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This study proposes a hybrid approach for combining mechanistic (first principle) and 
Machine Learning models. This approach applies to discrete (particle-based) systems 
and continuous systems that can be recast as a particle problem by a framework like 
Smoothed Particle Hydrodynamics. The governing equations are written as a set of 
equations describing the motion of the particle system. Artificial Neural Networks are 
used to derive from data the forces acting on the particles, while the system’s path in 
the state-space is calculated with the equation of motion. This ensures that fundamental 
physical principles such as Newton’s laws of motion are always satisfied in a strong 
sense. Neighbour lists automatically introduce dimensionality reduction into the system 
by functioning as physics-optimized convolutions. Therefore, the network can be smaller, 
simpler, and more easily trainable than other physics-informed machine learning models. 
The proposed technique is applied to three inverse modelling problems. The method is 
designed to learn the pairwise forces acting between particles without knowing these 
forces from the training data. In fact, the training data contains the total force acting 
on each particle, not the pairwise forces between pairs of particles. Data for Molecular 
Dynamics, Smoothed Particle Hydrodynamics and Discrete Element Method simulations are 
fed into the model that ‘extracts’ their physics and reproduces the simulations with a high 
degree of accuracy. The model’s capability for generalization is noteworthy. As long as the 
underlying physics remains the same, the model can predict the dynamics of systems with 
geometries and boundary conditions very different from those of the training dataset. As 
a remarkable example, a model trained surface-flow data also correctly replicates channel 
flow.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The last few years have witnessed a growing interest in computational methods that combine mechanistic (first principle) 
and Machine Learning (ML) models. A group of these methods, generally known as “physics-guided ML”, “physics-informed 
ML” or “physics-aware AI”, aims at integrating data analysis and mechanistic models to solve a variety of complex or ill-
posed problems such as inverse modelling, model-order reduction and uncertainty quantification. The idea is to combine 

E-mail address: a.alexiadis@bham.ac.uk.
https://doi.org/10.1016/j.jcp.2022.111750
0021-9991/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2022.111750
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111750&domain=pdf
http://edata.bham.ac.uk/744/
http://creativecommons.org/licenses/by/4.0/
mailto:a.alexiadis@bham.ac.uk
https://doi.org/10.1016/j.jcp.2022.111750
http://creativecommons.org/licenses/by/4.0/


A. Alexiadis Journal of Computational Physics 473 (2023) 111750
the ability of first principles models to comply with the well-established laws of physics with the ability of ML to learn 
from data (see [1] and [2] for a review).

To achieve this goal, different techniques have been proposed. Physics-Informed neural networks (PINNs), for instance, 
incorporate physical knowledge into the ML model by adding constraints into the loss function [3], [4]. Other methods, such 
as Graph neural networks (GNNs) [5], design new ML architectures to capture physics-based dependences among variables. 
A third group, known as hybrid physics-ML models, replaces, with ML, one or more components of the mechanistic model 
that are poorly modelled using physics [6].

This study proposes a hybrid physics-ML approach that applies to discrete (particle-based) systems. If the system is 
continuous, it can be recast, at least in theory (in practice it is not always a trivial task), as a particle problem by a method 
like Smoothed Particle Hydrodynamics [7] or similar [8]. In this way, the system can be represented by N non-relativistic 
particles moving according to Newton’s laws of motion. Mathematically, there are several equivalent ways to represent the 
equation of motion. One option is the Lagrange’s equation of motion [9]

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Q i (1)

where qi are a set of generalized coordinates used to describe the motion of the system and q̇i the corresponding momenta. 
L is the so-called Lagrangian, defined as the difference between the kinetic energy T and the potential energy V , and Qi
the generalized dissipative forces. All (physical) particle systems, from molecules to galaxies, must satisfy eq. (1) (or any 
equivalent equation of motion): the difference between one system and another lies in the functional form of V and Qi .

This study proposes a ‘minimalistic’ approach to physics-informed ML. The ML model, and specifically an Artificial Neural 
Network (ANN), will not learn eq. (1), but it will target specific terms like V (more precisely −∇V , the negative gradient of 
V ) and Qi , which represent the forces acting on the particles. This has several implications that are gradually introduced, 
justified, and discussed in the rest of the paper.

1. It guarantees the path of the system is always consistent with Newton’s laws of motion (see, for instance, Sections 4.6
and 5.6): even at the beginning of the training phase, when −∇V and Qi are random functions.

2. We do not need to incorporate constraints into the loss function to progressively steer predictions towards physically 
consistent outputs. Physical consistency is enforced in a ‘strong’ sense (see Section 4.6).

3. The ML model does not reproduce the next frame of the simulation knowing the previous one: this is done by the 
equation of motion. Thus, the ANN can be smaller and more easily trainable (see Sections 4.4, 5.4 and 6.4).

4. In the minimalistic method, neighbour lists play the same role that convolutional layers play in Convolutional Neural 
Networks (CNNs) (see Sections 2, 4.2, 4.3 and 7).

5. The input of the ANN is not the full variable space, but a subset determined by the size of the neighbour lists. This 
reduces the dimensionality of the system but requires a tweak to the loss function (see Sections 4.3, 5.3, 6.3 and 7).

6. The use of neighbour lists ensures that −∇V and Qi are space and time-invariant. The ML model does not see the 
system as a series of image-like inputs, but as a series of neighbour lists that evolve under the action of forces, whose 
functional form remains invariant during the evolution of the system (see Section 7).

In this article, the minimalistic approach is applied to inverse problems involving three different physical models. We 
know the output of a particle simulation, and we want to discover the unknown physics that originated that output. These 
three problems are used as case studies to progressively introduce the methodology. Neighbour lists, which play a funda-
mental role in the method, are discussed in the first case study. The issue of noisy data is tackled in the second case study, 
while a technique for handling unknown boundary conditions is presented in the third. To facilitate the explanation, the 
article does not follow a traditional subdivision into ‘Methods’, ‘Results’ and ‘Discussion’. Each case study has its own ‘Meth-
ods’, ‘Results’ and ‘Discussion’. In this way, the ideas behind the minimalistic approach are gradually introduced together 
with the numerical methods used for each specific inverse problem. Finally, the ‘Conclusions’ section links the three case 
studies into a general view of the minimalist method.

2. Relation to other work

A large amount of work has been performed in the last five years on the topic of learning the dynamics of discrete 
systems. Neural networks were trained to reproduce the Hamiltonian [10,11], Lagrangian [12], [13], or potential [14] of 
discrete systems. The size of the network is proportional to the degrees of freedom of the system and these studies are 
limited to a few degrees of freedom. As the number of particles increases (discrete systems can easily involve millions 
of particles), the complexity of the network makes training more difficult and computationally expensive. For structured 
data, convolutional layers are often used to reduce data dimensionality improving training performance. However, CNNs 
cannot be used for unstructured data such as particle systems. Therefore, new types of networks have been proposed for 
these systems. Examples are Behler-Parrinello neural networks [15], Gradient-domain machine learning [16], Deep Potential 
Molecular Dynamics [14], Hamiltonian neural networks [10], Lagrangian neural networks [13], Graph neural networks [5], 
SympNets [11], SplineCNNs [17], MoNets [18], GMLS-Nets [19] and SpiderCNN [20].
2
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Instead of proposing a new type of network, this paper takes a different direction.
Since similarities between neural networks and particle methods have been noted [22], [23], is it possible that data 

structures commonly used in particle methods can achieve dimensionality reduction in a way similar to convolutions in 
structured data? This study answers positively to this question and identifies these structures with neighbour lists, first 
proposed in 1967 [21]. Convolutional layers extract local features that are translational invariant; similarly, neighbour lists 
capture features in a given neighbourhood that are permutation invariant. However, contrary to convolutional layers, neigh-
bour lists do not need training: their only adjustable parameter is the cut-off radius, which is dictated by the physics of 
the system. In a way, we can consider neighbour lists as a ‘physics-optimized’ substitute of convolutional layers for particle 
systems.

Based on these considerations, this paper shows that, by looking at the system as a collection of neighbour lists rather 
than particles, special network architectures are not required, and feedforward neural networks are perfectly adequate. 
However, as explained in Section 4.3, this will require a modification of the loss function.

3. Inverse problems and case studies

Let us assume, we have a typical output file of a particle simulation that records positions r, velocities v and accelerations 
a of all N particles in the system at different times t . Sometimes, a or v are not stored in the simulation output and must 
be recalculated from r. In this case, depending on the difference between the simulation timestep and the frequency with 
which data are recoded, noise could be introduced into the data in the form of numerical errors. Noise will be discussed in 
Case Study 2. In the following sections, unless otherwise specified, the dataset is assumed noise-free.

The goal of the inverse problem is to calculate the factors that produced the simulations only knowing the output. To 
achieve this aim, we employ an ANN that ‘learns’ the physics of the systems, which, in our case, means the pairwise forces 
−∇V and Qi . However, as explained in Section 4.3, there is a mismatch between the available training data (i.e. the total 
forces acting on each particle) and the output of the ANN (i.e. the pairwise forces exchanged by pairs of particles), which 
requires a tweak to the loss function.

In Case Study 1, the output comes from a Molecular Dynamics (MD) simulation; in Case Study 2, from Smoothed Particle 
Hydrodynamics (SPH); and in Case Study 3, from the Discrete Element Method (DEM). All simulations are two-dimensional 
but can be easily extended to the three-dimensional case. The systematic optimization of the network architecture and 
hyperparameters is beyond the scope of this work. A reasonable network was found by trial-and-error for Case Study 1 and 
applied to the other case studies by changing the input size when necessary.

4. Case study 1, Molecular Dynamics: conservative, ergodic systems

The first case study deals with systems of atoms/molecules simulated with MD. These systems are conservative meaning 
that Qi = 0 and −∇V is a function of the molecular positions only. They are also ergodic: provided enough time, the 
trajectory will eventually visit all parts of the state-space. This helps training since the dataset covers uniformly the state-
space. The next section provides a brief overview of MD; the reader can refer to Allen and Tildesley [24] for more details.

4.1. Molecular Dynamics background

In Molecular Dynamics (MD), the trajectory of particles representing molecules or atoms is calculated by solving eq. (1), 
where interactions between particles are defined by intermolecular forces. In this case study, we consider N particle moving 
in a two-dimensional space contained in a computational box of width Lx and height L y with periodic boundary conditions. 
The generalized coordinates q1, . . . , q2N are given by the coordinates r1(x1,y1), . . . , rN (xN , yN ) of each particle. The system 
is conservative (Qi = 0), and the simulations run in the microcanonical ensemble so that the total energy of the system 
remains constant. Conservative forces acting on the ith particle are derived from the gradient of a scalar potential V (r1, . . . , 
rN )

Fi = −∂V (ri)

∂ri
= −∇V , (2)

which is a function of the particle positions r1, . . . , rN only.
In general, V can be divided into different terms depending on the coordinates of individual molecules, pairs of 

molecules, triplets, etc.

V =
N∑
i

V 1 (ri) +
N∑
i

N∑
j>i

V 2
(
ri, r j

) +
N∑
i

N∑
j>i

N∑
j>k

V 3
(
ri, r j, rk

) + · · · . (3)

V 1 represents the effect on the system of an external field such as gravity, but it may also include interactions at the 
boundaries such as the box walls. In Case Study 1, we do not consider external fields and we apply periodic boundary 
conditions, therefore V 1 = 0. V 2 represents the pair potential, i.e. the forces exchanged by pairs of molecules. V 3 is the 
3
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Table 1
MD reduced units assuming σ ∗=1, 
ε∗=1, m∗=1.

Reduce Unit Formula

Length r∗ r∗ = r
σ

Time t∗ t∗ =
√

ε
mσ 2

Temperature T ∗ T ∗ = kB T
ε

Force F ∗ F ∗ = Fσ
ε

Energy U∗ U∗ = U
ε

Pressure p∗ p∗ = pσ 3

ε

Density r∗ ρ∗ = ρσ 3

Table 2
MD simulation parameters in reduced 
units.

Width simulation box L∗x 20
Height simulation box L∗ y 20
Density r∗ 0.8
Number of molecules N 320
Timestep Dt∗ 0.005
Temperature T ∗ 1
Cut-off r∗

c 2.5

three-bodies potential, i.e. the forces exchanged by triplets of molecules and so on. V 2 is usually the dominant term and, 
most of the time, the only accounted for in MD simulations. Here, we assume V ≈ V 2 and neglect the multi-body terms in 
eq. (3).

To conserve angular momentum, the force between particle i and j in the pair potential V 2 must depends only on the 
magnitude of the pair separation ri j = ||r j − ri ||. Thus, the force excerpted to particle i from particle j can be written as

fi j = f
(
ri j

) = − ∂V

∂ri j
= − ∂V

∂ri j

ri j

ri j
, (4)

where ri j = r j − ri . To conserve linear momentum, it must also be f ji = −fi j .
The simulation is carried out with the classic Lennard-Jones (LJ) pair potential

V (ri j) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

, (5)

where ε is the so-called dispersion energy and σ a measure of the size of the molecules. From eq. (5), we can first derive 
the magnitude of the force

f i j = − ∂V

∂ri j
, (6)

and then, calculating the direction cosines ri j/ri j from the particle positions, we determine the force in eq. (4). In the 
simulation, we use reduced variables, i.e. dimensionless variables reduced on the basis of σ , ε, m (see Table 1).

4.2. Simulation details

Details of the simulation in reduced units are given in Table 2. The simulation is run for 100,000 timesteps and results 
written to the output file every 10,000 timesteps. This output will provide the dataset for training the ANN.

In general, the force f i j decays with ri j . Therefore, to reduce computational time, numerical codes use neighbour lists: 
data structures that maintains a list of all particles within a given cut-off distance of each other. The force f i j exchanged 
between pairs is not calculated for all possible i- j pairs, but only for particles whose distance is within the cut-off radius rc . 
Any particle j with ri j < rc belongs the neighbour list of particle i, while those with ri j > rc are ignored when calculating 
the particle’s total force Fi (Fig. 1).

The input of the ANN can be the neighbour list rather than the whole system of particles reducing the dimensionality of 
the problem from N (total number of particles) to N� (particles in the neighbour list). In this way, the neighbour list works 
as a sort of Lagrangian convolutional layer that is constructed, at each timestep, based on the relative distances among 
particles to optimally represent the physics of the system. Moreover, if the forces are calculated from a pair-potential, we 
can further reduce the size of the input layer from N� to the inputs of the potential. This requires some modifications to 
the loss function as explained in the next section.
4
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Fig. 1. Neighbour list of particle i. Particle i exchanges pairwise forces fi j with all other j particles in its neighbour list. The final force Fi on particle i is 
given by the sum of all fi j forces.

4.3. The minimalistic approach for solving the inverse MD problem

The goal of the inverse problem is to train an ANN to replicate the pairwise forces f i j . However, there are still two 
obstacles before the network can be trained. The first is that the dataset provides accelerations rather than forces and the 
particle mass m is not necessarily known. We can solve this problem by using reduced units (Table 1), which scale forces 
with respect to m making the accelerations ai numerically equivalent to the forces Fi . The second obstacle requires changes 
to the loss function. The output of the ANN is the pairwise force f i j , however, the dataset only provides the total force Fi

acting on particle i. In other words, there is a mismatch between f i j
TARGET, the target we would like to have, and Fi

TARGET, 
the target we actually have. Nevertheless, the total force acting on particle i is related with the pairwise forces between i
and the neighbour particles j

Fi =
N�∑
j �=i

fi j =
N�∑
j �=i

f i j
ri j

ri j
. (7)

Therefore, we can solve the problem by modifying the training loss function. Since f i j
TARGET is unknown, instead of using a 

traditional loss function based on || f i j
TARGET − f i j

ANN ||2, we redefine the loss as

Li =
∥∥∥∥∥∥FT A RG E T

i −
N�,i,∑
j �=i

f AN N
ij

ri j

ri j

∥∥∥∥∥∥
2

. (8)

This is the loss for a single neighbour list for a single timestep. The total loss is obtained by adding the losses Li of all the 
N neighbour lists for all Nt time steps

L =
Nt∑
t

∑N
i

∥∥∥FT A RG E T
i,t − ∑N�,i,t

j �=i f AN N
ij,t

ri j,t
ri j,t

∥∥∥2

N Nt
. (9)

In eq. (9), it is N�,i,t rather than N� because the number of particles in the neighbour list can be different for each particle 
i and each timestep t .

4.4. Training of the ANN

The network architecture and training hyperparameters are reported in Table 3. For the ANN input, we use 1/ri j rather 
than ri j . Strictly speaking, this is not necessary (it is not used in Case Study 3, for instance) but provides a practical benefit. 
Not all the neighbour lists have the same size but fixing the size of the array storing the list improves coding efficiency. 
Therefore, certain entries will be empty. These missing data can be indicated by a zero that, if we use 1/ri j , corresponds to 
a particle at infinity and, therefore, outside the neighbour list.

We train the network with 11 timesteps and 320 particles, which corresponds to 3520 training data: 80% is used for 
training and the remaining for validation. The loss function during training is shown in Fig. 2a. By using neighbour lists, the 
actual number of training data is augmented by a factor of N and 11 timesteps are enough to train the network.

The dataset provides the particle positions not the neighbour lists that must be recalculated before training. In the inverse 
problem, we do not know what rc was used to build the neighbour lists during the simulation. However, when recalculating 
the lists from data, we can use an arbitrary cut-off rc

ANN. As long as rc
ANN >rc , the ANN automatically understands that 

data above a certain distance do not affect the output. Typically, rc is estimated from the physics of the problem. In MD, for 
instance, it usually varies in the range [2σ , 3σ ]. Therefore, assuming rc

ANN = 4σ can be safe choice.
5
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Table 3
Network Architecture and Training hyperparameters for the MD in-
verse problem.

ANN architecture

Neurons Activation function

Input layer 1 representing 1/ri j −
Hidden Layer 1 8 Elu
Hidden Layer 2 16 Elu
Hidden Layer 3 8 Elu
Output layer 1 representing f i j none

Training hyperparameters
Loss function Eq. (9)
Optimizer Adaptive Moment Estimation (Adam)
Initial Learning rate 10−4

Fig. 2. (a) Loss function during training of the MD inverse problem; (b) comparison between the ANN output and the actual f i j function from the LJ 
potential. There are not data for training the network when ri j < 0.88.

4.5. Results, validation, and discussion

Fig. 2b shows that f ANN
ij is a good approximant of the real inter-particle forces f i j except for small ri j . A system with 

a given temperature T ∗ and density ρ∗ does not visit, in a finite amount of time, the entire state-space. In the original 
simulation (T ∗ = 1, ρ∗ = 0.8), states corresponding to ri j < 0.88 never occur. Therefore, there are not data available for 
training the network below this threshold, and f i j

ANN deviates from f i j .
A further validation comes from running the original simulation with f i j

ANN instead of f i j . In Fig. 3a, K is the average 
kinetic energy of the system, U the total energy and P the virial pressure defined as

P = 1

2LxL y N

N∑
i

N∑
i< j

fi j · ri j, (10)

In MD simulations particle velocities are initialized randomly based on the Maxwell–Boltzmann distribution. Therefore, 
we do not expect identical outputs, but statistically equivalent results (Fig. 3a). Note that U can be shifted by a constant 
because it is integrated from eq. (6) with respect to an arbitrary constant. In the ANN data, we use U (rc ) = 0, but the LJ 
potential is defined with respect to U (∞) = 0, which explains the small difference between U ANN and U LJ.

4.6. Generalization of the ML model

The model was trained with a simulation carried out with ρ∗ = 0.8 and T ∗ = 1. How generalizable is the model to other 
values of ρ∗ and T ∗? We ran several simulations at different values of ρ∗ and T ∗ with both f i j

ANN and f i j . Fig. 3b shows 
the model performance based on the average error of the virial pressure. The error is within 10% also for values of ρ∗
and T ∗ that are significantly different from the original ones. The more the system differs from the one used for training, 
the more frequently it will visit the ‘untrained region’. The pair force will differ from the real one, but, overall, the system 
always complies with eq. (1). Energy and momentum conservation, for instance, are always guaranteed in a strong sense.
6
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Fig. 3. (a) Comparison between simulations calculated with the LJ potential or with the ANN approximant: K is the average kinetic energy of the system, U
the total energy, and P the virial pressure; (b) performance of the ANN model (percentage of error on the virial pressure), when conditions different from 
those of the training dataset.

5. Case study 2, fluid dynamics: continuous, non-conservative systems

The second case study refers to a classic fluid dynamics problem (dam break) simulated with SPH. The method designed 
in Case Study 1 is extended to dissipative systems where Qi �= 0. As before, we consider conservative forces that only 
depend on the particle positions. But now, we also account for dissipative forces that depend on the particle velocities. 
The system is not ergodic; dissipation drives the system towards lower energy regions of the state-space. This implies that, 
unless new energy is introduced into the system, not all timesteps have the same training value. Particles will eventually 
settle into low energy states that do not provide additional benefit in terms of ANN training. The next section provides a 
brief overview of SPH; the reader can refer to Liu and Liu [25] for more details.

5.1. Smooth particle hydrodynamics background

The mechanics of fluids is described by the Navier-Stokes equation that the SPH method recasts as a particle system, 
where the forces acting on each particle mimic the pressure and viscosity forces occurring on computational ‘fluid particles’

mi
dvi

dt
=

∑
j

mim j
(
Pi j + �i j

)∇W ij +
∑

fE (11)

where Pi j is the pressure tensor, �i j is the viscosity tensor, fE represents external body forces such as gravity. W is the 
so-called kernel. A bell-shaped function that weights the contributions of each j particle in the neighbour list based on 
their distance from i. In this work, we use the Lucy kernel defined as

W ij
(
ri j,h

) = 5

πh2

{
(1 + 3R)

(
1 − R3

)
R ≤ 1

0 R > 1
, (12)

where R = ri j /h and h is the so-called smoothing length that determines the radius of the neighbour list and plays a similar 
role to rc in MD.

The pressure tensor is defined by

Pi j = pi

ρ2
i

+ p j

ρ2
j

(13)

where pi and p j is the pressure associated respectively with particles i and j, and ρi and ρ j their densities. In MD, particles 
possess mass mi , position ri and velocity vi . In SPH, particles are given additional properties such as pressure pi and density 
ρi that depend on the position of the surrounding particles. The density is calculated as

ρi =
∑

m j W ij . (14)

j

7
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Table 4
Dimensionless parameters scaled with re-
spect the particle mass m and a reference 
length 	L (initial distance between parti-
cles).

Dimensionless variable Formula

Smoothing Length h∗ h∗ = h
	L

Time t∗ t∗ = t
√

g
	L

Force F ∗ F ∗ = F
mg

Density r∗ ρ∗ = (	L)3ρ
m

Pressure p∗ p∗ = pL
mg

Dynamic viscosity m∗ μ∗ = μ(	L)
3
2

m
√

g

Table 5
SPH simulation parameters in dimen-
sionless numbers.

Width simulation box L∗x 80
Height simulation box L∗ y 80
Density r∗

0 (eq. (14)) 1
Number of particles N 1200
Timestep Dt∗ 0.005
gravity g∗ 10
Smoothing length h∗ 1.6
Constant c∗ (eq. (14)) 100
Constant α (eq. (15)) 0.4

The concept of density for incompressible fluids like water can be misleading to the reader not familiar with SPH. A simpler 
way to interpret the SPH density is as a measure of the concentration of particles within the smoothing length. This density 
is used as a device to calculate the pressure forces in the fluid by means of an equation of state like

pi = c2 (ρi − ρ0) , (15)

where c is a proportionality constant and ρ0 a density reference. Pi j represents the contribution of particle j to the total 
conservative forces acting on particle i (similar to f i j in eq. (6)). Finally, the viscosity tensor can be defined as

�i j = − αc

ρi + ρ j

vi j · ri j

ri j + εh2
, (16)

where vi j = vi –v j is the relative velocity of the two particles, α a dimensionless factor controlling, the dissipation strength, 
and ε = 0.01 a constant. �i j represents the contribution of each particle j to the total dissipation force Qi in eq. (1). In 
principle, it should only depend on the normal (in the direction of ri j ) velocity vn

i j between i and j

vn
i j = vi j · ri j

ri j
, (17)

but the extra term εh2 in eq. (16) is added to avoid singularities in the case particles get very close to each other. The 
viscosity tensor can be related to the real dynamic viscosity μ:

μ = αhcρ0

8
. (18)

There are different versions of the SPH method based on different definitions of eqs. (12)−(16). In this work, we use a 
‘vanilla’ version of SPH; more complex versions can be found in the literature [25,7,26].

As for Case Study 1, we use dimensionless numbers (in MD, they are usually called reduced units; in fluid mechanics 
dimensionless numbers) (Table 4)

5.2. Simulation details

The simulation consists of a typical SPH benchmark case known as dam break: a column of water collapsing under the 
effect of gravity g . Details of the simulation in dimensionless numbers are given in Table 5. The simulation is run for 4,000 
timesteps and the results written to the output file every 400 timesteps.

The box has reflective boundary conditions meaning that the velocity component perpendicular to the wall is simply 
reflected when the particle reaches the boundary. These are not realistic conditions and rarely employed in SPH. They are 
8



Table 6
Network Architecture and Training hyperparameters for the SPH 
problem.

ANN architecture

Neurons Activation function

Input layer 4 representing 
1/ri j , vn

i j ,ρi , ρ j

−

Hidden Layer 1 8 Elu
Hidden Layer 2 16 Elu
Hidden Layer 3 8 Elu
Output layer 1 representing 

(Pi j + �i j )∇W ij

none

Training hyperparameters
Loss function Eq. (20)
Optimizer Adaptive Moment Estimation (Adam)
Initial Learning rate 10−4

used here because they do not interfere with the forces acting on the particles. The technique for extracting boundary 
conditions is introduced in Case Study 3.

5.3. The minimalistic approach for solving the inverse SPH problem

Both conservatives Pi j (ri j) and dissipative �i j (vn
i j) forces are lumped into a single function

�i j = (
Pi j + �i j

)∇W ij . (19)

The Loss function is the same of eq. (9) with the difference that �i j replaces f i j

L =
Nt∑
t

∑N
i

∥∥∥FT A RG E T
i,t − ∑N�,i,t

j �=i �AN N
ij,t

ri j,t
ri j,t

∥∥∥2

N Nt
. (20)

In theory, �i j should only depend on ri j and vn
i j since, according to eq. (14) and (15), p and ρ are functions of ri j and 

vn
i j . However, while eq. (20) is designed for pair forces, the density formulation of eq. (14) adds a multi-body element to 

the force. The extension of eq. (20) to multi-body forces requires a different approach that is left for future work. Here, to 
preserve the pair-based structure of the loss function, we simply include ρi and ρ j as separate inputs of �ANN

ij (ri j , vn
i j ,ρi , 

ρ j). In the case of SPH, this is not a problem because, usually, simulations also store particle densities. However, this issue 
must be addressed when extending the method beyond SPH.

5.4. Training of the ANN

The network architecture and training hyperparameters are the same of Case Study 1. The only difference is in the input 
layer that has 4 neurons instead of 1 (Table 6).

We train the network with 100 timesteps and 1200 particles, which corresponds to 132,000 training data. We need more 
data points than Case Study 1, because the system is not ergodic and requires an adequate sampling of the transient, before 
the system settles into a low energy state. Gravity forces are not known but learned from data and incorporated into �ANN

ij . 
The Loss function during training is shown in Fig. 4a.

5.5. Results, validation, and discussion

Fig. 4b compares �ANN
ij with the real (Pi j + �i j)∇W ij . The approximation is very good except for the case of high positive 

velocities and small ri j : more details on the untrained region are given in the next section.
We also ran the original simulation with �ANN

ij instead (Pi j + �i j)∇W ij . Fig. 5 compares the results (see also Video 1). 
The behaviour is very similar. There are a few differences occurring around the droplets. Statistically, there are less particles 
in the droplets and, therefore, the ANN has, proportionally, fewer training data in these regions. If necessary, this issue could 
be mitigated by giving higher statistical weights to the particles near free surfaces.

5.6. Generalization of the ML model

The �ANN
ij trained with the dam break simulation (an example of free-surface flow) is tested against channel flow 

(Fig. 6a). The walls are represented by two frozen layers of particles on each side; the flow is generated by a gravity-
like body force (f∗=10) in the (periodic) x-direction. Fig. 6 compares the results obtained with the ANN and with the SPH 
A. Alexiadis Journal of Computational Physics 473 (2023) 111750
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Fig. 4. (a) Loss function during training of the SPH inverse problem, (b) real pair force (Pi j + �i j )∇W ij (wireframe) versus the ANN approximation �ANN
ij

(orange surface) at different values of vn
i j and ri j for the case of ρi = 1 and ρ j = 1.01. (For interpretation of the colours in the figure(s), the reader is 

referred to the web version of this article.)

Fig. 5. Simulation of the dam break calculated with the SPH model and with the ANN model. Particles are coloured by density (see also Video 1). (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
10
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Fig. 6. (a) Comparison between ANN and SPH model in the case of channel flow (particles coloured by velocity, see also Video 2), (b) kinetic energy, 
(c) average velocity profile. The ANN was trained with the dam break dataset, but it replicates the SPH model also when applied to channel flow. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

model (see also Video 2). The system is completely different from the previous one in terms of geometry and boundary 
conditions, but the ANN trained with the dam break dataset replicates the SPH model also when applied to the channel 
flow. The flow is turbulent-like, with fluctuations that could depend on the fact that our ‘vanilla’ model is not very accurate 
for channel flow. However, the goal is to verify that the ANN model behaves like the SPH model: if the SPH model produces 
spurious fluctuations, also the ANN must produce spurious fluctuations. Due to turbulence, the flow is stochastic, but the 
statistics are similar for both the average kinetic energy (Fig. 6b) and the average velocity profile (Fig. 6c).

From the fluid dynamics point of view, free-surface flow and channel flow are two very different types of flows. If the 
proposed approach only worked as a sort of video generation algorithm, without learning the actual physics of the system, it 
would not correctly simulate channel flow after being trained exclusively with the dam break example (which is an example 
of free-surface flow). Untrained regions represent physical phenomena that do not occur in the training data. For instance, 
the untrained region in Fig. 4 represents a reduction in fluid pressure associated with a high increase in velocity. This 
phenomenon can occur, for instance, in Venturi tubes, but it does not occur in either of the examples considered. Therefore, 
the model trained with the free-surface flow can replicate channel flow, because the two flows share a common physics; 
but it cannot replicate a Venturi tube because the training data does not provide any learnable example of a phenomenon 
like the Venturi effect.

5.7. Noisy datasets

A systematic analysis on the effect of noise is beyond the scope of this paper. We only carry out a single comparison to 
make sure the approach is robust to a given level of noise. We add 10% white noise (i.e. the original signal was stochastically 
incremented of ±10% based on a flat distribution within this range) to the training dataset, train for 50,000 epochs and 
compared the final losses calculated with and without noise. Noise is only added to the training dataset not to the validation 
dataset. In this way, we train the ANN with the noisy data and validate it against pristine data. The final loss for the pristine 
dataset is 1.15·10−4 for training and 2.55·10−4 for validation; for the noisy dataset 9.98·10−3 for training and 2.97·10−4 for 
11
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Table 7
Dimensionless DEM parameters scaled 
with respect the particle mass m and ra-
dius R .

Dimensionless variable Formula

Length r∗ r∗ = r
R

Time t∗ t∗ = t
√

g
R

Force F ∗ F ∗ = F
mg

Elastic coefficient k∗ k∗ = kR2

mg

Damping coefficient g∗ γ ∗ = γ
√

R
g

validation. The training loss is higher because of the noise, but the validation loss is similar showing that the method can 
tolerate a relatively high level of noise.

6. Case 3 granular mechanics: non-point-particles systems with unknown boundary conditions

The third case study refers to a granular mechanics problem simulated with DEM. In the previous two case studies, we 
assumed that the boundary conditions were known and there was no need to extract them from data. Case Study 3 shows 
how the methodology can be extended to include boundary conditions. The next section provides a brief overview of DEM; 
the reader can refer to Seville and Wu [27] for more details.

6.1. Discrete element method background

Differently from MD and SPH, DEM particles are not point-particles. They have a physical radius and interact only when 
their physical distance is lower than the sum of their radii. In our example, all particles have the same radius R . Collision 
occurs when their overlap

δi j = 2R − ∥∥ri j
∥∥ (21)

is positive. This implies that the contact forces between two particles i and j can be expressed by

fi j =
⎧⎨
⎩

(
f Hertz

i j + f damp
i j

) ri j∥∥ri j
∥∥ , δi j > 0

0, δi j ≤ 0
(22)

where f Hertz
i j are conservative forces and f damp

i j dissipative forces between two colliding particles. According to Hertz theory, 
conservatives (elastic) forces can be expressed by

f Hertz
i j = k

√
Rδ

3/2
i j , (23)

where k is the stiffness of the material. Dissipative (damping) forces can be expressed as

f damp
i j = −γ mδ

1/2
i j vn

i j, (24)

where γ is the viscoelastic constant.
For non-point particles, we should consider rotation. The main goal of this section is to explain how boundary conditions 

are accounted for in the inverse problem. Therefore, for the sake of simplicity, we use a simplified model where rotation is 
neglected. As before, we use dimensionless variables (Table 7).

Boundary conditions are expressed in a similar way to eq. (22). When the distance between a particle and the walls is 
less than R , the particle collides with the wall. In this case, the boundary b exchanges with particle i both conservatives 
f Hertz

ib and dissipative f damp
ib forces, whose equations are the same of eq. (23) and (24), but with different values of k and γ .

6.2. Simulation details

The simulation consists of 30 particles placed in the middle of the computational box with random velocity and falling 
due to gravitational acceleration g . Details of the simulation in reduced units are given in Table 8. The simulation runs for 
6,000 timesteps and the results written to the output file every timestep. This time, all simulation output data are used for 
training; this is important for the training phase as explained later.
12
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Table 8
DEM simulation parameters in dimension-
less units.

Width simulation box L∗x 20
Height simulation box L∗ y 20
Elastic constant k* 1,000
Damping coefficient g* 10
Wall elastic constant kW 10,000
Wall damping coefficient gW 1,000
Number of balls N 30
Timestep Dt∗ 0.001
Gravity g* 10

Fig. 7. Particles that do not interact with the boundaries experience only particle-particle interactions. Particles that interact with the boundaries experience 
both particle-particle and particle-wall interactions.

6.3. The minimalistic approach for solving the DEM inverse problem

The ANN must learn the behaviour of both the particle-particle interactions and the particle-wall interactions, we call 
�ANN the first and �WANN the latter. As Fig. 7 shows, particles that do not interact with the boundaries experience only 
particle-particle interactions, while particles that interact with the boundaries experience both particle-particle and particle-
wall interactions.

The solving strategy is to divide the training in two phases. During the first phase, we train the ANN only with data 
from ‘bulk neighbour lists’ that do not interact with the walls. During the second phase, we train another ANN only with 
data from ‘boundary neighbour lists’ that interact with the walls.

Phase 1 (ANN model for the bulk)

The Loss function is almost the same of eq. (20)

L =
Nt∑
t

∑N−B
i

∥∥∥FT A RG E T
i,t − ∑N�,i,t

j �=i �AN N
ij,t

ri j,t
ri j,t

∥∥∥2

N Nt
, (25)

where �ANN
ij (ri j , vn

i j) = f Hertz
i j + f damp

i j , and B is the number of particles that interacts with the boundaries. The only difference 
between eq. (20) and eq. (25) is that the calculation now is carried out only for the N − B bulk neighbour lists.

Phase 2 (WANN: ANN model for the Wall)

After �ANN is known, a second ANN �WANN
ib (rib , vn

ib) = f Hertz
ib + f damp

ib is trained to approximate the interaction between 
particle i and boundary b. In our simulation, all four walls behave in the same way, but if there were different types of 
boundaries, we would need a different WANN for each type of boundary. The WANN is fed only with boundary neighbour 
lists. The Loss function becomes

L =
Nt∑
t

∑B
i

∥∥∥FT A RG E T
i,t − ∑N�,i,t

j �=i �AN N
ij,t

ri j,t
ri j,t

− ∑Nb,i,t
b �W AN N

ib,t nib,t

∥∥∥2

N Nt
, (26)

where Nb,i,t is the number of boundaries touched by i, and nib,t the vector normal to that boundary.
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Table 9
Network Architecture and Training hyperparameters for the DEM 
problem.

ANN architecture

Neurons Activation function

Input layer 2 representing 
ri j , vn

i j

−

Hidden Layer 1 8 Elu
Hidden Layer 2 16 Elu
Hidden Layer 3 8 Elu
Output layer 1 representing 

f Hertz
i j + f damp

i j

none

Loss function Eq. (25)

WANN architecture

Neurons Activation function

Input layer 2 representing 
rib , vn

ib

−

Hidden Layer 1 8 Elu
Hidden Layer 2 16 Elu
Hidden Layer 3 8 Elu
Output layer 1 representing 

f Hertz
ib + f damp

ib

None

Loss function Eq. (26)

Training hyperparameters
Optimizer Adaptive Moment Estimation (Adam)
Initial Learning rate 10−4

Fig. 8. (a) Loss function of the ANN (bulk), and (b) the WANN (wall).

6.4. Training the ANN/WANN

Network architectures and Training hyperparameters are shown in Table 9.
The Loss function during training is shown in Fig. 8. Because this time we use all timesteps, the dataset covers abundantly 

the whole accessible part of the state-space. The training and validation data are statistically equivalent and the training 
and validation loss in Fig. 8a almost overlap. The same does not occur at the boundaries (Fig. 8b), for reasons explained in 
the next section.

6.5. Results, validation, and discussion

Fig. 9 compares the physics-based simulation with (i) the results obtained using �ANN and the real boundary conditions, 
and (ii) the result obtained using both �ANN and �WANN (see also Video 3). Results are almost identical up to the very 
end of the simulation. Particle systems tend to be chaotic and, therefore, small differences will, sooner or later, separate 
the trajectories of two systems. Therefore, the statistical behaviour is more important that the actual trajectory. Fig. 9e, for 
instance, shows the average kinetic energy is very close for all three systems.

To further assess the results, we can compare �ANN
ij (ri j , vn

i j) with the real f Hertz
i j + f damp

i j (Fig. 10a) and �WANN
ij (ri j , vn

i j) 

with the real f Hertz
ib + f damp

ib (Fig. 10b).
For simplicity, results are shown with respect of the overlap δi j rather than ri j . The ANN does not know the physical 

radius of the particles and autonomously understands that there are no forces for values of ri j corresponding to δi j < 0. We 
A. Alexiadis Journal of Computational Physics 473 (2023) 111750
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Fig. 9. (a-e) Granular simulation calculated with the DEM model, the �ANN model and the �ANN + �ANN models (see also Video 3); (f) average Kinetic 
energy of the system. Initial velocities are randomly generated but the same for all cases.
15



Fig. 10. Comparison between real forces and their ANN (a) and WANN (b) approximants.

have a good sampling of the bulk data, and the only untrained region occurs at high overlaps and high absolute values of 
the velocity (Fig. 10a). Because we have considerably less wall-particle interactions than particle-particle interactions, the 
WANN state-space is not sampled as thoroughly (Fig. 10b). The untrained region corresponds to scenarios (high negative 
velocities and high overlaps) that never occur during the simulation and have little physical relevance. In fact, high overlaps 
occur when the particle begins to bounce back after hitting the wall. But, when this occurs, the velocity cannot be high 
because the particle has been already decelerated by the wall.

7. Conclusions

This study proposes a ‘minimalist’ hybrid physics-ML approach that combines particle mechanics with Neural Networks. 
It is called ‘minimalist’ since, by using data structures such as neighbour lists, it minimizes the ANN both in terms of 
complexity and number of input variables. This brings two advantages: (i) the ANN is more easily trainable than in other 
methods, and (ii) the model is highly generalizable and can predict systems with geometries and boundary conditions very 
different from those of the training set.

A question worth asking is why this approach works. Why the minimalistic method achieves, with simple feedforward 
networks, what other methods achieve with ad hoc, and increasingly complex network architectures?

The answer lies in the sequence of steps adopted by the minimalistic method to incorporate the physics into the ANN. 
For the sake of clarity, these steps are summarised below.

The starting point is a particle system x(t) that evolves by means of a physical model ϕ

x (t)
ϕ−→ x (t + dt) , (27)

which is unknown and must be derived from data. The naïve approach would be to model ϕ directly. If we use an ANN 
(Fig. 11a), the input size of the network should match N , the degrees of freedom of the system (which can easily be of the 
order of 106 or higher).

We can improve the naïve approach by considering that all particle systems (from molecules to galaxies) must obey 
an equation of motion. The difference between one system and another lies in the forces −∇V and Qi exchanged by the 
particles. Therefore, if we account for the equation of motion, instead of approximating ϕ , we can learn from data only 
−∇V and Qi : all physical principles underlying the equation of motion will be automatically satisfied.

Moreover, if we subdivide the particles in neighbour lists, in each neighbour list, the physics must be the same. There-
fore, the network does not need to model the whole system, but only the neighbour list (the ‘minimal ANN’ in Fig. 11b). 
Consequently, the size of the input layer goes from N (∼106) to N� (number particles in a neighbour list, usually ∼20−30).

Finally, if the forces acting on each particle can be formulated as pairwise interactions, each pairwise force f i j must 
follow the same model. Therefore, the input size of the minimal ANN can be further reduced from N� to just 2 (ri j and vn

i j ). 
However, at this point there is a mismatch between the minimal ANN and the level of training (Fig. 11c). The ANN models 
the pairwise forces f i j , but the training data only provide Fi . Resolving this problem requires a tweak to the loss function 
as shown in eq. (8).

The minimalistic method is here applied to inverse problems because they provide a direct way to validate the results, 
but the same ideas can be extended to other problems. For instance, it can be used to design corrective terms that im-
prove the accuracy of low-resolution simulations speeding up calculations (in this study, the focus is on solving the inverse 
problem not on speed). Alternatively, the inverse problem could be applied to experimental data. For instance, several ex-
perimental techniques in fluid dynamics such as Particle Tracking Velocimetry (PTV), Particle Image Velocimetry (PIV) or 
A. Alexiadis Journal of Computational Physics 473 (2023) 111750
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Fig. 11. Structure graphs showing (a) the naïve approach, (b) the minimal ANN based on neighbour lists, and (c) the minimal ANN based on neighbour list 
and pairwise interactions.
17
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Ghost Particle Velocimetry (GPV) use tracer particles to seed the fluid, whose trajectory is used to calculate the fluid ve-
locity [30–33]. Accelerations (which are numerical equivalent to forces if we use reduced units) can be calculated from the 
measured instantaneous velocities (e.g. [34], [35]). The dataset will forcibly include some level of noise due to experimental 
errors, but, in principle, these real particles can be handled as the computational particles of our case studies.

Finally, the minimalistic approach consolidates the ‘special relationship’ that particle methods and ANN seem to enjoy. 
In fact, these two algorithms work particularly well together to the point that a true particle-neuron duality has been 
suggested [36], [37].
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