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The role of platelet mediated
thromboinflammation in acute
liver injury

Sean M. Morris1 and Abhishek Chauhan1,2*

1The Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom, 2Institute of
Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
Acute liver injuries have wide and varied etiologies and they occur both in patients

with and without pre-existent chronic liver disease. Whilst the pathophysiological

mechanisms remain distinct, both acute and acute-on-chronic liver injury is typified

by deranged serum transaminase levels and if severe or persistent can result in liver

failure manifest by a combination of jaundice, coagulopathy and encephalopathy.

It is well established that platelets exhibit diverse functions as immune cells

and are active participants in inflammation through processes including

immunothrombosis or thromboinflammation. Growing evidence suggests

platelets play a dualistic role in liver inflammation, shaping the immune response

through direct interactions and release of soluble mediators modulating function

of liver sinusoidal endothelial cells, stromal cells as well as migrating and tissue-

resident leucocytes. Elucidating the pathways involved in initiation, propagation and

resolution of the immune response are of interest to identify therapeutic targets.

In this review the provocative role of platelets is outlined, highlighting beneficial

and detrimental effects in a spatial, temporal and disease-specific manner.

KEYWORDS

platelet, innate immunity, liver failure- therapy, acute on chronic liver failure (ACLF), ALF,
liver, thromboinflammation, immunothrombosis
1 Introduction

Acute liver inflammation as a result of hepatic injury can occur both in patients with

and without pre-existent liver disease. Acute failure (ALF) occurs in the former,

specifically when a patient with no antecedent history of liver disease develops

significant liver dysfunction due to an acute hepatocellular insult (1). ALF is

characterized by deranged liver biochemistry, jaundice, coagulopathy and

encephalopathy (1). Viral hepatitides are the leading cause of ALF in the Asia and

Africa whilst in the West the majority of ALF due to drug-induced liver injury

[acetaminophen (APAP) overdose] (1). Treatments options for APAP-induced ALF

are limited (2) and treatment is therefore based largely around supportive care often in an

intensive care setting; ultimately liver transplantation may be required (1). Ten percent of
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liver transplants in the West are due to acute liver failure (1).

Dilemmas surrounding timing of liver transplantation,

prognosis and donor shortage highlight the need for disease

modifying treatments in patients with ALF (3).

Acute-on-chronic liver failure (ACLF) on the other hand

occurs in patients with established chronic liver disease or

cirrhosis. Multiple stages of cirrhosis are recognized; in the

compensated cirrhosis phase symptoms are modest and

mortality low. Acute liver injuries result in hepatic and systemic

inflammation in cirrhotic patients which then drive hepatic

decompensation as manifest by the development of one or a

combination of ascites, portal hypertensive gastrointestinal

bleeding and or encephalopathy (4). The one year mortality

increases from 3% in patients with compensated cirrhosis to

57% with acute decompensation; median patient survival falls

from 12 years to only 2 years (4). There is a subgroup of patients

that after acutely decompensating develop progressive extrahepatic

organ failures on a background of severe systemic inflammation

(5), this syndrome is referred to as ACLF (6) and has a short term

mortality as high as 80% at 28 days (7); ACLF in fact represents the

leading cause of mortality amongst patients with decompensated

cirrhosis (7). Precipitating events for decompensation and

eventually ACLF in patients with established cirrhosis include

drugs, infections, bleeds and flares of the underlying disease (4).

There a re d i ff e rence s and s imi la r i t i e s in the

pathophysiological responses that underpin the development

of ALF and ACLF, both involve a complex interplay between

damaged hepatocytes, liver sinusoidal endothelial cells (LSECs),

resident and circulating immune cells that initiate and potentiate

inflammation but also determine resolution. Platelets are key

protagonists in a number of these processes. Known historically

for their hemostatic function at sites of vascular injury, it is now

well established that platelets participate actively in the immune

response intimately linking thrombosis and inflammation, in a

process described as thromboinflammation (8–11). Whilst

platelets are clearly involved in acute liver inflammation (12,

13), the involvement is likely to be stage and location specific

varying in patients with and without pre-existent liver disease

(14, 15). Of particular interest in the treatment of liver diseases is

defining coagulopathy sparing platelet activation pathways (12,

16). Here we discuss the dualistic roles of platelets in the

initiation, amplification and resolution of acute liver injury

and how this drives the development of ALF and ACLF.
2 Acute liver failure and acute-on-
chronic liver failure

2.1 Acute liver failure

Sterile inflammation is a response to host cell damage in the

absence of pathogens, a key step in restoration of homeostasis,

however, becomes a pathological process in several causes of
Frontiers in Immunology 02
ALF including drug-induced liver injury, alcoholic hepatitis,

non-alcoholic steatohepatitis and ischemia-reperfusion injury

(17, 18). Central to this condition is the release and recognition

of damage-associated molecular patterns (DAMPs) via pattern

recognition receptors (PRRs). DAMPs are self-molecules with an

ability to activate inflammation (19) including a number of

different proteins, nucleic acids and mitochondrial components

(20). They are released in inflammatory cell death, pyroptosis,

necrosis and necroptosis (18, 21), in addition to non-

inflammatory cell death during secondary necrosis of

apoptotic bodies (22). PRRs are highly conserved receptors,

originally discovered for their role in responding to pathogen

associated molecular patterns (PAMPs), of which Toll-like

receptors (TLRs) are best studied, responsible for promoting

inflammation through cytokine production, chemokine

production and expression of ligands involved in leucocyte

adhesion and activation (17). In the liver, immune surveillance

is performed by a number of resident and circulating leucocytes.

Kupffer cells are particularly important sentinel macrophages of

the liver participating in the immune response through detection

of injury, leucocyte recruitment and mediate tissue repair (23).

Importantly it has been demonstrated that platelets are the first

cells to accumulate at sites of injury within the liver, thus

generating interest into their role in the disease process (24).
2.2 Acute-on-chronic liver failure

In ACLF the main driver of widespread tissue injury is a

systemic hyperinflammatory response (25), arising frommassive

release of inflammatory mediators including cytokines,

chemokines, growth factors and bioactive lipid mediators. This

leads to immune cell activation and subsequent immune-

mediated tissue damage (26). Little is known about exact

triggers however is likely to involve recognition of both

PAMPs and DAMPs via PRRs. Approximately one-third of

cases involve bacterial infections (27), attributed to bacterial

translocation across the intestinal lumen (28). Inflammatory cell

death, necroptosis and pyroptosis, is common in advanced liver

disease triggering release of DAMPs propagating the immune

response (29). The hyperinflammatory response often co-exists

with innate immune dysfunction at humoral, physical and cell-

mediated level (26). The condition is characterised by increased

pro- and anti-inflammatory mediators (30), with the prevailing

phenotype temporally and spatially dependent, although

immunodeficiency has greater importance in advanced disease

(31). Bernsmeier et al. (32), proposed a model whereby

exaggerated inflammatory responses to DAMPs and PAMPs in

cirrhosis promotes polarization of monocytes/macrophages to

immunoregulatory phenotypes. In the presence of endothelial

dysfunction, reverse migration of these regulatory cells leads

to population expansion in distant organs and global

immunosuppression. One might hypothesize that populations
frontiersin.org
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of exhausted leucocytes predispose patients to sepsis, driving

expansion and activation of naïve innate immune cells

potentiating cell damage. Dissecting these pathways, and

elucidating the role of platelets, if any, is key to identify

suitable therapeutic targets.
3 Platelets provide the bridge
between inflammation and
thrombosis in the liver

Platelets possess a range of receptors and a diverse

proteasome facilitating interactions with endothelial cells,

immune cells, the extracellular matrix and other platelets

(Figure 1) (9, 10, 33). Activation leads to platelet

degranulation, through classical glycoprotein (GP) pathways at

sites of vascular injury (9, 10) and more recently discovered

alternative pathways (16), releasing cytokines, chemokines,

vasoactive substances, growth factors and platelet-derived

extracellular vesicles (PEVs) (containing microvesicles,

exosomes and apoptotic bodies) (10, 34). Platelets exhibit dual

roles in inflammation with pro- and anti-inflammatory effector

functions, which are likely to be disease, organ and time-specific

(10). They promote leucocyte recruitment and modulate effector

functions through direct interactions (P-selectin-P-selectin

glycoprotein ligand 1 (PSGL-1), GPIba-macrophage-1 antigen
Frontiers in Immunology 03
(MAC-1, a complement receptor), GPIIbIIIa-MAC-1 through

fibrinogen and CD40-CD40L pairings (35, 36)), chemokine/

cytokine secretion and increasing vascular permeability (9, 10).

They provide a link between innate and adaptive immunity,

supporting antigen presentation and lymphocyte function (37).

At sites of inflammation platelets also limit bleeding (38)

through physical sealing and tightening of endothelial

junctions (39). During injury resolution, platelets promote

regeneration and homeostasis through chemokine, angiogenic

factor and growth factor release (9). The interaction between

platelets and leucocytes is bidirectional – leucocytes also

promote platelet activation and, in turn, the coagulation

cascade; this process is termed immunothrombosis (9).

Initially recognized as a means to potentially limit pathogen

spread and enhance clearance; there is now increasing

recognition of the role microthrombi can play in liver

pathobiology by inducing endothelial dysfunction and organ

damage (13, 40).

The role for thromboinflammation is evident in

conditions traditionally associated with thrombosis including

atherosclerosis (41), deep vein thrombosis (42) and reperfusion

injury after ischemic stroke (43). There is also increasing

evidence for a protective role in sepsis, limiting tissue injury

and promoting pathogen clearance (37, 44–48). Clinically,

thrombocytopenia is associated with poor outcomes in sepsis

(44, 46) and platelet transfusion improves bacterial clearance

through macrophage recruitment (48). With a wide array of
FIGURE 1

Platelet receptors and secreted mediators. Platelets express a diverse range of receptors and a large proteasome, secreting a variety of soluble
mediators, facilitating direct and indirect interactions with immune cells, the endothelium and the extracellular matrix. Pattern recognition
receptors, PRRs; G-protein coupled receptors, GPCRs; Immunoreceptor tyrosine-based activation motif, ITAM; Platelet-derived extracellular
vesicles, PEVs.
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PRRs platelets aid with pathogen clearance during viral

infection, but also exacerbate tissue injury in response to

DAMPs (49). Interestingly platelets demonstrate plasticity in

function, as evidenced in major trauma, emphasizing temporally

and spatially diverse roles in the immune response (50). In the

acute phase of injury platelets are poorly responsive to activation

ex vivo, contributing to coagulopathy, followed by hyper-

responsiveness exhibi t ing a pro-inflammatory and

prothrombotic phenotype resulting in secondary organ

damage (50). Pathways modulating platelet immune functions

without impairing normal hemostasis are attractive therapeutic

targets. Whilst this is particularly relevant in acute liver injury

where patients can have an unpredictable coagulopathy, the

bleeding diathesis in ALF is arguably an overstated concern but

beyond the scope of this current review (51, 52).

Immunoreceptor tyrosine-based activation motif receptors C-

type lectin-like receptor 2 (CLEC2) and GPVI share similar

downstream pathways involved in platelet activation (Figure 2)

(16). CLEC2, activated by endogenous ligand podoplanin, is

important in hemostasis although, promisingly, blockade does

not produce a hemorrhagic phenotype (53). On the other hand,

the podoplanin-CLEC2 axis appears to be vital in several models

of thromboinflammation (16). In infection these receptors have

both beneficial and detrimental roles (13, 45–47, 54). GPVI

promotes neutrophil recruitment during pneumonia (54), whilst

inflammatory macrophages promote platelet aggregation via

CLEC2 leading to pathogenic thrombosis in peritoneal sepsis

(13). In other mouse models targeting the podoplanin-CLEC2

axis may have a role in limiting immune activation (45–47).
Frontiers in Immunology 04
In the liver, platelets promote hemostasis, fine tune the

immune response through direct and indirect interactions and

serve as a reservoir of biologically active substances (15).

Unsurprisingly, platelet effector functions are complex and

dualistic – often disease and stage specific (14).
3.1 Platelet interactions with the hepatic
sinusoid endothelium

LSECs constitute a unique vascular bed with a powerful

scavenger system and potent endocytic capacity, aptly placed to

respond appropriately to an array of antigens balancing immune

activation and tolerance (55). LSECs orchestrate the immune

response but also interact with hepatocytes and hepatic stellate

cells in the process of regeneration or fibrosis (55). The hepatic

sinusoids are classically narrow, characterised by low shear stress

and thus initial recruitment is often selectin independent. The

sinusoids express minimal levels of selectins in vivo (56, 57).

Platelet sequestration is observed within hepatic sinusoids in

numerous models of inflammation including APAP-induced

(12), non-alcoholic steatohepatitis (58), ischemia-reperfusion

injury (59, 60) and viral hepatitis (61).

Platelet-endothelial interactions are also bidirectional and

vary between type of injury encountered. Due to the diverse

range of receptors, surface ligands and ability to secrete soluble

mediators, both cell types participate in recruitment, adhesion,

and activation of immune cells (Figure 3A). In vitro studies have

demonstrated platelet adhesion is, in part, integrin mediated
FIGURE 2

ITAM receptor downstream signalling pathway. CLEC-2 and GPVI share common downstream pathways, with activation leading to platelet
aggregation and degranulation, through PLC, PKC and calcium signalling. C-type lectin-like receptor 2, CLEC2; Glycoprotein VI, GPVI;
Immunoreceptor tyrosine-based activation motif, ITAM; Phosphate, P; Src family kinase, SFK; Phospholipase C, PLC; Protein kinase C, PKC.
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(A-C) Platelet interactions drive liver inflammation. At sites of inflammation platelets interact with LSECs leading to chemokine and cytokine
(CXCL8, CCL2, IL-6 and TNF-a) secretion to facilitate recruitment of leucocytes. Platelet-LSEC interaction is partially integrin mediated
(GPIIbIIIa and aVbeta3). PEVs rise rapidly at these sites and may induce apoptosis, driving systemic inflammation. Adherent platelets recruit
neutrophils via P-selectin-PSGL-1 interactions and MAC-1 via GPIba and platelet-derived 5-HT mediates neutrophil transmigration. The
bidirectional relationship between platelet activation, aggregation and NETosis, a key effector function of neutrophils, is a key component of
immunothrombosis and a driver of inflammation in ALF. During homeostasis KCs and platelets interact transiently through GPIb-vWF – A
process of immune surveillance. Monocytes and macrophages are recruited to liver sinusoids through chemoattractant MCP-1. Recently,
CHI3L1 release in models of ALF trigger podoplanin expression on macrophages which promote platelet aggregation and drive inflammation
via CLEC2. Liver sinusoidal endothelial cell, LSEC; Glycoprotein, GP; Tumour necrosis factor alpha, TNF-a; CXC motif chemokine ligand 8,
CXCL8; interleukin 6, IL-6; CC ligand 2, CCL2; Systemic inflammatory response syndrome, SIRS; Platelet-extracellular vesicle, PEV; Neutrophil
extracellular trap, NET; Serotonin, 5-HT; Macrophage-1 antigen, MAC-1; P-selectin glycoprotein ligand-1, PSGL-1; Acute liver failure, ALF;
Kupffer cell, KC; Von Willebrand Factor, vWF; Monocyte chemoattractant protein-1, MCP-1; chitinase-3 like protein-1, CHI3L1; C-type lectin-
like receptor 2, CLEC2.
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(through GPIIbIIIa and aVb3) (62). Platelet adhesion triggers

CXCL8 and CCL2 production by endothelial cells, promoting

leucocyte recruitment. In a model of liver ischemia-reperfusion

injury, LSECs are highly susceptible during cold preservation

(63). Depletion of adenosine triphosphate (ATP) impairs

transmembrane active ion transport leading to cellular swelling

and mitochondrial dysfunction (64). On reperfusion reactive

oxygen species production depletes free radical scavengers,

leading to activation with increased expression of P-selectin

(60). Upregulation of P-selectin promotes platelet adhesion,

activation and LSEC apoptosis (65). In a bile duct (BDL)

model of cholestatic liver injury of mice, platelet accumulation

promotes leucocyte sequestration and hepatocyte damage in a

partially p-selectin dependent manner (66). In this model, the

role of LSEC podoplanin expression has been explored (67).

Podoplanin expression is increased in BDL-treated mice and

those pre-treated with anti-CLEC2 antibodies had reduced

hepatic inflammation and subsequent fibrosis. The authors

hypothesized platelet-derived serotonin (5-HT) released on

activation of CLEC2 was responsible for reduced injury and

promoting regeneration. Plasma serotonin was found to be

raised in untreated BDL-mice. PEVs have been shown to

induce endothelial cell apoptosis in models of sepsis (68). In a

study of patients presenting with ALF (50% APAP-induced),

increased levels of circulating microparticles were associated

with presence of systemic inflammatory response syndrome,

high-grade hepatic encephalopathy and death or requirement

for liver transplantation (69). This may implicate PEVs in

driving inflammation in ALF or simply highlight their utility

as a marker of systemic inflammation. In ischemia-reperfusion

injury, PEV levels increase rapidly at initiation of injury (70) and

inhibition of microparticle release has been shown to reduce

degree of injury (71). Endothelial cells interact with resident and

migrating leucocytes to promote platelet adhesion and

activation. In a model of ischemia-reperfusion injury,

migrating CD4 T cells were shown to interact with endothelial

cells to promote platelet adhesion (72) and Kupffer cells

produced a similar effect via tumor necrosis factor (TNF)-a
secretion (73). Bidirectional communication promotes a self-
Frontiers in Immunology 06
perpetuating cycle of inflammation leading to significant

immune-mediated damage. These murine and human data

reveal how platelets modulate the inflammatory landscape in

acute liver injury in non-fibrotic livers to potentially drive ALF.

3.1.1 Platelets driven thromboinflammation
impairs the hepatic microcirculation

Evidence for thromboinflammation mediated liver damage

in acute liver injury has clearly been demonstrated in viral

models of murine hepatitis. Activated platelets in these models

reduce sinusoidal blood flow through the secretion of

vasoactive mediators including 5-HT, which then drives the

development of inflammatory intrahepatic microthrombosis.

Thromboinflammation thus directly delays effector cell

recruitment reducing viral clearance and enhancing liver

damage (74). During homeostasis, surface expression of CD39

on LSECs cleave ATP and adenosine diphosphate to adenosine

monophosphate limiting platelet activation (75). In reperfusion

injury, for example during ischemic hepatitis, CD39 expression

is reduced promoting platelet activation via ATP. Injury is again

potentiated through increased vascular tone and reduced blood

flow from platelet-derived thromboxane A2 and 5-HT (59).

Historic models reveal that during acute liver injury in rats

endothelial damage causes the deposition of platelet rich

thrombi within hepatic sinusoids (76). These models

demonstrate that thromboinflammation disrupts hepatic

microcirculation (77); reduced sinusoidal blood flow

exacerbates hepatocyte dysfunction, increases DAMP

expression and amplifies inflammation. These data provide a

cogent explanation to how platelet driven thromboinflammation

can drive both de novo acute liver failure for instance in virus

induced ALF but also decompensation and ACLF in patients

who contract a viral infection or suffer an ischemic hepatitis on a

background of established liver cirrhosis.

Non-selective beta blockers are used in cirrhosis to reduce

portal pressure. They also exert beneficial non-hemodynamic

effects in relation to bacterial translocation, particularly reducing

incidence of ACLF secondary to bacteria-induced systemic

inflammation (CANONIC study) (78). Recently reduced von
frontiersin.org
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Willebrand Factor (vWF) levels, as a marker of endothelial

dysfunction, were identified as a possible marker of non-

hemodynamic non-selective beta blocker effect (79). This

may illustrate a link between endothelial dysfunction,

platelets and bacteria-induced systemic inflammation in

ACLF. More recently, examination into predictors of ACLF

development during acute decompensation identified severity

of inflammation as a key determinant of the development of

portal venous thrombosis; again highlighting the link between

inflammation and thrombosis in the context of liver cirrhosis

(80). Further evidence for the role of immunothrombosis is

observed in severity of decompensated cirrhosis (81). Here,

portal and hepatic vein sampling was performed in patients

undergoing transjugular intrahepatic portal systemic shunt

insertion and demonstrated higher markers of platelet

activation, lipopolysaccharide levels and inducible nitric oxide

synthetase in the portal vein. This correlated with clinical disease

severity, linking bacterial translocation and platelet activation

with progression of disease. The specific molecular endothelial

triggers for platelet activation within the liver and how this varies

when comparing cirrhotic to non-cirrhotic livers merits

further investigation.
3.2 Platelet-neutrophil interactions

Neutrophils are one of the key effector cells in the innate

immune system responsible for driving inflammation and tissue

injury in the liver (82–86). They are essential to host defense (87)

but can also contribute to indiscriminate tissue injury and are

responsible for cell damage in many diseases (88, 89). Neutrophil

recruitment and activation is evident in a multitude of acute liver

injuries which can drive acute liver failure including drug-

induced liver injury (82), and ischemia-reperfusion injury (86)

but also ACLF including viral hepatitis (83), alcoholic hepatitis

(84), and non-alcoholic steatohepatitis (85). Neutrophils

infiltrate the site of liver injury within minutes to hours via

stimulated LSECs involves a process of selectin-mediated rolling,

integrin-mediated firm adhesion followed by transendothelial

migration in a well-described recruitment cascade (89).

Recruitment to the liver during inflammation is influenced by

resident Kupffer cells (90–92), LSECs (93) and stromal cells (94).

Necrotic cells release necrotaxis signals including mitochondrial

formylated peptides to facilitate precise homing (91).

Neutrophils migrate through intravascular channels and

exhibit swarming behaviour at the site of injury (91). In

addition to initiating and propagating inflammation,

neutrophils promote resolution and a return to homeostasis in

focal thermal (24), APAP- (12) and carbon tetrachloride-induced

(95) liver injury through clearance of cellular debris, production

of extracellular matrix and normal revascularization. During

ACLF neutrophils exhibit an exhausted phenotype –

characterised by high levels of activation (96) but impaired
Frontiers in Immunology 07
core functions including phagocytosis, reactive oxygen specifies

production and degranulation (97). Lower CXCR1/2 expression

on neutrophils, a key chemotactic receptor, predicted poor

outcome in hepatitis B-virus (HBV) related ACLF (98). On the

other hand, neutrophil-to-lymphocyte ratio has been shown to

be an independent predictor of prognosis in HBV ACLF (99).

Interestingly, patients with ratios ≥3 had lower mortality, but

those with >6 were at greater risk of mortality in ACLF.

3.2.1 Platelets facilitate neutrophil recruitment
to the liver

Platelets contribute to neutrophil recruitment and activation

through ligand-receptor interactions and chemokine secretion

(Figure 3B) (10, 100, 101). Initial interactions between platelet P-

selectin and neutrophil PSGL-1 are critical for recruitment,

activation of MAC-1 and LFA-1 (lymphocyte function-

associated antigen 1, an integrin expressed on leucocytes) and

release of neutrophil extracellular traps (NETs) (102, 103). The

importance of platelet-neutrophil interactions via p-selectin is

illustrated by improved survival of p-selectin deficient mice in an

ischemia-reperfusion injury model of acute liver injury (104).

MAC-1 allows direct binding with platelets via GPIba and

indirectly to GPIIbIIIa via fibrinogen (105). Recruitment is

further amplified through secretion of cytokines, chemokines

and growth factors including platelet factor 4 (PF4), interleukin

(IL)-1, RANTES, beta-thromboglobulin, platelet-derived growth

factor (PDGF), platelet-activating factor, CXCL7, migration

inhibiting factor, thromboxane A2 and 5-HT (10). The

interaction between platelets and neutrophils in the liver has

been observed in models of sterile injury (24). Using intravital

confocal microscopy, platelets were observed to line the

endothelium at sites of focal injury facilitating neutrophil

rolling through GPIIbIIIa dependent mechanisms.

ACLF, often triggered by sepsis, rapidly leads to multiorgan

dysfunction (6), and platelets may contribute to development of

the systemic inflammatory response. In a mouse model of

endotoxemia-mediated acute lung injury, P-selectin-PSGL-1

interactions were investigated (106). Administration of PSGL-1

blocking antibody reduced recruitment of neutrophils, platelet-

neutrophil aggregates, lung injury and survival. It may be of

interest to assess the role of this interaction in models of ALF

and ACLF. Whilst platelet-neutrophil interactions may

exacerbate injury, recent work may highlight a beneficial role

for platelet-derived 5-HT in neutrophil recruitment to sites of

inflammation. Giovanni et al. (107), demonstrate 5-HIAA, a

metabolite of platelet-derived 5-HT, mediates neutrophil

recruitment and transmigration to inflamed tissues via GPR35.

Here, treatment with serotonin inhibitors diminished

recruitment of neutrophils and clearance of peritoneal bacteria.

How platelets influence neutrophil recruitment and final

phenotype within the damaged liver and whether parallels from

data in other organs can be extrapolated to the liver is key to

develop rational antiplatelet therapies in liver disease.
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3.2.3 Platelet driven NETosis: Key to both ALF
and ACLF?

Neutrophils release NETs as an antimicrobial effector

mechanism (108, 109). These consist of a fibrous mesh of

decondensed DNA mixed with a number of nuclear and

granular proteins capturing and neutralizing microbes in an

attempt to prevent dissemination (110). In the liver, NETs are

released in response to infection, ischemia and sterile

inflammation (111). Whilst providing an important role in

pathogen defense, NETs are cytotoxic towards host cells (112).

The neutrophil-platelet-NET axis is a complex interaction

whereby platelet-mediated recruitment and activation of

neutrophils at sites of inflammation triggers NET release

(113). NET release in response to platelet activation is

integrin- (114) and potentially selectin-mediated (115).

Histone and polyphosphate entities within the NET matrix

subsequently activate platelets through TLRs and directly

activate coagulation within the bloodstream (116, 117). The

neutrophil-platelet-NET axis illustrates the important role for

link between infection, inflammation and thrombosis enhancing

host immunity (118). In models of sepsis (116, 119), and recently

in a galactosamine hydrochloride and lipopolysaccharide model

of ALF (120), NETs contribute to tissue damage. Importantly,

inhibition of NET generation or DNAse to breakdown NET

reduces observed collateral tissue damage (116, 119). Cell-free

DNA, often referred to as a NET marker (albeit somewhat non-

specific) is associated with mortality in ACLF though the link

with the more specific myeloperoxidase-DNA was not

established (121). In a study by von Meijenfeldt et al (122),

676 patients with ALF were recruited from the U.S ALF Study

group. Forty-six percent had APAP-induced ALF. Cell-free

DNA and myeloperoxidase-DNA complexes were measured in

comparison to healthy controls and tissue obtained at liver

transplantation was stained for NETs in 20 patients. Levels of

cell-free DNA and myeloperoxidase-DNA complexes were 7.1-

fold and 2.5-fold higher than healthy controls respectively. High

cel l - free DNA was not associated with morta l i ty .

Myeloperoxidase-DNA levels were 30% higher in patients with

ALF who died or required urgent liver transplant. The observed

differences between ALF and ACLF may be explained, in part, by

innate immune cell dysfunction in ACLF. NETs may represent

an attractive therapeutic target to reduce immunothrombosis

and cytotoxic cell damage, however this needs to be carefully

balanced with loss of beneficial immune function. In animal
Frontiers in Immunology 08
models of sepsis, disruption of NET formation reduced liver

injury and microcirculation thrombosis without impairing

bacterial clearance (123–125). More research is required to

accurately measure NET formation (108) and their impact in

different models of liver injury.
3.3 Platelet-monocyte/macrophage
interactions

Monocytes and macrophages have a critical role in

homeostatic immune mechanisms, immune-mediated liver

injury, fibrosis and regeneration (126). Infiltrating the site of

injury 24-48hrs after neutrophils, monocytes perform diverse

functions during ALF including inflammatory mediator release,

clearance of dead cells, stimulation of the extracellular matrix

and parenchymal regeneration (18). Distinct subsets of

monocytes possess predominately inflammatory or anti-

inflammatory phenotypes (Table 1) (18). Differentiation into

macrophages is also an important function (127, 128). Platelet

interactions are evident in immune surveillance functions of the

liver, initiation of inflammation, recruitment of monocytes and

polarisation to a pro-inflammatory macrophage profile

(Figure 3C) (14, 15). Monocytes, sharing common regulatory

and effector properties with neutrophils, are recruited to

inflamed endothelium by platelets in a similar fashion (15).

Efficient monocyte recruitment requires specific stimuli, namely

monocyte chemoattractant protein 1 (MCP-1) (10).

The interaction between Kupffer cells and platelets is an

important step in initial pathogen detection. Platelets survey

macrophages through transient GPIb-vWF interactions during

homeostasis (129). In the presence of blood-borne bacteria,

sustained platelet-macrophage interactions are observed

through vWF-GPIIb/IIIa encasing the bacterium and

facilitating clearance. Increasing evidence is suggesting that the

podoplanin-CLEC2 axis is central to platelet interactions with

macrophages. Recently, Shan et al. (130), identified a novel

interaction between platelets and macrophages potentiating

APAP-induced liver injury through chitinase-3 like protein-1

(CHI3L1). CHI3L1 is a soluble protein released by multiple

immune cells and found to be raised in a range of liver disease

(131). In this study, CHI3L1 interaction via CD44 on

macrophages upregulated podoplanin expression and

subsequent platelet aggregation via CLEC2. In this model,
TABLE 1 Monocyte subsets.

Human Subsets Mouse subsets

Classical CD14++CD16- Inflammatory CCR2hi, CX3CR1
lo

Intermediate CD14++CD16+ Anti-inflammatory CX3CR1
hi, CCR2lo

Non-classical CD14+CD16++
Distinct subsets of monocytes exist, characterised by surface receptor expressions and possess differing trafficking patterns and effector functions.
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disruption of the pathway at the level of CHI3L1 and

podoplanin-CLEC2 greatly inhibited liver injury after APAP

administration. In the model of APAP-induced liver injury

(132), platelet depletion greatly reduced tissue damage and the

study by Shan et al (130), highlights one potential pathway

underlying this – its role in the other models of liver injury are

yet to be determined.

3.3.1 Divergent roles in ALF and ACLF –
Polarisation, plasticity and immunoparesis

Monocytes participate in early stages of the innate immune

response to acute liver injury through cytokine production,

antigen presentation and polarisation to inflammatory

macrophages (30). Plasticity in response to the local

microenvironment is demonstrated with anti-inflammatory

monocytes appearing 12-24 hours later promoting resolution

via IL-10, transforming growth factor beta (TGF-b) and vascular
endothelial growth factor (VEGF) (133–136). This arises from

recruitment and in situ reprogramming (136). Apart from

monocyte differentiation, specific macrophage populations

resident to the peritoneal cavity, characterised by GATA6

expression, are recruited to the inflamed liver to assist in liver

repair (137–140). This appears to be mediated by ATP release

and exposed hyaluronan (137, 138). Recently, Jin et al. (139),

demonstrated through dual recombinase mediated genetic

GATA6+ lineage tracing, macrophages are only recruited to

surface of liver during carbon tetrachloride-induced liver injury,

questioning a potential role in ALF.

In ACLF, there is evidence of dampened function,

characterised by reduced human leukocyte antigen (HLA)-DR

expression, correlated with high mortality rates and increased

prothrombin time (31). Underlying immunoparesis in ACLF,

there is also expansion of several monocyte populations

including MERTK+ (32), monocytic myeloid-derived

suppressor cells (141) and intermediate CD14++CD16+ (142)

with classical monocytes also exhibiting impaired function,

characterised by reduced TLR2/4 expression, phagocytic

activity and upregulation of genes related to dampened

immune response (142). Monocyte/macrophage polarisation

and plasticity is influenced by platelet activity. In vitro studies

by Lee et al. (143), demonstrated adenosine diphosphate-

activated platelets induced CD16 expression on CD14+CD16-

monocytes from platelet-derived TGF-b and monocyte-derived

IL-6. These monocytes preferentially differentiated towards M2

macrophages expressing CD163 and MerTK. It may be

postulated that in platelet-monocyte interactions in advanced

cirrhosis contributes to immunoparesis through expansion of

MerTK macrophages precipitating widespread inflammation in

ACLF. In contrast, in vitro lipopolysaccharide-treated

monocytes co-incubated with platelets are skewed from an M2

towards a pro-inflammatory M1 phenotype demonstrating

increased TNF-a expression, improved bacterial phagocytic

activity and reduced healing capability (48). In vivo platelet
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expressing macrophages, improving bacterial clearance and

survival in septic mice. In both of these settings, blockade of

CD11b-GPIb interaction abolished the effect. The effect of

platelet-macrophage interactions in liver disease is not limited

to the hepatic environment as in a murine model of acute liver

injury monocyte-platelet aggregates modulated microglial

activation and drove the development of sickness behaviors in

TLR4-dependent pathways (140).

Platelet interactions with monocytes and macrophages are

complex and diverse. Given the distinct cellular niches that exist

within fibrotic livers (144), studying spatio-temporal platelet

driven immunothrombosis in acute and chronic liver disease

and how this influences macrophage phenotype and function in

liver inflammation remains an exciting avenue to study.
4 The role of platelets in resolution
of inflammation

Platelets play a provocative role in the resolution of

inflammation with the ability to potentiate immune-mediated

damage, promote regeneration and drive fibrosis (Figure 4). This

complex relationship may reflect limitations in models used to

study liver inflammation, represent gaps in our knowledge or

identify roles for platelets that vary throughout and in different

types of injury.

During liver regeneration, hepatocyte proliferation is

controlled by a multitude of extracellular signals including

cytokine, growth factor and metabolic pathways (15). TNF-a
and IL-6 are cytokines central to regulation of liver regeneration

whilst growth factors such as hepatocyte growth factor,

endothelial growth factor, Insulin-like growth factor-1 and

PDGF drive cell cycle progression (145). Platelets accumulate

within the space of Disse rapidly after partial hepatectomy and

have an active role in hepatic regeneration (146–148). Such a

role for platelets is also appreciated in the clinical setting in a

recent meta-analysis of 3966 patients (149). In this study

preoperative thrombocytopenia constituted a significant risk

factor for post-hepatectomy liver failure. Platelets mediate

regeneration through interactions with LSECs, Kupffer cells

and hepatocytes. These interactions are facilitated by direct

contact and platelet-derived soluble mediators including

hepatocyte growth factor, insulin-like growth factor 1, PDGF,

VEGF, 5-HT, adenosine diphosphate and ATP (150).

Downstream cascades key to these pathways include TNF-a/
NF-kB, Il-6/STAT3, phosphatidylinositol 3-kinase (PI3K)/Akt

and ERK1/2 (15, 151).

LSECs produce mitotic substances, specifically IL-6,

hepatocyte growth factor and VEGF (152). Direct adhesion

between platelets and LSECs induces IL-6 release, in turn,

leading to hepatocyte growth factor secretion from hepatic

stellate cells promoting hepatocyte regeneration in vitro (153).
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This is likely controlled through podoplanin-CLEC2 signalling

(154) and expression of vWF (155). Soluble mediators released

by activated platelets including TGF–b1 (156) and sphingosine-

1-phosphate (157) are also sufficient to support IL-6 production

by LSECs.

Kupffer cells are an important source of regenerative

cytokines TNF-a, IL-6 and IL-1b (126). Depletion of Kupffer

cells impairs hepatocyte proliferation during liver regeneration

in cholestatic injury (158), alcohol-induced injury (159) and

partial hepatectomy (147). Platelets contribute to regeneration

through promoting TNF-a production by Kupffer cells, however

uti l ize alternate pathways in Kupffer cel l depleted

environments (147).

Platelet-derived 5-HT is an important mediator of liver

regeneration, most likely through production of growth factors

at the site of injury (160, 161). Recently a multi-center trial has

demonstrated that perioperative use of selective serotonin

reuptake inhibitors and serotonin noradrenaline reuptake
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resection further supporting a role for 5-HT (162).

Within the space of Disse, platelets are also able to interact

with hepatocytes directly. Internalization of platelets and

platelet-like particles followed by horizontal transfer of mRNA

has also been demonstrated to contribute to hepatocyte

proliferation (163). Linking coagulation and inflammation,

liver-specific tissue factor release promotes platelet

accumulation through fibrin(ogen) deposition, facilitating

resolution after partial hepatectomy (164).

Whilst it is generally accepted that platelets are able to

promote liver regeneration through a variety of mechanisms,

there is emerging evidence implicating them in delaying

resolution (12, 77). Neutrophils are not only central drivers of

inflammation but also promote resolution during sterile injury

(24). Recently our group demonstrated signalling via

podoplanin-CLEC2 between platelets and inflammatory

macrophages reduced TNF-a secretion and subsequent
FIGURE 4

Platelets promote regeneration, perpetuate inflammation and drive fibrosis. The role of platelets in the resolution of inflammation is dualistic,
potentiating immune-mediated damage, promoting regeneration and driving fibrosis. Through CLEC2, platelets activate LSECs to produce IL-6,
TNF-a, HGF and VEGF which, in turn, triggers HGF release from HSCs to stimulate hepatocyte regeneration. HSC activation also leads to
myofibroblast differentiation and collagen synthesis. Neutrophils, critical to resolution of inflammation, are also recruited through cytokine and
chemokine release. In an APAP model of ALF, however, platelet-macrophage interactions through CLEC2 reduce neutrophil recruitment and
perpetuate inflammation. Liver sinusoidal endothelial cell, LSEC; Kupffer cell, KC; Hepatic stellate cell, HSC; interleukin, IL; Tumour necrosis
factor alpha, TNF-a; Insulin-like growth factor-1, IGF-1; Hepatocyte growth factor, HGF; Vascular endothelial growth factor, VEGF; Platelet-
derived growth factor, PDGF; C-type lectin-like receptor 2, CLEC2; Acetaminophen, APAP; Acute liver failure, ALF.
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neutrophil recruitment to facilitate resolution of inflammation

in APAP toxicity (12). Moreover, increased vWF deposition and

impaired clearance has been attributed to persisting platelet

accumulation in APAP-induced liver disease (77). In this

model, deficiency or inhibition of vWF accelerated resolution.

These results add a further layer of complexity to our

understanding highlighting that targeting platelets may be

temporally sensitive but also vary in different models of liver

injury (12, 77, 155). Partial hepatectomy is the most commonly

studied model of liver regeneration, however pathways involved

in injury and resolution vary in other models (165). Thus,

further investigation is required in different models of ALF

and ACLF to elucidate specific roles of platelets and identify

potential therapeutic targets.
5 Conclusions

Platelets play a vital role at all stages of acute liver injury

through direct and indirect interactions with immune cells,

stromal cells and the endothelium. Their involvement is both

beneficial and detrimental. On one hand, they can intelligently

sense and appropriately respond to pathogens, recruit leucocytes

and promote regeneration at the resolution of inflammation. On

the other, they exaggerate immune-mediated tissue injury,

worsen hepatocyte dysfunction through microthrombi

formation and delay mechanisms of resolution. Pathways

controlling platelet effector function, such as the podoplanin-

CLEC2 axis, represent an attractive therapeutic target however

the disease-specific and temporal roles of platelets need to be

carefully dissected in order to develop effective disease

modifying treatments.
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