], the recorded spatial information can be used to characterize velocity-
dependent phase shifts in single shot measurements that are visible as a phase shear across the
clouds, either to improve AI sensitivity or to design new measurement schemes. For example,
phase shear was used by [19] to build an AI gyrocompass sensing two rotations and one
acceleration in a single measurement and to determine the Earthʼs rotation rate with high
precision.

4.1. CCD to record the cloud spatial information

In simultaneous imaging, the output clouds, even if they are physically separated, have the tails
of their distribution partially overlapped. If the spatial information of the clouds is not

Figure 10. Error on the population unbalance δζ in unit of the error on ζ, due to the
atom shot noise σζ( ) N as a function of ξ and of the saturation ratio s on resonance: ‘a,’
‘b,’ and ‘c’ refer to the values of s of 0.2, 1, and 4, respectively.
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preserved, but only the volume integrals of the photon number are recorded (e.g., with a single
photodiode), this cloud overlap induces a systematic error on the population measurements.
This error is smaller than the atom shot noise contribution by a factor β only if the output cloud
centers are at a distance larger than βd ( )min , which can be large and technically difficult to
achieve. The spatial information recorded by a CCD can instead be used to spatially fit the atom
cloud distribution and so estimate their population without introducing the previous systematic
error. To derive an initial estimate, we assume here thermal clouds with Gaussian density
distributions at the AI output after having expanded from a very small initial volume at the AI
input; otherwise, for Bose–Einstein condensates or velocity-selected clouds, the following
calculations will have to be modified accordingly. Thus for two thermal clouds imaged in two
semi planes by a photodiode or photo multiplier with equal σρ and total number N 2, dmin is
given by:

⎛
⎝⎜

⎞
⎠⎟σ

β
= ρ

−d
N

2 2 erf
2 2

, (12)min
1

where −erf 1 is the inverse of the error function. For our numerical assumptions, the previous
equation can be approximated with:

σ ζ ζ≈ −ρd 2 ln( ) , (13)min

with

⎛
⎝⎜

⎞
⎠⎟ζ π

β
= −

N
ln(2 ) 2 ln

2 2
. (14)

For =N 106, with σ =ρ 5 mm and our assumptions on β, dmin is equal to σρ6.6 , or 3 cm, which
for certain applications can be too restrictive.

Therefore, for simultaneous cloud detection, CCD imaging, because it does not require
output clouds separated by a large distance and allows one to characterize velocity-dependent
phase shifts across them [19, 24], is preferable over an imaging method not recording the spatial
information, such as a photodiode or a photomultiplier.

4.2. CCD requirements

Given some CCD parameters such as the pixel well depth nw, the pixel readout noise σpx, the
standard deviation of the dark signal per second ςdk, pixel binning number m, and the quantum
efficiency μ, we identify the minimum and maximum CCD pixel numbers to achieve the atom
shot noise limit. In fact, a CCD needs to have at least N( )minCCD pixels to record the fluorescence
signal n( )d min:

β=( )N
N

n m
. (15)

min
w

CCD

2

The maximum pixel number N( )maxCCD for a detection time Δt is instead given by:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟β μ

σ
ς Δ= +

−

( )N N
m

t . (16)
max

px
dkCCD

2 2
2

2 2

1
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This expression for N( )maxCCD has been obtained by requiring that the total readout noise,
σ σ μ= N ( )CCD

2
CCD CCD

2, is equal to the photon shot noise associated with n( )d min. For example,
if we assume = −n 10 photons pixelw

4 1, μ = 0.7, σ ≈ 5 electronspx , ς = −10 electrons sdk
3 1,

Δ μ=t 500 s, m = 1, and =N 106, we find that ≈ ×N N[( ) , ( ) ] [900, 174 10 ]min maxCCD CCD
3 .

For these pixel numbers and e.g., a CCD size of ×13.3 mm 13.3 mm, the pixel size should be
between 31–443 μm. These technical requirements on the CCD to reach the atom shot noise
limit are achievable in commercial scientific sensors.

5. Conclusions

In this work we identified fluorescence simultaneous detection of the AI output clouds by CCD
imaging as the optimal detection method which poses the least stringent requirements on the
detection beam noise and duration. This detection method also allows one to record the cloud
spatial information, which is key for improving future AI designs and sensitivity [19, 24], and
to reach the atom shot noise limit. AI detection at the atom shot noise limit can allow the further
characterization and reduction of other non-detection noise sources limiting the AI sensitivity
e.g., wavefront aberration and Coriolis phase shifts. The atom shot noise limit can then be
lowered by using much larger atom numbers than the ones considered in this work, but further
detection optimization will be required, given the increased optical densities. Otherwise, the AI
sensitivity can be enhanced by other techniques, such as the use of large area interferometers
with large momentum transfer beam splitters [27] or the use of squeezed atomic states [28], and
can reach sensitivities below the classical atom shot noise limit. Thus AI, with high sensitivity
at or below the atom shot noise limit, will open new science frontiers such as tests of the general
relativity equivalence principle on quantum matter [21]. Furthermore, high precision AIs will be
the next generation inertial and gravitational sensors used for civil engineering, geophysical
exploration, or climate studies, opening up a new range of possible applications.
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Appendix A. Full expression of nd for simultaneous and sequential imaging

For fluorescence detection, the expression of the number of scattered photons ns reaching the
photo detector during a time interval Δt is given as a function of the atom number N by:

∫ ∫ ∫ν Δ
ν

ν σρ ν= ⃗ ⃗ ⃗
−∞

+∞

−∞

+∞
( ) ( ) ( )n

t

h
I r r g v r dVdvd( ) , , , (A.1)s

V

where ρ ⃗r( ) and ⃗g v r( , ) are the atom density and velocity distributions at the position ⃗r
integrated over a volume V [29], ν ⃗I r( , ) is the laser intensity at frequency ν and at the position
⃗r , and σ is the scattering cross section, which includes power broadening and doppler shifted
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detuning. Assuming a two-level atom, σ is given by:

⎛
⎝⎜

⎞
⎠⎟σ σ Δ ν

Γ
ν= + + + +

−
v c I v c

I
1 4

( ) ( (1 ))
, (A.2)

sat
0

2

2

1

with Δ the detuning with respect to the resonant frequency ν0 for the atom at rest, Γ the FWHM
of the considered transitions, v the velocity of the atoms relative to the laser source, and σ0 the
on-resonant cross section given by the expression [25]:

σ ν Γ= h

I2
. (A.3)

sat
0

The saturation intensity Isat is defined as in [23, 25] and given by:

ε Γ

ε
=



d
I

c

4 ˆ ·
, (A.4)sat

0
2 2

2

with ε̂ the unit polarization vector of the light field and d the atomic dipole moment. The
various expressions of Isat for different light polarizations can be found in [23].

We assume that the laser source is at rest with respect to the centre of mass of the atom
cloud, that there is no atom velocity spread (and so no doppler broadening), and that the laser
intensity is constant over the cloud, ν ⃗ =I r I( , ) . Under these conditions, equation (A.1)
becomes:

γ Γ Δ=n N
I

I
t

2
. (A.5)s d

sat

Then Δt( )min l2 of equation (6) is derived by solving the equation Δ Ω =n t n[( ) ] ( )s min l d min2 with
n( )d min from section 2.

If the atom model is not the simple two-level one, but the one represented in figure 3, the
expression of nd has to include as well the possibility of atom loss to closed transitions. In this
extended model, the scattered photon number ns is found by solving the following system:

σ
ν

γ= −( )
dn

dt
N n

I

h
(A.6)s

l d
0

σ
ν

γ= −( )
dn

dt
N n

I

h
, (A.7)l

l lost
0

with nl the number of atoms lost to the alternative hyperfine transitions γd and γlost as defined for
equation (2). Because in this work we assume that all the light polarizations are present and that
all the degenerate mF levels are equally occupied, this multilevel model does not include the
optical pumping of the atoms to different mF levels by the detection beam. Also, the effect of
stimulated emissions to lost transitions has not been modeled, since, for small detuning Δ, they
represent a second order correction only.

For this multilevel model, ns as a function of the atom number N is given by:

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

γ
γ

Γγ= − −n t
N

t
I

I
( ) 1 exp

2
. (A.8)s

d

lost sat
lost

As for two-level system, the minimum detection time Δtmin to reach the atom shot noise of
equation (2) is derived by solving the equation Δ Ω =n t n( ) ( )s min d min.
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Appendix B. Derivation of cross shadowing effect

We model the effect of section 3.2.2 by deriving the scattered photon number ns in the case of
cross cloud shadowing. As in appendix A, we assume no atom velocity spread (so no doppler
shift) and a very narrow laser line width, but the detection beams can have variable light density
Ib across x, y, and z due to the shadowing effect. As in figure 9, the laser beam axis is taken
parallel to the z axis and retro reflected on a mirror on one side of the clouds. If I is the incoming
beam, for small saturation ratio I Isat or low optical depth [16], the beam exiting from the first
cloud is approximatively given by the Beer Lambert Law:

σρ= −( )I x y I x y( , ) exp ( , ) (B.1)t z

σρ≈ −( )I x y1 ( , ) , (B.2)z

with ρ x y( , )z the atom number density integrated along the z axis. The total intensity of the laser
beams illuminating the first It1 and second It2 cloud are:

σ ρ ρ≈ − +( )( )I I x y x y2 ( , ) 2 ( , ) (B.3)t z z1 1 2

σ ρ ρ≈ − +( )( )I I x y x y2 2 ( , ) ( , ) , (B.4)t z z2 1 2

with ρ z x y1 ( , ) and ρ z x y2 ( , ) the z integrated atom densities of the first and second cloud at the AI
output. We assume that ρ ρ ξ=x y z x y z( , , ) ( , , )1 and ρ ρ ξ= −x y z x y z( , , ) ( , , )(1 )2 , that
ρ x y z( , , ) is normally distributed with standard deviations σρ and volume integral N, and that
the clouds are at a far distance σ≫ ρ2 from each other. The parameter ξ is the probability that
each atom will be in the ground state associated with the first output cloud, and it is related to
the AI phase ϕ being ξ ϕ= +(1 cos ( )) 2. Therefore, the scattered photon numbers for the two
clouds are:

∫Δ
ν

σ ξ ρ σρ ξ ξ= ⃗ − ⃗ − − ⃗ρ
−∞

+∞
( )( )( ) ( ) ( )n

t

h
I r r g r dV2 (2 ) 1 (B.5)s1

Δ
ν

σ ξ τ ξ ξ Λ= − + −t

h
I N2 (1 (2 ) ) (B.6)

∫Δ
ν

σ ξ ρ σρ ξ ξ= − ⃗ − ⃗ + − − ⃗ρ
−∞

+∞
( )( )( ) ( ) ( )n

t

h
I r r g r dV(1 ) 2 (1 ) 1 (1 ) (B.7)s2

Δ
ν

σ ξ τ ξ ξ Λ= − − + − +t

h
I N2 (1 ) (1 (1 )(1 ) ), (B.8)

where we included as well the self shadowing of each cloud, and ⃗ρg r( ), τ, and Λ are given by:

∫ σρ ζ ζ⃗ =ρ

+∞
( )g r x y d( , , ) (B.9)

z

τ σ
πσ

ρ σ= =
ρ

N

4
2 (B.10)MAX2 2
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Λ σ
π σ

=
ρ

N

96
. (B.11)

2 2

5 2 5

We substitute equations (B.6) and (B.8) in the definition of ζm, and δζ, obtaining the expression
of the shadowing error induced on the population estimate of the AI output clouds of
equation (11).

Appendix C. The spontaneous decay branching ratio

The spontaneous decay branching ratio from a hyperfine level ′F of a exited state ′J to a
hyperfine level F of a ground state J is given by the following equation as a function of Wigner

− j3 , and − j6 symbols [25, 30]:

⎛
⎝⎜

⎞
⎠⎟

∑

∑

Γ
Γ

=

= + ′ + ′
′

′
′ −

→
→ ′

→ ′

′
{ }F J J J

F F I
F F
m q m

br

(2 1)(2 1) 1 ·
1

, (C.1)

F F F

q m
F F

F F
F F

2

,

2

F

where we sum over the possible polarization of the light ( = −q 1, 0, 1) and the hyperfine ′mF
sub levels of F, and mF is equal to ′ +m qF . The previous equation can be found from the
expression of the decay rate from a hyperfine level ′F of an exited state ′J to a hyperfine level F
of a ground state J [25, 30, 31]:

∑Γ
ω

πε
= ′ + ′ ′→ ′

′ 
( )

c
F m q er F m

3
. (C.2)F F

q m

F q F

,

0
3

0
3

2

F

By using the Wigner–Eckart theorem [25, 32] in the previous expression and then by summing
Γ → ′F F over all the final ground levels F in equation (C.1), equation (C.1) is derived. For
completeness in table C1, we present the branching ratio to closed transition for some alkali
atoms and see how they are very similar across different elements.
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