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Abstract

Mathematical modelling is a useful tool that is increasingly used in the life sciences to understand and predict the behav-
iour of biological systems. This review looks at how this interdisciplinary approach has advanced our understanding of 
microbial efflux, the process by which microbes expel harmful substances. The discussion is largely in the context of anti-
microbial resistance, but applications in synthetic biology are also touched upon. The goal of this paper is to spark further 
fruitful collaborations between modellers and experimentalists in the efflux community and beyond.

DATA SUMMARY
No data were generated or reused in the preparation of this article.

INTRODUCTION
It is unquestionable that the rise in antimicrobial resistance, coupled with the drop in the discovery of new antibiotics, poses 
an enormous threat to human and animal health worldwide. While the search for new antibiotics is of course a priority, it is 
vital that all avenues to innovative treatments are also explored. This includes the development of antivirulence treatments 
that, rather than targeting the life cycle of the microbe, inhibit the ability of microbes to cause an infection. Much progress 
on these has been made in recent years, although in many cases this is currently limited to lowering (rather than clearing) 
the burden of the infection [1–3]. An alternative approach is to rejuvenate existing antimicrobials – rendering otherwise 
resistant infections susceptible to treatment by targeting the resistance mechanisms employed by the microbes [4].

Microbes use a multitude of antimicrobial resistance mechanisms [5], including (but not limited to) modifying or degrading 
the drug (for example, beta- lactamases [6]) or simply reducing the amount of drug that remains in the cell (for example, 
efflux pumps [7]). Coupled to these are detection and response mechanisms that facilitate the emergence of these transient 
behaviours [8]. This involves, for instance, complex nonlinear gene regulation networks and balancing single- cell and 
population- level survival, as well as having a range of alternative ‘survival’ mechanisms.

Understanding resistance (and how to inhibit it) therefore requires us to understand a multitude of factors, and how they 
affect each other. For instance, does downregulating one efflux pump simply lead to upregulation of an alternative one? [9] 
One tool that can aid with this and help to merge factors into a global picture is mathematical modelling. Translating the 
cellular interactions and processes into equations that can be probed either analytically (with pen and paper) or numerically 
(on a computer) vastly increases the scope of scenarios that can be considered and can open our eyes to hypotheses and 
predictions that may be difficult to access using a purely experimental approach that may be limited by time, resources 
and available technologies.

Using efflux pumps as an example, this review paper discusses some of the mathematical modelling work that has already 
enhanced our understanding of this important antimicrobial resistance mechanism. It is not intended to be a comprehensive 
or detailed review of all related models, rather the intention is that it is a useful resource to spark discussions and collabora-
tions between experimentalists and theoreticians. The review is divided into three themes:
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• Gene regulation networks;
• Single- cell versus population- level behaviour;
• Quantifying efflux.

We also comment on the limitations of modelling in the Discussion.

GENE REGULATION NETWORKS
A relatively large volume of mathematical modelling work has centred on understanding the architecture of the gene regula-
tion networks that govern efflux regulation (for an accessible discussion of approaches to gene regulation network modelling, 
see [10]). The majority of these use differential equations; either ordinary – the solutions to which can be interpreted as 
average population behaviour – or stochastic, which allow for population heterogeneity. Much of cell survival is dictated 
by cells adapting to fluctuations in their environment on an appropriate timescale. Networks of genes, their mRNA and 
proteins (here, for example, those that constitute the efflux pump itself, or the regulators of efflux pump expression) have 
hence evolved within cells to detect signals (e.g. a stressor such as an antibiotic) and trigger downstream effects that render 
the cell more likely to survive in a given environment. These networks are often somewhat complex and the nonlinear 
interactions between components can make it difficult to predict the effect of overexpressing or deleting a component, for 
example. Alternatively, on a more fundamental level, it is often insightful to understand why a specific network has evolved 
in a particular way [11–13]. This can have implications for the design of circuits in synthetic biology. Mathematical model-
ling (where each component in the network is described by an equation that feeds into the other components’ equations 
appropriately) readily lends itself to such investigations. For example, in creating switch- like responses [13, 14], in balancing 
multiple criteria to be optimized [15] (e.g. maximizing production of protein x whilst keeping energy expenditure below a 
threshold), or in understanding how to design circuits that interact with different species (e.g. via quorum sensing signalling 
[16]). Once a reliable model has been developed (and ideally tested against experimental data) it is straightforward (at least 
in comparison to equivalent efforts required to examine gene regulation networks experimentally) to alter expression of 
single or multiple genes, or to alter the structure of the network.

In the context of efflux pumps, the majority of mathematical models of gene regulation networks consider the mar operon 
that regulates production of the AcrAB- TolC efflux pump in Escherichia coli [17]: the mar operon (containing marR and 
marA) is subject to activation by MarA (which also activates the efflux pump genes) and repression by MarR. This repression 
is eased when stressors and MarR bind to each other, essentially resulting in the inactivation of MarR and allowing the 
positive feedback loop to dominate [18]. Much modelling work has been devoted to understanding why this combination 
of positive and negative feedback loops in E. coli may have evolved in this way. Work in [19], for instance, suggests that 
this architecture results in a fast and homogeneous (across a population of cells) response to a stressor, while in [20] it is 
demonstrated that the positive feedback amplifies MarA levels and the negative feedback could give rise to pulses in gene 
expression in the absence of a stressor (with consistently high levels of the protein in the presence of a stressor – consistent 
with [19]). However, in a later experimental study [21], the same group showed that the pulse- like behaviour could also be 
observed even without the negative feedback loop, illustrating that more is at play. It is frequently when models and data 
disagree that we learn the most. These pulses are also uncovered theoretically in [22] using a subtly different mathematical 
approach (Boolean modelling) where probabilities are assigned to the regulatory interactions of the gene regulation network. 
This approach and the transcriptional pulses are discussed further in the next section.

Naturally, gene regulation networks do not exist in isolation and additional inputs or outputs can be readily incorporated 
into models: [23] considers the additional transcription factors of Rob (a specific activator) and cAMP (a global activator), 
showing that the first may amplify the stress response, rendering the cell more robust to external changes in the second. 

Impact Statement

This review paper aims to increase and enhance multidisciplinary collaborations within microbiology. In particular, it focuses 
on the role that mathematical modelling can play in understanding microbial efflux. Efflux pumps expel potentially harmful 
substances from within the cell and are a key antimicrobial resistance mechanism. Mathematical models can describe biolog-
ical systems through equations that predict how interacting elements of the system evolve over time. In comparison to experi-
mental work, they can be probed in a relatively straightforward fashion. For example, hundreds of different “experimental 
conditions” can be simulated in a click of a button. Furthermore, they can unravel the interacting elements to predict the 
important drivers of given system behaviours. By highlighting some of the impact that existing models have made on the efflux 
community to date, it is hoped that more researchers will initiate multidisciplinary collaborations both in the study of efflux and 
more widely in microbiology.
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Meanwhile, [24] considers the downstream effects of MarA on diverse genes, finding that the response can vary dramatically 
by gene: some require extremely high levels of MarA for activation, while others may respond to lower levels but in a less 
homogeneous fashion across a population, for example.

With a view to identifying ways to disrupt efflux regulation for therapeutic gain, [25] incorporates multiple regulators of 
the acrAB- tolC system in Salmonella. Increasing the dimensionality of the model in this way (the more regulators there 
are, the more parameters there are that need to be estimated for the model) requires a similar increase in experimental 
data (in an ideal world, to parameterize a model you would have time series measurements of all the nodes in the system); 
[25] navigates this by exploiting mathematical techniques (nondimensionalization and asymptotic analysis) that enable 
predictions to be made based upon relative sizes of parameters, rather than absolute values. For example, we might be 
confident that transcription of gene x is roughly twice as fast as that of gene y without needing to know either individual 
rate. This approach is particularly useful in the absence of experimental data and allows the user to create more general 
hypotheses that do not rely on specific conditions, but it is technically challenging and can be understandably off- putting 
to researchers without a computational background.

One interesting input to regulation of acrAB- tolC is the Lon protease. Active degradation of proteins in bacteria is relatively 
rare since rapid cell division serves to dilute protein levels without the need for energy- intensive degradation; [26] seeks to 
understand, therefore, why such active degradation of MarA has evolved via the Lon protease, finding that the half- life of 
MarA impacts on how quickly downstream genes can respond and importantly (at least in the context of a stressor) how 
coordinated this response is. Such considerations will be vital if targeting degradation of an efflux activator to maximize 
internalization of an antibiotic.

Of course, the architecture of the mar operon is not unique to these genes and many of these models and predictions are 
applicable to a broader range of scenarios. Prajapat et al. [27] again focus on the mar circuitry but their findings are equally 
applicable to homologous systems. The authors explore how the dual activator/repressor system compares to hypothetical 
architectures with either only an activator (that upregulates itself and downstream genes in the presence of a stressor) 
or only a repressor (that represses itself and downstream genes in the absence of a stressor). By evolving the parameters 
governing the single- element architectures using a genetic algorithm, the authors try to match the graded response to a 
stressor that arises in the two element system. The activator- only system could only produce a switch- like response, and 
though the repressor system could display a graded response, surprisingly it did so at a higher cost to the cell in terms of 
protein production.

Control of the ATP- binding cassette (ABC) transporter genes in the yeast Saccharomyces cerevisiae via the pleiotropic 
drug resistance (PDR) transporters is examined in [28], again with a view to understanding the benefit to the cell of 
the particular motifs in the underlying gene regulatory architecture. This network comprises a feedforward loop (the 
activator upregulates a downstream target directly and via an intermediate regulator) and a positive feedback loop (the 
intermediate regulator is an autoinducer). The analysis suggests that, taken together, these accelerate the response time 
and amplify expression of the response gene. The positive feedback amplifies any noise within the system, potentially 
increasing heterogeneity across the population; something that has been posited as being beneficial for efflux as a transient 
resistance mechanism.

The wider overall feedback loop of efflux pumps – the pumps themselves reduce the concentration of their own (albeit indirect) 
inducer – is examined in the context of the design of synthetic gene circuits in [29]. It is demonstrated that the inclusion of a 
pump could dramatically alter the dose–response curves. Indeed, the importance of efflux pumps in biotechnology processes 
should not be overlooked. A key example is biofuel production: anything above wild- type production of biofuels could be toxic 
to the cells. Coupling increased biofuel production with increased efflux is a promising way to counter this and mathematical 
modelling could be instrumental in optimizing the process [30].

SINGLE-CELL VERSUS POPULATION BEHAVIOUR
The previously mentioned Boolean model in [22] takes a gene regulation network and converts it into a mathematical network 
(sometimes referred to as a graph) where each node represents a regulator or a downstream target and is either ‘on’ or ‘off ’. If an 
activator is on then it switches a downstream target on with an assigned probability. Conversely, if a repressor is on, the target is 
switched off with a given probability. One simulation involves introducing a stressor and seeing how the nodes respond over a 
number of time steps. The probabilistic nature of the regulations means each simulation will be different and can be interpreted 
as the potential behaviour of a single cell. Run thousands of times, the simulations can be analysed collectively to represent a 
population of cells. Note that a Boolean framework serves as a tractable example of creating an in silico population of cells but it 
is by no means the only method. For example, agent based modelling, in which the emergence of higher- level phenomena in a 
system is examined through the interactions (defined by a set of rules) of the lower- level systems and components (‘agents’), can 
also distinguish population behaviour from that of single cells [31–33].
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When aggregating the single- cell simulations in [22], the results show a homogeneous response (across the population) of efflux 
being switched on in the presence of a stressor (antibiotic). In the absence of stress, subpopulations of cells have efflux switched 
on, suggesting that a subset of the population are capable of responding quickly to stress. However, examining the single cell 
behaviour suggests that rather than it being a subpopulation that is predisposed to always having efflux genes ready to go, each 
individual cell may experience unsynchronized pulses of efflux activity, agreeing with [18, 19]. These pulses have been confirmed 
experimentally at the transcriptional level in a separate study [34] for a variety of different stress response genes in E. coli, including 
the mar operon. While modelling cannot provide definitive answers, it can open up avenues to explore the routes via which cells 
may have evolved to behave in this way.

Mixed populations of active and inactive effluxers have been explored in a number of studies (including some already discussed 
in the previous section). Wen et al. [31] use a combined experimental and modelling study to consider growth rates of the two 
subpopulations under antibiotic exposure, showing that mutants lacking efflux capabilities grow more slowly when surrounded 
by active effluxers than they do when surrounded by other efflux mutants. Their agent- based model predicts that the stronger 
the efflux and the more effluxers present, the more evident this impact will be. This supports an important connection between 
antibiotic resistance at the single- cell level and its potential impact at the population level or on co- cultures of mixed species: 
cells with resistance mechanisms can rapidly dominate a population in a stressed environment.

Effluxing comes at an energy cost and understanding how and when this trade- off becomes advantageous (or indeed stops 
being advantageous) is a question that can be explored through modelling. For example, by co- culturing cells with and 
without efflux pumps, [30] investigates how this trade- off is affected by the rate at which stress is introduced to the cells. 
The authors use a clever analogy with a leaking boat: if a leak is slow the water can be pumped out sufficiently efficiently 
that the boat stays afloat. In contrast, if the same quantity of water enters the boat in one go, the boat will likely sink. The 
study (that has strong quantitative agreement between model simulations and experimental data) finds that the benefit of 
expressing efflux pumps increases as the rate at which the stressor is added decreases. Importantly, the modelling work 
facilitates quantification of the amount and delivery time of an antibiotic required to optimize its therapeutic success. 
Inversely (since in this case enhanced efflux would be desirable), such calculations also have implications in synthetic 
engineering of bacterial biofuel production. This quantification of processes related to efflux is something that is naturally 
facilitated with the aid of mathematical modelling.

QUANTIFYING EFFLUX
Quantifying the efflux capabilities of a cell or a population of cells is more complex than it may at first seem. Since antibiotics 
ultimately kill cells, a surrogate substrate (e.g. ethidium bromide) is often used [35]. Cells typically employ multiple efflux 
pumps, so inhibition of one type of pump may not be sufficient to completely abolish efflux (see [36] for a modelling 
study that includes multiple RND, resistance nodulation division, pumps in Salmonella). Quantifying how much substrate 
is pumped out of a cell must also capture how much has first entered (or later re- entered) the cell, e.g. via a permeable 
membrane. Mathematical modelling can both draw all of these processes together and unravel them from each other. The 
framework in [37] is a neat example of this. The authors present a detailed combined modelling and experimental study 
whereby a model is developed that relates internalized antibiotic with growth rates of the cells, thus enabling them to make 
predictions about the efflux capabilities of bacteria (here via the MFS, major facilitator superfamily, effluxers in E. coli) 
given measurable data.

Similarly, [38] and [39] perform curve fitting to dose- dependent data to estimate the efflux capabilities of E. coli with 
respect to cephalosporins and penicillins, respectively, under specific conditions. The studies reinforce the distinction 
between minimum inhibitory concentrations (MICs) and efflux measurements: low MICs do not necessarily correspond 
with no efflux, as the study finds that the cells could expel substrates not previously believed to be effluxed because 
they could kill cells at relatively low concentrations (low MIC). This highlights the importance of permeability in 
overall internalized substrate concentration – the cells can only efflux what manages to get across the membrane in 
the first place.

This crucial balance between permeability and efflux is also investigated in [40, 41]. The first compares efflux efficiency 
for different types of pumps (e.g. a single pump versus two pumps in parallel or series across the cytoplasmic or outer 
membranes). The second fits two phases (initial substrate uptake followed by long- term adjustment) to previously published 
accumulation data [42]. The resulting parameters suggest early rapid accumulation of the substrate followed by a decrease 
in cell permeability. This compares favourably against more recent experimental data that demonstrate that changes in 
substrate accumulation in later growth are dominated by changes in permeability rather than efflux [43].

All modelling studies perform quantification in some sense (this may be absolute, relative or comparative) and those discussed 
in this section represent just a small sample of these.
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DISCUSSION
Once a reliable mathematical model has been created, it is relatively straightforward to run in silico experiments – in some cases 
thousands of ‘experimental conditions’ can be ‘tested’ in a matter of minutes at the click of a button, and this need not always be 
performed by a specialist. These experiments can compare, for example, in silico wild- type strains against strains with single or 
multiple gene knockouts, ‘rewiring’ of the circuitry and different dosing strategies (this could be different quantities, different 
timings, tapered dosing, for instance). The possibilities are combinatorially vast. Further information can be gleaned by analytically 
examining the models – this can be more challenging technically, but can be particularly fruitful and less dependent on relevant 
experimental data. However, achieving the reliable model in the first place is a nontrivial exercise.

The modeller needs the appropriate level of knowledge of the biological system to determine which aspects of it need to be considered 
– too much detail and the model becomes intractable, not enough and it is too simplistic to yield significant insight beyond what 
is already known. While progress can be made without complementary experimental data, the two combined is significantly better 
and many of the studies discussed here demonstrate this. Sometimes, the most helpful data are not the data that would be routinely 
generated in the laboratory and so a certain level of open mindedness and trust is required (the same goes in the other direction, 
where, for example, modellers may be asked to answer questions that do not appear at first to have significant mathematical interest). 
This process is made easier if both complementary skills are housed within the same research group (or even better, researcher), but 
this is still somewhat rare. All of the above, however, can be achieved across researchers, departments and universities, provided that 
all parties communicate effectively.

Mathematical modelling is not infallible. Constructing a model where every possible factor is accounted for is unrealistic. Simplifying 
assumptions must be made and these must be continually tested. For instance, an assumption about the abundance of a particular 
protein (meaning its concentration need not be tracked in the model) may only be valid under certain conditions. If the model 
investigations stray into conditions where this assumption is invalidated, the model must be updated. Similarly, given how rare it is to 
have enough data to estimate rate parameters, it can be tempting to put too much confidence in those that have been estimated when 
the data used for this may have come from a limited set of experimental conditions. It is critical to still perform parameter sensitivity 
analyses to probe and question these estimates.

An often- heard criticism addressed at modelling is that, without experiments, it does not provide definitive answers (rather 
predictions and hypotheses), yet the same could be said of many in vitro experiments that are often performed under very 
specific conditions. Ethidium bromide as a surrogate for antibiotics has already been mentioned, and laboratory strains 
of bacteria (e.g. E. coli K12 or Pseudomonas aeruginosa PA01), and growth media (e.g. LB or BHI broth) are often chosen 
for experimental consistency over strains or solutions isolated from the environment or infections. These experimental 
‘simplifications’ can themselves be considered to be models of a different kind.

Another criticism of modelling is that in some cases the model results simply lend more weight to what we already believe to 
know about a system, but the extra it can tell us (e.g. quantification of an aspect, predictions about the effects of perturbing 
the system) should not be overlooked. It is correct, however, that – whenever possible – models should not be considered in 
isolation. Often where they play their most useful role is in suggesting the optimal experimental avenue to answer a given 
question. Mathematical modelling can enhance and accelerate experimental work, not replace it.

While understanding efflux pumps is clearly important in combatting antimicrobial resistance, it is not the only thing 
that matters and mathematical models can be expanded to account for additional aspects: the bactericidal/bacteriostatic 
action of the antibiotic, interplay with the host immune response, dosing regimens and patient heterogeneity are just a 
few examples. In particular, mathematical modelling has a bright future in personalized medicine and the optimization of 
treatment regimes [44–46].

Mathematics is of course not the only discipline that can help – physics and chemistry are already routinely used in many 
laboratories, and collaborations with behavioural scientists will help to predict and counteract lack of adherence to proposed 
treatment regimes in personalized medicine, for example. There are countless ways in which multiple disciplines can come 
together to tackle problems in microbiology.

The goal of this paper was not to provide extensive details on how modelling has benefited the efflux community or vice 
versa (readers are strongly encouraged to read the original studies for many interesting findings), but rather to forge 
more multidisciplinary collaborations of the kind discussed here. When done effectively and with shared goals, bringing 
researchers together from different backgrounds helps to view problems from different perspectives, ask new questions 
and provide new routes to answers.
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