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Abstract
Weprove aquadratic sparse domination result for general non-integral square functions
S. That is, for p0 ∈ [1, 2) and q0 ∈ (2,∞], we prove an estimate of the form

∫
M

(S f )2g dμ ≤ c
∑
P∈S

(
−
∫
5P

| f |p0 dμ

)2/p0 (
−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P| ,

whereq∗
0 is theHölder conjugate of q0/2,M is the underlying doubling space andS is a

sparse collection of cubes onM . Our result will cover both square functions associated
with divergence formelliptic operators and those associatedwith theLaplace–Beltrami
operator. This sparse domination allows us to derive optimal norm estimates in the
weighted space L p(w).
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1 Introduction

Recent years have seen a surge of activity in the weighted theory of singular integrals
that has resulted in the resolution of some major conjectures such as the A2 conjecture
[30], theMuckenhoupt–Wheeden conjecture [48] and the resolution of the two weight
problem for the Hilbert transform [34, 36]. Accompanying these achievements is the
development of new core techniques such as the representation of singular integrals
by dyadic operators [30] or the sparse domination of singular integrals [17, 43].

The sparse domination of an operator provides, at a glance, a rich picture of the
unweighted and weighted estimates with precise tracking of the dependence on the
weight characteristic. Its use in harmonic analysis was introduced by Lerner in [39],
where a decomposition of an arbitrary measurable function was obtained in terms
of its local mean oscillations. It has since been extended to a great number of dif-
ferent contexts spanning and reproducing a large portion of harmonic analysis. To
call attention to some of the most celebrated results, there have been articles pub-
lished covering the domination of Calderón–Zygmund singular integral operators [17,
35, 41–43], multilinear singular integrals [21], rough singular integrals, variational
Carleson, Bochner–Riesz multipliers, Walsh–Fourier multipliers, spherical maximal
function and also the T 1 sparse domination of singular integrals. For more details on
these and other applications we refer the reader to Sect. 8 of the survey paper [47]
and the references therein. In this article we are interested in the sparse domination of
square function operators.

The sparse domination of classical square function operators was first considered
in [40]. In this article it was discovered that in order to obtain sharp weighted estimates
for square functions from a sparse domination result, the sparse techniques applied to
singular integral operators had to be adjusted to account for the quadratic nature of the
square function. Thus, instead of a “linear” sparse domination result, one must aim for
a stronger “quadratic” sparse domination theorem. This idea was also explored in [11]
where a quadratic result with minimal T 1-type assumptions is proved. Similar ideas
are also investigated in the work of Lorist [44], where sparse domination is obtained
for general vector-valued operators.

Since the turn of the century, fuelled by applications to boundary value problems and
the epic contest of ideas surrounding theKato conjecture, there has been a sustained and
pronounced interest in weighted estimates for non-integral singular operators that are
beyond the realmofCalderón–Zygmund theory. Someof themost prominent examples
are operators attached to the divergence form elliptic operator L = −div(A∇), where
A is bounded and elliptic with complex coefficients. For instance, neither the Riesz

transforms ∇L− 1
2 nor the constituent operators {√t∇e−t L}t>0 of the square function

GL f =
(∫ ∞

0

∣∣∣√t∇e−t L f
∣∣∣2 dt

t

)1/2

(1.0.1)

possess integral kernels in general that satisfy any meaningful estimates and, as such,
are deserving of the title “non-integral”. As a result of this characteristic, and in
contrast to the classical setting of the Laplacian operator�, these operators will fail to
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be bounded on L p(Rn) for p in the entire interval range (1,∞). Instead, as proved in
[1], boundedness will occur if and only if p is contained within a restricted subinterval
of (1,∞) that will depend on the perturbation A, see also [9] and [28]. Similarly, for
boundedness on the weighted space L p(w), one must also consider a restricted range
of p ∈ (1,∞). For a detailed investigation into such results the reader is referred to
the seminal series of papers by P. Auscher and J. M. Martell, [2–5].

The sparse domination methods developed for Calderón–Zygmund operators in
[35, 41, 42] automatically imply boundedness on L p(Rn) for p in the full range
(1,∞). It then follows that the classical sparse domination is particularly ill-suited
to non-integral singular operators. In the article [8], the authors F. Bernicot, D. Frey
and S. Petermichl introduced a linear sparse domination framework that was adapted
to non-integral singular operators in the sense that the sparse object dominating the
operator would only be bounded on a restricted range. This linear sparse domination
allowed for sharp weighted estimates to be produced for a wide range of operators

associated with L that included the Riesz transforms ∇L− 1
2 .

As stated earlier for the classical setting of the Laplacian, the linear sparse domi-
nation in [8] does not imply the best weighted bounds for square functions for p > 2.
The ultimate objective of this article is, thus, to prove a quadratic sparse domination
theorem for non-integral square functions. This, in turn, will yield weighted estimates
for GL and other similar square functions. They will also reproduce optimal weighted
estimates for GL when L = −div(A∇) and A is real valued with smooth coefficients,
a result that was first proved by T. A. Bui and X. Duong in [13]. When the square
function is bounded in the full range (1,∞), we recover the sparse form in [11] which
implies weighted estimates that are known to be optimal for several classical square
functions [40].

Motivated by finding a uniform setting that will include several examples of
square functions, we consider the following general framework. The underlying space
(M, d, μ) is a locally compact separable metric space (M, d) equipped with a Borel
measure μ that is finite on compact sets and strictly positive on any non-empty open
set. For a measurable subset B ⊂ M , we denote |B| := μ(B).

The measure μ will be assumed to satisfy the doubling property,

|B(x, 2r)| � |B(x, r)| (1.0.2)

for all x ∈ M and r > 0, where B(x, s) denotes the ball of radius s > 0 centred at a
point x ∈ M and X � Y will be used throughout the paper to signify that there exists
a constant C > 0 such that X ≤ CY .

There will then exist some ν > 0 for which

|B(x, r)| �
(r
s

)ν |B(x, s)| ∀ x ∈ M, r ≥ s > 0. (1.0.3)

It will be assumed that there exists some non-decreasing function ϕ : (0,∞) →
(0,∞) with ϕ(1) = 1 for which

|B(x, r)| � ϕ
(r
s

)
|B(x, s)| (1.0.4)
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for all x ∈ M and r , s > 0, where X � Y means that both X � Y and Y � X hold.
This technical condition has been imposed in order to prove boundedness of a certain
maximal operator that is essential to our proof. This point will be elaborated upon
further in Remark 1.4 and Sect. 4.

Let ω ∈ [0, π/2). We say that a linear operator L with dense domain D2(L) in
L2(M, μ) is ω-accretive if its spectrum is contained in the closed sector �ω+ := {z ∈
C : |arg z| ≤ ω} ∪ {0} and 〈L f , f 〉 ∈ �ω+ for all f in D2(L).

We will consider an unbounded operator L on L2(M, μ) satisfying the below
assumption.

Assumption 1.1 L is an injective linear operator on L2(M, μ) with dense domain
D2(L) ⊂ L2(M, μ). L is ω-accretive for some 0 ≤ ω < π/2 and there exists some
1 ≤ p0 < 2 < q0 ≤ ∞ and c > 0 such that for all balls B1, B2 of radius

√
t ,

∥∥∥e−t L
∥∥∥
L p0 (B1)→Lq0 (B2)

� |B1|−
1
p0 |B2|

1
q0 e−c

d(B1,B2)2

t .

From Assumption 1.1, it follows that L is a maximal accretive operator on
L2(M, μ), L possesses a bounded holomorphic functional calculus on L2(M, μ) and
−L is the generator of an analytic semigroup (e−t L)t>0 on L2(M, μ).

Throughout this article, we consider square function operators associated with L .
These will be defined to be operators S that satisfy the following set of assumptions.

Assumption 1.2 (a) The operator S is sublinear and bounded on L2(M, μ).
(b) (Off-diagonal estimates for the constituent operators) The operator S is of the

form

S f (x) :=
(∫ ∞

0
|Qt f (x)|2 dt

t

) 1
2

,

where {Qt }t>0 is a collection of bounded operators on L2(M, μ) which satisfy
the property that there exists some 1 ≤ p0 < 2 < q0 ≤ ∞ such that for all balls
B1, B2 of radius

√
t ,

‖Qt‖L p0 (B1)→Lq0 (B2) � |B1|−
1
p0 |B2|

1
q0

(
1 + d(B1, B2)

2

t

)−(ν+1)

.

(c) (Cancellation with respect to L) There exists A0 > 0 and N0 ∈ N such that for all
integers N ≥ N0,

Qt (sL)Ne−sL = t A0sN

(t + s)A0+N
�

(N )
t+s,
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where {�(N )
r }r>0 is a collection of bounded operators on L2(M, μ) that satisfies

off-diagonal estimates at all scales in the sense that

∥∥�(N )
r

∥∥
L p0 (B1)→Lq0 (B2)

�
∣∣∣B1,

√
r

∣∣∣−
1
p0
∣∣∣B2,

√
r

∣∣∣
1
q0

(
1 + d(B1, B2)

2

r

)− ν+1
2

for all balls B1, B2 ⊂ M and r > 0, where Bi,
√
r := (

√
r/r(Bi ))Bi for i = 1, 2

and for a ball B = B(x, r) and t > 0 we will use the notation t B to represent the
t-dilate of B, t B := B(x, tr).

(d) (Cotlar type inequality) There exists an exponent p1 ∈ [p0, 2) such that for all
x ∈ M and r > 0

(
−
∫
B(x,r)

∣∣∣Se−r2L f
∣∣∣q0 dμ

)1/q0
� inf

y∈B(x,r)
Mp1(S f )(y) + inf

y∈B(x,r)
Mp1( f )(y),

where we define −
∫
B f dμ := |B|−1

∫
B f dμ for f ∈ L1

loc(M, μ) and we
denote by M the uncentered Hardy–Littlewood maximal function and Mp f :=
(M| f |p)1/p for any p ≥ 1.

Remark 1.3 In general, the exponents p0 and q0 are determined by the off-diagonal
estimates for the constituent operatorQt , rather than by the off-diagonal estimates for
{e−t L}t>0.

For our aim, it is enough to assume that the range in which one has off-diagonal
estimates for {e−t L}t>0 contains the range (p0, q0) in the Assumption 1.2.

Remark 1.4 As our work is intended to build upon the article [8], it will be instructive
to compare our assumptions with the hypotheses of [8]. In both our article and [8], the
assumptions imposed upon the underlying operator L are identical. For the operator S,
we have also assumed L2-boundedness and aCotlar type inequality. However, we have
included the additional assumption that S is of the form of a square function composed
of operatorsQt that satisfy off-diagonal bounds. Also, the cancellative condition of S
with respect to L , Assumption (b) of [8], has instead been replaced by a cancellative
condition of the constituent operators Qt .

In Sect. 4, using the growth condition imposed upon our metric space (1.0.4), it will
be proved that the assumed cancellative condition for the Qt operators does in fact
imply the cancellative condition of S with respect to L . This allows us to deduce that
the operators under consideration in our article are a restricted subclass of the operators
considered by [8]. Indeed, the additional growth condition of our metric space (1.0.4)
has been assumed with the sole purpose of ensuring that we are working strictly within
the setting of [8]. This will allow us to utilise some of the intermediary results from [8]
without having to reprove them under a different cancellation condition. This will be
of particular use to us in Sect. 4 when we come to prove the boundedness of a certain
maximal function operator that is essential to our proof.

Remark 1.5 One does not have to search for long before encountering examples of
square function operators that satisfy the previous set of assumptions. For instance,
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the square functions associated with an elliptic operator L = −divA∇, such as GL

from (1.0.1) and

gL f :=
(∫ ∞

0

∣∣∣t Le−t L f
∣∣∣2 dt

t

) 1
2

,

and square functions associated with the Laplace–Beltrami operator satisfy the above
conditions. We discuss these examples in detail in Sect. 3.

In order to make sense of the concept of sparse domination and precisely state our
main theorem we need to define the notion of a sparse family of cubes. We consider
a system of dyadic cubes D on the metric space (M, d).

Definition 1.6 A collection of dyadic cubesS ⊆ D is 1
2 -sparse if there exists a disjoint

collection of sets {FP : P ∈ S} such that for every P ∈ S we have FP ⊂ P and
|FP | > 1

2 |P|.
Theorem 1.7 Let p0 < 2 < q0 and consider operators L and S that satisfy Assump-
tions 1.1 and 1.2 for this choice of exponents. For any f and g in C∞

c (M) there exists
a sparse family S ⊆ D such that

∫
M

(S f )2g dμ ≤ c
∑
P∈S

(
−
∫
5P

| f |p0 dμ
)2/p0 (

−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P|, (1.0.5)

where q∗
0 := ( q0

2

)′
is the dual exponent of q0

2 , and c is a positive constant independent
of f and g.

The right hand side of (1.0.5) is the sparse form natural to the square function. We
observe that the bilinear sparse form obtained differs from the linear sparse domination
results where the Lq ′

0 average of g is used instead (c.f. [8]). This is due to the non-
linear nature of the problem at hand. Analogous sparse forms appear when controlling
vector-valued operators, as seen in the work of Lorist [44]. In fact, as the operators we
consider satisfy the hypotheses from [8], it follows that [8, Thm. 5.7] will be valid
for S. This result states that for any f and g in C∞

c (M) there exists a sparse family
S ⊆ D for which

∣∣∣∣
∫
M
S f · g dμ

∣∣∣∣ �
∑
P∈S

(
−
∫
5P

| f |p0 dμ

)1/p0 (
−
∫
5P

|g|q ′
0 dμ

)1/q ′
0 |P| .

The essence of our sparse domination result is that, under the additional square
function hypotheses assumed above, the previous sparse bound can be improved to a
quadratic sparse domination bound that is uniquely suited to square function operators.

Our proof strategy requires the weak boundedness at the endpoint of a“grand
maximal function” operator associated with the square function. This strategy is an
adaptation of Lerner’s work on singular integrals [42] to our setting, which itself is
an elaboration of Lacey’s elementary proof from [35]. The weak-type boundedness
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of our grand maximal operator will be obtained by demonstrating that our operator is
pointwise controlled from above by a related maximal operator that was introduced
in [8]. The weak boundedness of this alternative grand maximal operator was proved
in [8] under their setting. Since, as will be shown in Sect. 4, we are working strictly
within their setting, this will then allow us to conclude that our grandmaximal operator
is also weakly bounded at the endpoint.

Next we give an account of the weighted estimates that we obtain for our square
functions via the sparse domination (Theorem 1.7). It is understood that if the operator
at hand maps L p to L p for a restricted range of exponents p, the relevant classes of
weights will involve the intersection of Muckenhoupt and reverse Hölder weights [3].
We define them precisely.

A weight w is a positive locally integrable function. We say that a weight w is in
the Muckenhoupt Ap class for 1 < p < ∞ and we denote it by w ∈ Ap if and only if

[w]Ap := sup
Q cube

−
∫
Q

w dμ

(
−
∫
Q

w1−p′
dμ

)p−1

< ∞,

where p′ = p/(p − 1) is the dual exponent of p. We say that a weight w belongs to
the reverse Hölder class RHp for p > 1 if

[w]RHp := sup
Q cube

(
−
∫
Q

w p dμ

)1/p (
−
∫
Q

w dμ

)−1

< ∞.

We can now state our second result.

Theorem 1.8 Fix p0 < 2 < q0. For any sparse family S ⊂ D , functions f , g ∈
L1
loc( dμ), p ∈ (2, q0) and weight w ∈ A p

p0
∩ RH(

q0
p

)′ we have

∑
P∈S

(
−
∫
5P

| f |p0 dμ

)2/p0 (
−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P|

≤ C0

(
[w]A p

p0

· [w]RH( q0
p

)′
)2γ (p) ‖ f ‖2L p(w) ‖g‖L p∗ (σ ) ,

where

γ (p) := max

(
1

p − p0
,

(
q0
p

)′ 1

2q∗
0

)
and σ := w1−p∗

.

The constant C0 is independent of both the weight and the sparse collection, and the
dependence of this estimate on the weight characteristic is sharp.

Expanding further upon the above theorem, the result is sharp in the sense that
the dependence on the weight characteristic [w]Ap/p0

[w]RH(q0/p)′ can be matched at
least asymptotically with the right choice of functions, weights and sparse form. A
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detailed proof of this sharpness will be presented in Sect. 7. The above theorem, when
combined with our other main result, Theorem 1.7, allows us to obtain as a corollary
the following sharp weighted result for non-integral square functions. It is important to
note that the combination of Theorems 1.7 and 1.8 only produces the below weighted
bounds for p ∈ (2, q0). The weighted estimates for the full range p ∈ (p0, q0) follows
from this on applying a quantitative version of the limited range extrapolation theorem
by Auscher and Martell in [3, Thm. 4.9]. See also [46, Thm. 2.2].

Corollary 1.9 Let p0 < 2 < q0 and consider operators L and S that satisfy Assump-
tions 1.1 and 1.2 for this choice of exponents. For p ∈ (p0, q0) andw ∈ A p

p0
∩RH( q0

p

)′

the square function S is bounded on L p(w) with

‖S‖L p(w) �
(
[w]A p

p0

· [w]RH
(
q0
p )′

)γ (p)

, (1.0.6)

where γ (p) is as defined in Theorem 1.8.

The result is sharp for certain square functions, see [13, 38, 40]. Sharpness can be
deduced from the asymptotic behaviour of the unweighted estimates [26]. Unfortu-
nately, these asymptotics are not easy to exactly compute for our non-integral square
functions. However, the estimate (1.0.6) implies an upper bound on the asymptotic
behaviour of the unweighted norm ‖S‖L p→L p , see Sect. 7.1. In particular, when such
asymptotic behaviour is known to match the upper bound, the weighted estimates in
Corollary 1.9 are sharp.

Structure of the Paper

The paper is distributed as follows. Section 2 contains some preliminary results that
will be of use later in the paper. Section 3 will discuss the examples that fit the
assumptions and that one should keep in mind as references. The proof of Theorem
1.7 requires us to understand the boundedness properties of a grand maximal operator
associated with the corresponding square functions. These boundedness properties are
included in Sect. 4. Section 5 is dedicated to the proof of our main result, Theorem
1.7. Section 6 considers weighted estimates for the sparse forms found in Sect. 5 and,
in particular, proves Theorem 1.8. Finally, Sect. 7 is dedicated to the proof of the
sharpness of Theorem 1.8 when p > 2.

2 Preliminaries

In this section we gather a collection of useful results concerning dyadic analysis in
metric measure spaces, off-diagonal estimates for a family of operators, and properties
of Muckenhoupt and reverse Hölder weight classes.
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2.1 Dyadic Analysis on a DoublingMetric Space

We recall some well-known definitions and facts from dyadic harmonic analysis as
written in [8]. For detailed information on the construction of dyadic systems of cubes
in doubling metric spaces, the interested reader is referred to [31] and references
therein.

Definition 2.1 A dyadic system of cubes in a metric measure space (M, μ), with
parameters 0 < c0 ≤ C0 < ∞ and δ ∈ (0, 1), is a family of open subsets

(
Ql

α

)
α∈Al ,l∈Z

that satisfies the following properties:

• For each l ∈ Z, there exists a subset Zl with μ(Zl) = 0 such that

M =
⊔

α∈Al

Ql
α

⊔
Zl;

• If l ≥ k, α ∈ Ak and β ∈ Al then either Ql
β ⊆ Qk

α or Qk
α ∩ Ql

β = ∅;
• For every l ∈ Z and α ∈ Al , there exists a point zlα with the property that

B(zlα, c0δ
l) ⊆ Ql

α ⊆ B(zlα,C0δ
l).

The point zlα can be seen as the centre of the cube Ql
α and the side length is defined

by �(Ql
α) := δl .

The below theorem asserts the existence of adjacent systems of dyadic cubes for a
doubling metric space. For a proof of this result, refer to [31].

Theorem 2.2 [31, Thm. 4.1] Let (M, d, μ) be a doubling metric space. There exists
0 < c0 ≤ C0 < ∞, δ ∈ (0, 1), finite constants K = K (c0,C0, δ) and C = C(δ), and
a finite collection of dyadic systems Db with parameters (c0,C0, δ), b = 1, · · · , K
that satisfies the following property. For any ball B = B(x, r) ⊆ M, there exists
b ∈ {1, · · · , K } and Q ∈ Db such that

B ⊆ Q and diam(Q) ≤ Cr .

From this point forward we fix a dyadic collectionD := ∪K
b=1D

b as in the previous
theorem. The following covering lemma will be useful in Sect. 5.

Lemma 2.3 [44, Lemma 2.2] Let (M, d, μ) be a doubling metric space with
diam(M) = ∞ and D a dyadic system with parameters (c0,C0, δ). Let α ≥ 3/δ
and E ⊂ M with diam(E) ∈ (0,∞). There exists a partition P ⊆ D of the space
M, made with dyadic cubes, such that

E ⊆ αQ , ∀Q ∈ P.

Let w be a weight on M . The uncentered dyadic maximal functionMD
p,w of expo-

nent p ∈ [1,∞) is defined by

MD
p,w f (x) := sup

Q∈D

(
1

w(Q)

∫
Q
| f (y)|pw(y) dy

)1/p

1Q(x),
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where the notation 1E is used to denote the characteristic function of a set E ⊂ M
and w(E) := ∫

E w dμ. When w ≡ 1, MD
p,w will just be the usual dyadic maximal

function of exponent p and the shorthand notation MD
p = MD

p,1 will be employed.

Similarly, we will also use the notation MD
w = MD

1,w. It is known that MD
p is of

weak-type (p, p) and strong (q, q) for all q > p, see [16]. Moreover,MD
w is bounded

on L p(w) for all p ∈ [1,∞) with a constant independent of the weight,

‖MD
w f ‖L p(w) ≤ p′‖ f ‖L p(w). (2.1.1)

2.2 Off-Diagonal Estimates

In this section, we define three different notions of off-diagonal estimates that will
be used throughout this article. For an extensive and detailed account of off-diagonal
estimates for operator families, the reader is referred to [4]. Throughout this section,
we will consider exponents 1 ≤ p0 < 2 < q0 ≤ ∞.

Definition 2.4 (Off-diagonal estimates at scale
√
t) A family of operators {Tt }t>0 is

said to satisfy (p0, q0) off-diagonal estimates at scale
√
t if for any two balls B1, B2

of radius
√
t we have

(
−
∫
B2

|Tt ( f 1B1)|q0 dμ
)1/q0

� ρ
(d(B1, B2)√

t

)(
−
∫
B1

| f |p0 dμ
)1/p0

,

where ρ : [0,∞) → (0, 1] is a non-increasing function such that ρ(0) = 1 and
limx→∞|x |aρ(x) = 0 for some a ≥ 0.

Remark 2.5 Some comments are in order.

• Examples of ρ that we will use are the Gaussian function ρ(x) = e−c|x |2 and
ρ(x) = 〈x〉−s , where 〈x〉 = (1+|x |2)1/2 is the Japanese bracket. For the Gaussian
case, the positive constant c is not relevant and may change from line to line.
See also comments after [4, Def. 2.1]. For our sparse domination, the choice
ρ(x) = 〈x〉−2(ν+1) suffices.

• Off-diagonal estimates at scale
√
t are stable under composition. That is, if Tt

satisfies (p1, p2) off-diagonal estimates at scale
√
t and St satisfies (p2, p3) off-

diagonal estimates at scale
√
t then St Tt will satisfy (p1, p3) off-diagonal estimates

at scale
√
t . It shouldbenoted, however that the valueof c or s in the above examples

of ρ may change for the composition.
• For p0 ≤ p ≤ q ≤ q0, Hölder’s inequality implies that if an operator family
satisfies (p0, q0) off-diagonal estimates at scale

√
t then it will also satisfy (p, q)

estimates.
• Off-diagonal estimates for p ≤ q do not imply L p − Lq boundness of Tt , see [4].

In order to apply off-diagonal estimates, we often need to decompose the support
of a function f into finitely overlapping balls with radius to match the scale.
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Definition 2.6 We say that a collection of balls B has finite overlap if there exists a
finite constant �B such that

‖
∑
B∈B

1B‖L∞ = �B.

Remark 2.7 Let B be a collection of finite overlapping balls covering a set �. Then

∑
B∈B

μ(B) =
∫

�

∑
B∈B

1B dμ ≤ �B μ(�).

Lemma 2.8 Let � ⊂ M be an open set, and let R be a family of finite overlapping
balls, with the same radius, covering �. If there exists m ∈ N such that mR ⊃ � for
all R ∈ R, then for any f ∈ L p0(�), p0 ≥ 1, we have

∑
R∈R

(
−
∫
R
| f |p0 dμ

)1/p0
� mν

(
−
∫

�

| f |p0 dμ
)1/p0

. (2.2.1)

Proof For p0 > 1, Hölder’s inequality implies that

∑
R∈R

(
−
∫
R

| f |p0 dμ

) 1
p0 ≤

(
sup
R∈R

1

|R|
) 1

p0

(∑
R∈R

∫
R

| f |p0 dμ

) 1
p0
(∑
R∈R

1

) 1
p′0

=
(
sup
R∈R

|�|
|R|

) 1
p0
(

−
∫

�

| f |p0 dμ

) 1
p0

(#R)

1
p′0 .

Since mR ⊃ � for all R ∈ R, the doubling property implies that

(
sup
R∈R

|�|
|R|

) 1
p0

(#R)

1
p′0 � sup

R∈R
|mR|
|R| � mν.

The case p0 = 1 is even simpler since it does not require the use of Hölder’s inequality
nor an estimate on the cardinality #R. ��

Remark 2.9 If Ts satisfies (p0, q0) off-diagonal estimates at scale
√
s, then it satisfies

(
−
∫
B(r)

|Ts( f 1B1)|q0 dμ
)1/q0

� ρ

(
d(B1, B(r))√

s

)(
−
∫
B1

| f |p0 dμ
)1/p0

, (2.2.2)

for balls B(r) of radius r ≥ √
s and B1 of radius

√
s.
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Proof of (2.2.2) It is enough to cover the larger ball B(r)with a collectionB of smaller,
finite overlapping balls of radius

√
s.

(
−
∫
B(r)

|Ts( f 1B1)|q0 dμ
)1/q0

=
(∑
B∈B

|B|
|B(r)|−

∫
B
|Ts( f 1B1)|q0 dμ

)1/q0

≤
(∑
B∈B

|B|
|B(r)|

)1/q0 (
sup
B∈B

−
∫
B
|Ts( f 1B1)|q0 dμ

)1/q0

( by Remark 2.7) ≤ �
1/q0
B sup

B∈B

(
−
∫
B
|Ts( f 1B1)|q0 dμ

)1/q0
.

We can use off-diagonal estimates at scale
√
s to obtain

sup
B∈B

(
−
∫
B
|Ts( f 1B1)|q0 dμ

)1/q0
� sup

B∈B
ρ

(
d(B, B1)√

s

)(
−
∫
B1

| f |p0 dμ
)1/p0

.

The estimate then follows from the fact that the supremum of ρ(d(B, B1)/
√
s) over

B ∈ B is at most ρ
(
d(B(r), B1)/

√
s
)
. ��

We denote the semigroup by Pt := e−t L . This is used as an approximation of the
identity at scale

√
t , since for any p ∈ (p0, q0) we have

lim
t→0

‖ f − e−t L f ‖L p = 0 and lim
t→∞‖e−t L f ‖L p = 0.

For N > 0, we also consider the family of operators Q(N )
t := c−1

N (t L)Ne−t L with
cN = ∫∞

0 sN e−s ds
s . These operators will satisfy an adapted Calderón reproducing

formula for functions f ∈ L p with p ∈ (p0, q0), namely

f =
∫ ∞

0
Q(N )

t f
dt

t
.

Also define

P(N )
t :=

∫ ∞

1
Q(N )

st
ds

s
.

Then P(N )
t is related to the operator Q(N )

t through t∂t P
(N )
t = −Q(N )

t . We also have
that as L p-bounded operators,

P(N )
t = Id +

∫ t

0
Q(N )

s
ds

s
.
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Remark 2.10 It is known that for any integer N ∈ N\{0} the operators P(N )
t and Q(N )

t
satisfy (p, p) off-diagonal estimates at scale

√
t for all t > 0 and all p ∈ [p0, q0]

with p < ∞ (see the arguments in [29, Prop 3.1], for instance).

Definition 2.11 (Off-diagonal estimates at all scales) A family of operators {Tt }t>0
is said to satisfy (p0, q0) off-diagonal estimates at all scales if for all balls B1, B2 of
radius r1, r2 we have

‖Tt‖L p0 (B1)→Lq0 (B2) �
∣∣B1,

√
t

∣∣− 1
p0
∣∣B2,

√
t

∣∣ 1
q0 ρ

(
d(B1, B2)√

t

)
,

where Bi,
√
t := (

√
t/ri )Bi for i = 1, 2 and ρ : [0,∞) → (0, 1] is a non-increasing

function such that ρ(0) = 1 and limx→∞|x |aρ(x) = 0 for some a ≥ 0.

It is trivial to see that off-diagonal estimates at all scales implies off-diagonal
estimates at scale

√
t . This stronger condition is used in our cancellation hypothesis,

Assumption 1.2(c).
Let ψ : (0,∞) → (0,∞) be a non-decreasing function. A space of homogeneous

type (M, μ) is said to be of ψ-growth if

|B(x, r)| = μ(B(x, r)) � ψ(r)

uniformly for all x ∈ M and r > 0. Notice that this condition is stronger than (1.0.4).
For spaces ofψ-growth, one encounters another notion of off-diagonal estimate. These
types of estimates are studied in [4].

Definition 2.12 (Full off-diagonal estimates) Suppose that (M, μ) is of ψ-growth. A
family of operators {Tt }t>0 is said to satisfy (p0, q0) full off-diagonal estimates if for
all closed sets E, F we have

‖Tt‖L p0 (E)→Lq0 (F) � ψ(
√
t)

1
q0

− 1
p0 ρ

(
d(E, F)√

t

)
,

where ρ : [0,∞) → (0, 1] is a non-increasing function such that ρ(0) = 1 and
limx→∞|x |aρ(x) = 0 for some a ≥ 0.

Remark 2.13 It is not difficult to show that for spaces of ψ-growth, the three different
notions of off-diagonal estimates, Definitions 2.4, 2.11 and 2.12, are all equivalent for
a particular choice of ρ.

2.3 Weight Classes

We recall some basic properties of theMuckenhoupt and reverseHölderweight classes
as defined in the introduction. Refer to [33] for further information.

Lemma 2.14 The following properties of the weight classes Ap and RHq are true.
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(i) For p ∈ (1,∞), a weight w will be contained in the class Ap if and only if
w1−p′ ∈ Ap′ . Moreover,

[
w1−p′]

Ap′
= [

w
]p′−1
Ap

.

(ii) For q ∈ [1,∞] and s ∈ [1,∞), a weight w will be contained in Aq ∩ RHs if and
only if ws ∈ As(q−1)+1. Moreover,

max{[w]sAq
, [w]sRHs

} ≤ [
ws]

As(q−1)+1
≤ [w]sAq

[w]sRHs
.

For 1 ≤ p0 < 2 < q0 ≤ ∞ and p ∈ (p0, q0) define

φ(p) :=
(
q0
p

)′ ( p

p0
− 1

)
+ 1.

The dependence of φ on p0 and q0 will be kept implicit. From the previous lemma,
we get that a weight w will be contained in the class A p

p0
∩ RH(

q0
p )′ if and only if

w
(
q0
p )′ is contained in Aφ(p) and it will be true that

[
w

(
q0
p )′
]
Aφ(p)

≤
(
[w]A p

p0

[w]RH
(
q0
p )′

)(
q0
p )′

. (2.3.1)

In the article [3], the authors P. Auscher and J. M. Martell proved a restricted
range extrapolation result that allowed one to obtain L p(w)-boundedness for the full
range of p ∈ (p0, q0) and w ∈ A p

p0
∩ RH(

q0
p )′ directly from the Lq(w)-boundedness

for all w ∈ A q
p0

∩ RH(
q0
q )′ of a single index q ∈ (p0, q0). In their result, they

do not state the dependence of the bound on the weight characteristic
[
w

(
q0
p )′
]
Aφ(p)

.

However, a quantitative version of the extrapolation theorem by Auscher and Martell
can be obtained through [46, Thm. 2.2] in the scalar case (m = 1), as their weight
characteristic [w]p,(r ,s) coincides (up to a power) with [w(q0/p)′ ]Aφ(p) when r = p0
and s = q0.

Here we recall this result using the notation of [3, Thm. 4.9] and the weight
characteristic introduced earlier. As in [50], F denotes a family of ordered pairs of
non-negative, measurable functions ( f , g).

Theorem 2.15 (Sharp Restricted Range Extrapolation) Let 0 < p0 < q0 ≤ ∞.
Suppose that there exists q with p0 ≤ q < q0 such that for ( f , g) ∈ F ,

‖ f ‖Lq (w) ≤ C
[
w

(
q0
q )′
]α
Aφ(q)

‖g‖Lq (w) for all w ∈ A q
p0

∩ RH(
q0
q )′ ,
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for some α > 0 and C > 0 independent of the weight. Then, for all p0 < p < q0 and
( f , g) ∈ F we have

‖ f ‖L p(w) ≤ C ′ [w(
q0
p )′
]β(p,q)·α
Aφ(p)

‖g‖L p(w) for all w ∈ A p
p0

∩ RH(
q0
p )′ ,

where β(p, q) := max
(
1, (q0−p)(q−p0)

(q0−q)(p−p0)

)
and C ′ > 0 is independent of the weight.

3 Applications

In this section, we consider two distinct applications of our quadratic sparse domina-
tion result and Corollary 1.9. For the first application, weighted estimates for square
functions associated with divergence form elliptic operators will be proved. For the
particular case of the Laplacian operator�, thiswill allow us to recover some estimates
from [13]. The second example that we will look at are square functions associated
with the Laplace–Beltrami operator on a Riemannian manifold.

3.1 Elliptic Operators

Fix n ∈ N \ {0} and consider the Euclidean space R
n equipped with the Lebesgue

measure. This is a space of ψ-growth, so all definitions of off-diagonal estimates are
equivalent, see Remark 2.13.

Let A be an n × n matrix-valued function on Rn that is bounded and elliptic in the
sense that

Re〈A(x)ξ, ξ 〉Cn ≥ λ |ξ |2 ,

for some λ > 0, for all ξ, x ∈ R
n . Consider the divergence form elliptic operator

L = −divA∇,

defined through its corresponding sesquilinear form as a densely defined and maxi-
mally accretive operator on L2(Rn). The operator L generates an analytic semigroup{
e−zL

}
z∈�π/2−θ

, where

θ := sup {|arg〈L f , f 〉| : f ∈ D2(L)} .

Let gL and GL denote the square function operators associated with L defined by

gL f :=
(∫ ∞

0

∣∣∣t L e−t L f
∣∣∣2 dt

t

)1/2

and GL f :=
(∫ ∞

0

∣∣∣√t∇e−t L f
∣∣∣2 dt

t

)1/2

.

In the articles [4] and [2], off-diagonal estimates for the constituent operators of gL
and GL were studied in great detail. The below proposition outlines some properties
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of such off-diagonal estimates that will be required in order to apply Corollary 1.9 to
these two square functions.

Proposition 3.1 [2, Prop. 3.3] For m ∈ N and 0 < μ < π/2−θ , there exists maximal
intervals J m(L) and Km(L) in [1,∞] satisfying the below properties.

• If p0, q0 ∈ J m(L) with p0 ≤ q0 then
{
(zL)me−zL

}
z∈�μ

satisfies (p0, q0) full

off-diagonal estimates.

• If p0, q0 ∈ Km(L) with p0 ≤ q0 then
{√

z∇(zL)me−zL
}
z∈�μ

satisfies (p0, q0)

full off-diagonal estimates.

• The interiors intJ m(L) and intKm(L) are independent of m.

• The inclusion Km(L) ⊆ J m(L) is satisfied.

• The point p = 2 is contained in Km(L).

Remark 3.2 Observe that for any m ≥ 1, J 1(L) ⊂ J m(L). To see this, let p0, q0 ∈
J 1(L) with p0 ≤ q0. Then (t L)e−t L/m must satisfy both (p0, q0) and (q0, q0) off-
diagonal estimates. This fact, when combined with the decomposition

(t L)me−t L = (t L)e−t L/m · · · (t L)e−t L/m

and the property that full off-diagonal estimates are stable under composition (c.f. [4,
Thm. 2.3 (b)]) then implies that p0, q0 ∈ J m(L).

It is also not difficult to see that J 0(L) ⊂ J 1(L). Indeed, consider the expression

t Le−t L = e− t
3 L · (t L)e− t

3 L · e− t
3 L .

For p0, q0 ∈ J 0(L) with p0 < 2 < q0, Proposition 3.1 tells us that the operator
e− t

3 L will satisfy both (p0, 2) and (2, q0) full off-diagonal estimates. It is also well
known that t Le− t

3 L satisfies (2, 2) full off-diagonal estimates. The stability of full
off-diagonal estimates under composition then implies that t Le−t L satisfies (p0, q0)
full off-diagonal estimates.

Applying Corollary 1.9 to the operators L and gL will produce the following weighted
result.

Proposition 3.3 Let p0, q0 ∈ J 0(L) with p0 < 2 < q0. Then, for any p ∈ (p0, q0)
and w ∈ A p

p0
∩ RH(

q0
p )′ ,

‖gL‖L p(w) �
(
[w]A p

p0

· [w]RH
(
q0
p )′

)γ (p)

,

where γ (p) is as defined in Corollary 1.9.
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Proof To prove the proposition, it is sufficient to check that the hypotheses of Corollary
1.9, namely Assumptions 1.1 and 1.2, are valid for the operators L and gL and the
indices p0, q0. Assumption 1.1 is clearly valid since the definition of J 0(L) implies
that the semigroup e−t L will satisfy (p0, q0) full off-diagonal estimates.

It remains to prove the validity of Assumption 1.2. Part (a), the L2-boundedness of
gL , follows from the fact that L possesses a bounded holomorphic functional calculus
on L2. Assumption 1.2(b), the off-diagonal estimates of the operator family t Le−t L

is given by Remark 3.2. Assumption 1.2(c) follows on observing that

Qs(t L)Ne−t L = sLe−sL(t L)Ne−t L

= st N

(s + t)N+1 ((s + t)L)N+1e−(s+t)L

and that since p0, q0 ∈ J 0(L) the operator family�
(N )
r = (r L)N+1e−r L will possess

(p0, q0) full off-diagonal bounds for any N ≥ N0 = 0 by Remark 3.2. Finally, for
Assumption 1.2(d), in the proof of [2, Thm. 7.2 (a)] it was shown that for any ball
B(x, r) we have

(
−
∫
B(x,r)

∣∣∣gLe−r2L f
∣∣∣q0 dμ

)1/q0
�
∑
j≥1

c( j)

(
−
∫
2 j+1B(x,r)

|gL f |p0 dμ

)1/p0
,

(3.1.1)

for some sequence of numbers c( j) > 0 that satisfies
∑

j≥1 c( j) � 1. It should be
noted that this argument was written for the square function with constituent operators

(t L)
1
2 e−t L , but it applies equally well to our choice of square function. This clearly

implies that

(
−
∫
B(x,r)

∣∣∣gLe−r2L f
∣∣∣q0 dμ

)1/q0
� inf

y∈B(x,r)
Mp0(gL f )(y),

and thus, Assumption 1.2(d) is valid. ��
Similarly, Corollary 1.9 can be applied to the square function GL .

Proposition 3.4 Let p0, q0 ∈ K0(L) with p0 < 2 < q0. Then, for any p ∈ (p0, q0)
and w ∈ A p

p0
∩ RH(

q0
p )′ ,

‖GL‖L p(w) �
(
[w]A p

p0

· [w]RH
(
q0
p )′

)γ (p)

.

Proof In order to apply Corollary 1.9, it is sufficient to show thatGL satisfies Assump-
tions 1.1 and 1.2. Assumption 1.1 is implied by p0, q0 ∈ K0(L) ⊂ J 0(L).

Let us nowdemonstrate the validity ofAssumption 1.2. The L2-boundedness ofGL ,
Assumption 1.2(a), follows from the ellipticity condition of A and a straightforward
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integration by parts argument that can be found in [1, pg. 74]. Assumption 1.2(b) is
implied by the condition p0, q0 ∈ K0(L). For Assumption 1.2(c), notice that

Qs Q
(N )
t = √

s∇e−sL(t L)Ne−t L

= s
1
2 t N

(s + t)N+ 1
2

√
s + t∇ ((s + t)L)N e−(s+t)L

=: s
1
2 t N

(s + t)N+ 1
2

�
(N )
s+t .

Also observe that

�(N )
r = √

r∇e−r L/2(r L)Ne−r L/2.

As p0, q0 ∈ K0(L), Proposition 3.1 tells us that operator family
√
r∇e−r L/2 will

satisfy (2, q0) full off-diagonal estimates. Similarly, since K0(L) ⊂ J N (L) for any
N ≥ N0 = 0, the family (r L)Ne−r L/2 satisfies (p0, 2) full off-diagonal bounds. It
then follows from the stability of full off-diagonal bounds under composition that the
family�

(N )
r will satisfy (p0, q0) full off-diagonal bounds. This proves thatAssumption

1.2(c) is satisfied.
Finally, for Assumption 1.2(d), in the proof of [2, Thm. 7.2 (b)] it was proved that

for any ball B(x, r) we have

(
−
∫
B(x,r)

∣∣∣GLe
−r2L f

∣∣∣q0 dμ

) 1
q0 �

∑
j≥1

d( j)

(
−
∫
2 j+1B(x,r)

|GL f |p0 dμ

) 1
p0

,

for some sequence of numbers d( j) > 0 that satisfies
∑

j≥1 d( j) � 1. This clearly
implies that

(
−
∫
B(x,r)

∣∣∣GLe
−r2L f

∣∣∣q0 dμ

) 1
q0 � inf

y∈B(x,r)
Mp0(GL f )(y), (3.1.2)

and thus, Assumption 1.2(d) is valid. ��
Remark 3.5 If A is real valued, then it is known that J 0(L) = [1,∞] (c.f. [2]).
Proposition 3.3 will then imply that

‖gL‖L p(w) � [w]
max

(
1

p−1 , 12

)
Ap

for all w ∈ Ap. When A has smooth coefficients, this result was proved by Bui and
Duong in [13].

In the same work, the authors showed that square functions associated with
√
L are

dominated by the corresponding one associated with L [13, Thm. 1.4].
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In particular, our bounds for gL in Proposition 3.3 implies the same bound for the
square function g√

L . If, in addition to being real valued, A is also smooth then it is
known that K0(L) = [1,∞]. Proposition 3.4 then implies that

‖GL‖L p(w) � [w]max
(

1
p−1 , 12

)
Ap

,

which reproduces a result in [13].

Remark 3.6 For A = I we have L = � and it is then known that J 0(L) = K0(L) =
[1,∞]. We can then take p0 = 1 and q0 = ∞ in Propositions 3.3 and 3.4. This will
produce the weighted estimates

‖g�‖L p(w) , ‖G�‖L p(w) �
(
[w]Ap [w]RH1

)max
(

1
p−1 , 12

)
= [w]

max
(

1
p−1 , 12

)
Ap

for allw ∈ Ap∩RH1 = Ap. For both square functions, it is known that these estimates
are optimal in the sense that they will not hold for an exponent of [w]Ap any smaller
than the above exponent. This provides a new proof of weighted boundedness of the
standard square functions associated with � with optimal dependence on the constant
[w]Ap .

3.2 Laplace–Beltrami

Let M be a complete, connected, non-compact Riemannian manifold. It will be
assumed that the Riemannian measure μ satisfies the volume doubling property. In
addition, it will also be assumed that there exists a function ψ : (0,∞) → (0,∞) for
which

|B(x, r)| = μ(B(x, r)) � ψ(r)

uniformly for all x ∈ M and r > 0. That is, the manifold is of ψ-growth. Enforcing
this stronger growth condition will allow us to interchange our different notions of
off-diagonal estimates (c.f. Remark 2.13).

Consider the Laplace–Beltrami operator � defined as an unbounded operator on
L2(M, μ) through the integration by parts formula

〈� f , f 〉 = ‖|∇ f |‖22
for f ∈ C∞

0 (M), where ∇ is the Riemannian gradient. The positivity of � implies
that it will generate an analytic semigroup e−t� on L2(M, μ).

Recall that the heat kernel kt (x, y) of � is said to satisfy Gaussian upper bounds if
there exists c > 0 such that

kt (x, y) � 1∣∣B(x,
√
t)
∣∣e−c d2(x,y)

t
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for all x, y ∈ M and t > 0. This is a very common assumption that is imposed when
considering the boundedness of singular operators on Riemannian manifolds. For
further information refer to [19], [6] or [5]. Consider the square function g� defined
through

g� f :=
(∫ ∞

0

∣∣t�e−t� f
∣∣2 dt

t

)1/2

.

The boundedness for square functions of this form on unweighted L p(M) with 1 <

p < ∞ is known to hold in the general symmetric Markov semigroup setting [49,
pg. 111]. Let us consider the weighted case on the full range of p ∈ (1,∞).

Proposition 3.7 Suppose that the heat kernel for M satisfies Gaussian upper bounds.
Then, for any p ∈ (1,∞) and w ∈ Ap,

‖g�‖L p(w) � [w]
max

(
1
2 , 1

p−1

)
Ap

.

Proof This result will follow from Corollary 1.9 provided that Assumptions 1.1 and
1.2 are verified to hold with p0 = 1 and q0 = ∞.

For Assumption 1.1, it is known that the heat kernel satisfying Gaussian upper
bounds is equivalent to the semigroup e−t� satisfying (1,∞) full off-diagonal esti-
mates. For proof, the reader is referred to [4, Prop. 2.2] and [4, Prop. 3.3]. Thus,
Assumption 1.1 will be valid.

For Assumption 1.2(a), the L2-boundedness of g� follows from the bounded holo-
morphic functional calculus of � on L2. For Assumption 1.2(b), notice that

t�e−t� = e− t
3� · t�e− t

3� · e− t
3�.

Observe that since the semigroup e−t� satisfies (1,∞) full off-diagonal estimates,
e−t� will satisfy both (1, 2) and (2,∞) full off-diagonal bounds. At the same time,
t�e−t� is well known to satisfy (2, 2) full off-diagonal bounds (c.f. [6, pg. 930] and
[22, Lemma 7]). It then follows from the stability of full off-diagonal bounds under
composition ( [4, Thm. 2.3 (b)]) that t�e−t� satisfies (1,∞) full off-diagonal bounds.
This proves that Assumption 1.2(b) is satisfied.

Assumption 1.2(c) follows from the expression

Qs(t�)Ne−t� = st N

(s + t)N+1 [(s + t)�]N+1 e−(s+t)�

and the fact that the operator family {(r�)N+1e−r�}r>0 satisfies (1,∞) full off-
diagonal bounds by an argument similar to that of Remark 3.2.

Finally, the validity of Assumption 1.2(d) can be proved in an identical manner to
the argument used to obtain (3.1.1). This argument can be found in [2, §7] on pages
729–730. This argument in the elliptic setting follows from a combination of the off-
diagonal estimates of the constituent operators, the fact that the constituent operators
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are expressible in terms of the semigroup and a variation of the Marcinkiewicz–
Zygmund theorem [27]*Thm. 5.5.1. All three of these components will hold for our
square function in this Riemannian manifold setting, and thus, the argument will be
valid. ��

Next, we will apply our sparse result to the square function

G� f :=
(∫ ∞

0

∣∣∣√t∇e−t� f
∣∣∣2 dt

t

)1/2

.

Define

q+ := sup

{
p ∈ (1,∞) :

∥∥∥
∣∣∣∇�− 1

2 f
∣∣∣
∥∥∥
p

� ‖ f ‖p

}
.

The weighted boundedness of the Riesz transforms operator ∇�− 1
2 on L p(M, w dμ)

was considered for p ∈ (1, q+) in [5]. Owing to the strong connection between the
Riesz transforms and the square function G�, the range (1, q+) will also be a natural
interval over which to consider the boundedness of G�. From the definition of q+ and

the L2-boundedness of ∇�− 1
2 , it is clear that q+ ≥ 2. In the below proposition we

assume this inequality to be strict.

Proposition 3.8 Assume that the heat kernel of M satisfies Gaussian upper bounds
and that q+ > 2. Let 2 < q0 < q+ and p ∈ [1, q0). Then for any w ∈ Ap ∩ RH(

q0
p )′ ,

‖G�‖L p(w) �
(
[w]Ap · [w]RH

(
q0
p )′

)γ (p)

.

Proof Once again, let us apply Corollary 1.9. Assumption 1.1 will be true for the same
reason as in Proposition 3.7. Assumption 1.2(a) is well known and can be obtained

by combining the L2-boundedness of ∇�− 1
2 together with the bounded holomorphic

functional calculus of � on L2.
Let us show that the family of operators Qt = √

t∇e−t� satisfies (1, q0) off-
diagonal estimates at scale

√
t with ρ(x) = exp(−cx2), for some c > 0. Fix balls

B1, B2 ⊂ M of radius
√
t . From the argument in the proof of [6, Prop 1.10],

(∫
M

|∇xkt (x, y)|q0 ec d2(x,y)
t dμ(x)

) 1
q0 � 1

√
t
∣∣B(y,

√
t)
∣∣1− 1

q0
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for all t > 0 and y ∈ M , where c > 0 is dependent on q0. This immediately implies
that

(
−
∫
B2

|∇x kt (x, y)|q0 dμ(x)

) 1
q0 � 1√

t
e−c

d2(B1,B2)

t
1∣∣B(y,

√
t)
∣∣1− 1

q0 |B2|
1
q0

� 1√
t
e−c

d2(B1,B2)

t
1

ψ(
√
t)

,

where the last line follows from the uniform ψ-growth condition imposed upon our
manifold. For f supported in B1, Minkowski’s inequality followed by the previous
estimate produces

(
−
∫
B2

∣∣∣√t∇e−t� f (x)
∣∣∣q0 dμ(x)

) 1
q0

=
(

−
∫
B2

∣∣∣∣
∫
B1

√
t∇xkt (x, y) f (y) dμ(y)

∣∣∣∣
q0

dμ(x)

) 1
q0

≤
∫
B1

(
−
∫
B2

∣∣∣√t∇xkt (x, y)
∣∣∣q0 dμ(x)

) 1
q0 | f (y)| dμ(y)

� 1

ψ(
√
t)
e−c

d2(B1,B2)

t

∫
B1

| f (y)| dμ(y)

� e−c
d2(B1,B2)

t −
∫
B1

| f (y)| dμ(y).

Let us now prove that Assumption 1.2(c) is valid. Observe that

Qs(t�)Ne−t� = s
1
2 t N

(s + t)N+ 1
2

√
s + t∇e− s+t

2 � [(s + t)�]N e− s+t
2 �

=: s
1
2 t N

(s + t)N+ 1
2

�
(N )
s+t .

Observe that the operator family {(r�)Ne−r�}r>0 satisfies (1,∞) full off-diagonal
estimates. Recall that for spaces of ψ-growth the three different forms of off-diagonal
estimates, Definitions 2.4, 2.11 and 2.12, are all equivalent. This, when combined with
Hölder’s inequality, implies that this operator family satisfies (1, 2) off-diagonal esti-
mates at scale

√
r . Similarly, the family {√r∇e−r�}r>0 satisfies (2, q0) off-diagonal

estimates at scale
√
r . The stability of off-diagonal estimates under composition then

implies that the operator family �r satisfies (1, q0) at scale
√
r , which implies (1, q0)

off-diagonal estimates at all scales. This proves Assumption 1.2(c).
Finally, the validity of Assumption 1.2 (d) can be proved in an identical manner

to the argument used to obtain (3.1.2). This argument can be found in [2, §7] on
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page 732. This argument in the elliptic setting follows from a combination of the off-
diagonal estimates of the constituent operators, the fact that the constituent operators
are expressible in terms of the semigroup and a variation of the Marcinkiewicz–
Zygmund theorem [27]*Thm. 5.5.1. All three of these components will hold for our
square function in this Riemannian manifold setting and thus the argument will be
valid. ��

4 Boundedness of theMaximal Function

Throughout this section, fix p0, q0 ∈ [1,∞], N0 ∈ N and operators L and S satisfying
Assumptions 1.1 and 1.2 for such a choice of p0, q0. For a ball B we denote by r(B)

its radius. Define the following maximal operator associated with the square function,

S∗ f (x) := sup
B ball
B�x

(
−
∫
B

∣∣∣S[r(B)2,∞) f
∣∣∣q0 dμ

)1/q0

:= sup
B ball
B�x

(
−
∫
B

(∫ ∞

r(B)2
|Qt f |2 dt

t

) q0
2

dμ

)1/q0

.

In this section, our aim is to prove the following boundedness result for S∗.

Theorem 4.1 The maximal function S∗ is bounded on L2 and weak-type (p0, p0).

The boundedness of this maximal function constitutes an important part of our
sparse domination argument. The reliance of our argument on an associated maximal
function is a well-known method for obtaining sparse bounds and finds its origins in
the work of Lacey [35]. It was later streamlined by Lerner [42]. Quite often, the issue
of proving sparse domination for a particular operator can be reduced to determining
an appropriate associated maximal operator, proving its (weak) boundedness and then
applying a stopping time argument that utilises this boundedness.

4.1 A Pointwise Estimate

In order to prove the boundedness of the operator S∗ we will require a couple of
preliminary lemmas. Given a ball B, we define the average of a function f over the
annulus Sk(B) := 2k+1B \ 2k B for k ∈ N as the integral over Sk(B) normalised by
|2k B|.

Recall that A0 is a positive number defined in Assumption 1.2 (c).

Lemma 4.2 For any 0 < s < r2 < t and N ∈ N,

(
−
∫
B

∣∣∣Qt Q
(N )
s f

∣∣∣q0 dμ

) 1
q0 � t A0sN

(t + s)A0+N

(√
t

r

) ν
q0 ∑

j≥0

2− j

(
−
∫
S j (B̃)

| f |p0 dμ

) 1
p0
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for any ball B of radius r and B̃ :=
√
t
r B.

Proof Fix B aball of radius r . For j ≥ 0, letR j denote a collectionoffinite overlapping
balls of radius

√
t that is a cover for the set S j (B̃). Then, Assumption 1.2 (c) together

with the triangle inequality produces

(
−
∫
B

∣∣∣Qt Q
(N )
s f

∣∣∣q0 dμ

) 1
q0 = t A0sN

(s + t)A0+N

(
−
∫
B

∣∣∣�(N )
s+t f

∣∣∣q0 dμ

) 1
q0

≤ t A0sN

(s + t)A0+N

∑
j≥0

∑
R∈R j

(
−
∫
B

∣∣∣�(N )
s+t (1R f )

∣∣∣q0 dμ

) 1
q0

� t A0sN

(s + t)A0+N

∑
j≥0

∑
R∈R j

|B|− 1
q0 |R| 1

p0

∣∣∣B√
s+t

∣∣∣−
1
q0
∣∣∣R√

s+t

∣∣∣
1
p0

(
1 + d(B, R)2

s + t

)− ν+1
2
(

−
∫
R

| f |p0 dμ

) 1
p0

.

(4.1.1)

On utilising the doubling property of our metric space and subsequently s + t � t ,

∣∣∣B√
s+t

∣∣∣ �
(√

s + t

r

)ν

|B|

�
(√

t

r

)ν

|B| .
(4.1.2)

This, together with the fact that |R| ≤
∣∣∣R√

s+t

∣∣∣ gives

(
−
∫
B

∣∣∣Qt Q
(N )
s f

∣∣∣q0 dμ

) 1
q0

� t A0sN

(s + t)A0+N

(√
t

r

) ν
q0 ∑

j≥0

∑
R∈R j

(
1 + d(B, R)2

s + t

)− ν+1
2
(

−
∫
R

| f |p0 dμ

) 1
p0

.

(4.1.3)

For R ∈ R j , since d(B, R) ≥ (2 j − 1)
√
t � (2 j − 1)

√
s + t for j ≥ 1, we have

(
1 + d(B, R)2

s + t

)− ν+1
2

� 2− j(ν+1). (4.1.4)
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Let� = S j (B̃) andR j as defined above in this proof. The inclusion� ⊂ 2 j+1 B̃ ⊂
2 j+2R holds for any R ∈ R j and j ∈ N. Thus Lemma 2.8 implies that

∑
R∈R j

(
−
∫
R

| f |p0 dμ

) 1
p0 � 2 jν

(
−
∫
S j (B̃)

| f |p0 dμ

) 1
p0

.

Applying this estimate and (4.1.4–4.1.3) gives us our result. ��
Using the previous lemma, the following result can then be proved using an argu-

ment identical to the first estimate of [8, Lem. 4.1].

Lemma 4.3 Fix N ∈ N with N > max(3ν/2 + 1, N0). For any ball B of radius
r(B) > 0 and t > r(B)2 we have

(
−
∫
B

∣∣∣Qt (I − P(N )

r(B)2
) f
∣∣∣q0 dμ

) 1
q0 �

(
r(B)2

t

) N
2 ∑

l≥0

2−l
(

−
∫
2l B

| f |p0 dμ

) 1
p0

.

(4.1.5)

Let S# denote the maximal operator

S# f (x) := sup
B ball
B�x

(
−
∫
B

∣∣∣SP(N )

r(B)2
f
∣∣∣q0 dμ

) 1
q0

.

This operator was introduced in [8] and formed an important part of their sparse
domination argument.

Proposition 4.4 For every x ∈ M,

S∗ f (x) � S# f (x) + Mp0 f (x).

Proof For x ∈ M and ball B ⊂ M containing x , the triangle inequality implies

(
−
∫
B

(∫ ∞

r(B)2
|Qt f |2 dt

t

) q0
2

dμ

) 1
q0

≤
(

−
∫
B

(∫ ∞

r(B)2

∣∣∣Qt (I − P(N )

r(B)2
) f
∣∣∣2 dt

t

) q0
2

dμ

) 1
q0

+
(

−
∫
B

(∫ ∞

r(B)2

∣∣∣Qt P
(N )

r(B)2
f
∣∣∣2 dt

t

) q0
2

dμ

) 1
q0

.
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For the first term, apply Minkowski’s inequality followed by Lemma 4.3 to obtain

(
−
∫
B

(∫ ∞

r(B)2

∣∣∣Qt (I − P(N )

r(B)2
) f
∣∣∣2 dt

t

) q0
2

dμ

) 1
q0

≤
(∫ ∞

r(B)2

(
−
∫
B

∣∣∣Qt (I − P(N )

r(B)2
) f
∣∣∣q0 dμ

) 2
q0 dt

t

) 1
2

�

⎛
⎜⎝
∫ ∞

r(B)2

⎛
⎝
(
r(B)2

t

) N
2 ∑

l≥0

2−l
(

−
∫
2l B

| f |p0 dμ

) 1
p0

⎞
⎠

2
dt

t

⎞
⎟⎠

1
2

= r(B)N
(∫ ∞

r(B)2

dt

t N+1

) 1
2 ∑
l≥0

2−l
(

−
∫
2l B

| f |p0 dμ

) 1
p0

� Mp0 f (x).

For the second term,

(
−
∫
B

(∫ ∞

r(B)2

∣∣∣Qt P
(N )

r(B)2
f
∣∣∣2 dt

t

) q0
2

dμ

) 1
q0

≤
(

−
∫
B

(∫ ∞

0

∣∣∣Qt P
(N )

r(B)2
f
∣∣∣2 dt

t

) q0
2

dμ

) 1
q0

=
(

−
∫
B

∣∣∣SP(N )

r(B)2
f
∣∣∣q0 dμ

) 1
q0

≤ S# f (x).

We thus obtain the pointwise estimate (4.4). ��

4.2 Cancellation of Swith respect to L

As the operatorMp0 is L
2-bounded and weak-type (p0, p0), the pointwise bound of

the previous section implies that in order to prove Theorem 4.1 it will be sufficient to
show that S# is L2-bounded and weak-type (p0, p0). According to [8, Prop. 4.6], S#

will be L2-bounded and weak-type (p0, p0) if S satisfies the assumptions of [8]. The
only assumption from [8] that is not included in our hypotheses is Assumption (b) of
[8], the cancellative property of S with respect to L . Instead, for us, the cancellation
has been imposed upon the constituent operators Qt . In this section it will be proved
that cancellation onQt with respect to L implies cancellation on S with respect to L .
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Proposition 4.5 There exists Ñ0 ≥ N0 such that for all integers N ≥ Ñ0, s > 0 and
balls B1, B2 of radius

√
s,

(
−
∫
B2

∣∣∣SQ(N )
s f

∣∣∣q0 dμ

) 1
q0 �

(
1 + d(B1, B2)

2

s

)− ν+1
2
(

−
∫
B1

| f |p0 dμ

) 1
p0

(4.2.1)

for all f ∈ L p0(B1).

Proof For I ⊂ [0,∞), define the operator

SI f (x) :=
(∫

I
|Qt f |2 dt

t

)1/2

.

In order to prove (4.2.1), it is sufficient to show that a similar estimate holds for the
operators S[0,s] and S[s,∞).

For I ⊂ [0,∞), Minkowski’s inequality implies that

(
−
∫
B2

∣∣∣SI Q(N )
s f

∣∣∣q0 dμ

) 1
q0 =

(
−
∫
B2

(∫
I

∣∣∣Qt Q
(N )
s f

∣∣∣2 dt

t

) q0
2

dμ

) 2
q0

1
2

≤
[∫

I

(
−
∫
B2

∣∣∣Qt Q
(N )
s f

∣∣∣q0 dμ

) 2
q0 dt

t

] 1
2

.

From Assumption 1.2(c) and the growth property (1.0.4), we have

(
−
∫
B2

∣∣∣SI Q(N )
s f

∣∣∣q0 dμ

) 1
q0 ≤

[∫
I

t2A0s2N

(t + s)2(A0+N )

(
−
∫
B2

∣∣∣�(N )
t+s f

∣∣∣q0 dμ

) 2
q0 dt

t

] 1
2

�

⎡
⎢⎢⎣
∫
I

t2A0s2N

(t + s)2(A0+N )

|B1|
2
p0 · |B2|−

2
q0

∣∣∣B1,
√
t+s

∣∣∣
2
p0
∣∣∣B2,

√
t+s

∣∣∣−
2
q0

(
1 + d(B1, B2)

2

t + s

)−(ν+1)
dt

t

]1/2 (
−
∫
B1

| f |p0 dμ

) 1
p0

�
⎡
⎣
∫
I

t2A0s2N

(t + s)2(A0+N )
ϕ

( √
s√

t + s

)2
(

1
p0

− 1
q0

)

(
1 + d(B1, B2)

2

t + s

)−(ν+1)
dt

t

]1/2 (
−
∫
B1

| f |p0 dμ

) 1
p0

.
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The property that ϕ(a) ≤ 1 for a ≤ 1 then gives

(
−
∫
B2

∣∣∣SI Q(N )
s f

∣∣∣q0 dμ

) 1
q0 �

[∫
I

t2A0s2N

(t + s)2(A0+N )

(
1 + d(B1, B2)

2

t + s

)−(ν+1)
dt

t

] 1
2

(
−
∫
B1

| f |p0 dμ

) 1
p0

. (4.2.2)

In order to prove the desired off-diagonal estimate, it is then sufficient to prove

AI :=
∫
I

t2A0s2N

(t + s)2(A0+N )

(
1 + d(B1, B2)

2

t + s

)−(ν+1)
dt

t

�
(
1 + d(B1, B2)

2

s

)−(ν+1)

,

(4.2.3)

for both intervals I = [0, s] and I = [s,∞). Consider first the interval I = [0, s].
For t contained in [0, s] we will have t + s ≤ 2s, and therefore,

(
1 + d(B1, B2)

2

t + s

)−(ν+1)

�
(
1 + d(B1, B2)

2

s

)−(ν+1)

.

This gives

AI �
(
1 + d(B1, B2)

2

s

)−(ν+1) ∫ s

0

t2A0s2N

(t + s)2(A0+N )

dt

t

≤
(
1 + d(B1, B2)

2

s

)−(ν+1)
1

s

∫ s

0
dt

=
(
1 + d(B1, B2)

2

s

)−(ν+1)

.

Applying this to (4.2.2) produces the desired off-diagonal bounds for the operator
S[0,s].

Next, let’s prove off-diagonal bounds for the operator S[s,∞). Suppose first that
s > d(B1, B2)

2. When this occurs, note that

(
1 + d(B1, B2)

2

s

)−(ν+1)

� 1. (4.2.4)
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We then have,

AI ≤
∫ ∞

s

t2A0s2N

(t + s)2(A0+N )

dt

t

≤ s2N
∫ ∞

s

1

(t + s)2N+1 dt

� 1

�
(
1 + d(B1, B2)

2

s

)−(ν+1)

.

Applying this to (4.2.2) produces the desired off-diagonal estimates for S[s,∞).
Finally, we must prove off-diagonal decay for S[s,∞) for the case s ≤ d(B1, B2)

2.
We have,

AI =
∫ ∞

s

t2A0s2N

(t + s)2(A0+N )

(
1 + d(B1, B2)

2

t + s

)−(ν+1)
dt

t

≤ s2N

d(B1, B2)2(ν+1)

∫ ∞

s

dt

(t + s)2N+1−(ν+1)
.

Select Ñ0 ≥ N0 large enough so that N ≥ Ñ0 implies 2N > ν + 1. Then,

AI � sν+1

d(B1, B2)2(ν+1)

�
(
1 + d(B1, B2)

2

s

)−(ν+1)

,

where the last line follows from the condition s ≤ d(B1, B2)
2. Applying this to (4.2.2)

completes our proof. ��
The below corollary, in combination with the pointwise estimate Proposition 4.4,

completes the proof of Theorem 4.1.

Corollary 4.6 [8, Prop. 4.6] Themaximal function S# is bounded on L2, andweak-type
(p0, p0).

5 Sparse Bounds

In this section we prove Theorem 1.7. Since f has compact support, without loss of
generality we can assume that its support is contained in a bounded set E ⊂ M . By
the Lemma 2.3, there exists α ≥ 1 and a partition P of M of dyadic cubes such that
αQ ⊇ supp f for every Q ∈ P . Then

∫
M

|S f |2g dμ =
∑
Q∈P

∫
Q
|S f |2g dμ =

∑
Q∈P

∫
Q
|S( f 1αQ)|2g dμ.
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We are not concerned with the particular value of α, so we will fix α = 5 in the
following and assume that this value works for the covering lemma. Then, it is enough
to show the existence of a sparse collection S0 inside a fixed cube Q0 such that

∫
Q0

(S f )2g dμ �
∑
P∈S0

(
−
∫
5P

| f |p0 dμ
)2/p0 (

−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P|.

We will decompose our quantity in different terms: all will be controlled by the
averages of f and g but one. This last term is where f assumes a large value and
it is similar to the original quantity but on a smaller scale. We can then iterate the
decomposition, which terminates since the measure of the set we are decomposing
shrinks geometrically at each iteration.

5.1 Decomposition

Denote by �(P) the side length of the dyadic cube P . Let us consider the (localised)
dyadic version of the operator introduced in Sect. 4,

M∗
Q0,p0 f (x) := sup

P∈D
P⊆Q0

(
inf
y∈P

Mp0 f (y)
)
1P (x),

S∗
Q0

f (x) := sup
P∈D
P⊆Q0

(
−
∫
P

∣∣∣∣
∫ ∞

�(P)2
|Qt f |2 dt

t

∣∣∣∣
q0
2

dμ

)1/q0

1P (x).

For a positive η to be fixed later, consider the set

E(Q0) :=
{
x ∈ Q0 : max

{
M∗

Q0,p0 f (x), S
∗
Q0

f (x)
}

> η

(
−
∫
5Q0

| f |p0 dμ
)1/p0

}
.

Since the operators M∗
Q0,p0

and S∗
Q0

are weak-type (p0, p0), as shown in Sect. 4,

there exists η > 0 such that |E(Q0)| ≤ 1
2 |Q0|. Decompose our form as

∫
Q0

(S f )2g dμ =
∫
Q0\E(Q0)

(S f )2g dμ +
∫
E(Q0)

(S f )2g dμ =: I + II

Term I is controlled by using Lebesgue differentiation theorem as in [8, Lem. 4.4]
since |S f (x)|2 ≤ |S∗

Q0
f (x)|2 for μ-almost every x . Thus, for x ∈ Q0 \ E(Q0) we

have

∫
Q0\E(Q0)

(S f )2g dμ � η2
(

−
∫
5Q0

| f |p0 dμ
)2/p0 (

−
∫
Q0

|g|q∗
0 dμ

)1/q∗
0 |Q0|.
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Consider term II. Let E := {P}P∈D be a covering of E(Q0) with maximal dyadic
cubes. Then

∫
E(Q0)

(S f )2g dμ =
∑
P∈E

∫
P
(S f )2g dμ

=
∑
P∈E

∫
P

∫ �(P)2

0
|Qt f (x)|2 dt

t
g dμ

+
∑
P∈E

∫
P

∫ ∞

�(P)2
|Qt f (x)|2 dt

t
g dμ

=: II< + II>.

For each P in the covering, we write f = fin + fout, where fin := f 15P and
fout := f 1

(5P)� . Then each term in II< is itself decomposed into three terms

∫
P

∫ �(P)2

0
|Qt f (x)|2 dt

t
g dμ =

∫
P

∫ �(P)2

0
|Qt fin|2g dt

t
dμ (IIin)

+
∫
P

∫ �(P)2

0
|Qt fout|2g dt

t
dμ (IIout)

+2
∫
P

∫ �(P)2

0
(Qt fin)(Qt fout)g

dt

t
dμ. (IIcross)

Term (IIin) goes into the iteration. Terms (IIout) and (IIcross) are controlled by using
Fubini and applying off-diagonal estimates as in the following lemma.

Lemma 5.1 For a given dyadic cube P, let Sk(P) := 2k+1P \ 2k P for k ≥ 2. Then
for any t > 0,

(
−
∫
P
|Qt fin|q0 dμ

)1/q0
�
(

�(P)√
t

)ν (
−
∫
5P

| f |p0 dμ
)1/p0

(5.1.1)

(
−
∫
P
|Qt fout|q0 dμ

)1/q0
�
(

�(P)√
t

)−ν−2∑
k≥2

2−k
(

−
∫
Sk (P)

| f |p0 dμ
)1/p0

. (5.1.2)

Proof of Lemma 5.1 The proof follows the one in [8, Thm. 5.7]. For fin = f 15P ,
let R0 be a collection of finite overlapping balls R of radius

√
t covering 5P . By
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linearity of the operators, the triangle inequality, off-diagonal estimates for Qt with
ρ(x) = (1 + |x |2)−(ν+1) and Remark 2.9 we have

(
−
∫
P
|Qt fin|q0 dμ

)1/q0
≤

∑
R∈R0

(
−
∫
P
|Qt f 1R |q0 dμ

)1/q0
�

∑
R∈R0

(
−
∫
R
| f |p0 dμ

)1/p0
.

Since 5P ⊆ 15�(P)√
t

R, Lemma 2.8 implies

∑
R∈R0

(
−
∫
R
| f |p0 dμ

)1/p0
�
(
5�(P)√

t

)ν (
−
∫
5P

| f |p0 dμ
)1/p0

which proves (5.1.1).
For fout = f 1

(5P)� , decompose f on the squared annuli Sk = Sk(P). Let Rk

be the covering of Sk with finite overlapping balls R of radius
√
t . Linearity of the

operators Qt , the triangle inequality and off-diagonal estimates for Qt imply that

(
−
∫
P
|Qt fout|q0 dμ

)1/q0
≤
∑
k≥2

∑
R∈Rk

(
−
∫
P
|Qt f 1R |q0 dμ

)1/q0

�
∑
k≥2

∑
R∈Rk

ρ
(d(P, R)√

t

)(
−
∫
R
| f |p0 dμ

)1/p0

�
∑
k≥2

ρ
(d(P, Sk)√

t

) ∑
R∈Rk

(
−
∫
R
| f |p0 dμ

)1/p0

�
∑
k≥2

ρ
(d(P, Sk)√

t

)(2k+1�(P)√
t

)ν (
−
∫
Sk

| f |p0 dμ
)1/p0

where we used that the function ρ is monotone decreasing and d(P, R) ≥ d(P, Sk).

The last inequality follows by applying Lemma 2.8, since Sk(P) ⊆ 2k P ⊆ 2k+1�(P)√
t

R.
Finally, we have enough decay from the remaining product, since

ρ
(d(P, Sk)√

t

)(2k+1�(P)√
t

)ν

�
(2k�(P)√

t

)−ν−2

This follows because d(P, Sk) = d(P, 2k+1P \ 2k P) is comparable with 2k�(P) and
the function ρ(x) = (1 + |x |2)−(ν+1) decays faster than xν for x � 1. This proves
estimate (5.1.2). ��

We will use Lemma 5.1 to control the different terms left in the decomposition.
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Remark 5.2 The geometric sum in (5.1.2) is controlled using the stopping condition:
the integral over Sk is bounded by the integral over the ball 2k+1P , so

⎛
⎝∑

k≥2

2−k
(

−
∫
Sk

| f |p0 dμ
)1/p0

⎞
⎠

2

�
(
sup
k≥2

(
−
∫
2k+1P

| f |p0 dμ
)1/p0

)2

�
(

inf
y∈Pa

Pa parent of P

Mp0 f (y)
)2

� η2
(

−
∫
5Q0

| f |p0 dμ
)2/p0

,

where we used that P is a maximal cube covering E . Similarly for the average on 5P:

(
−
∫
5P

| f |p0 dμ
)2/p0

�
(

inf
y∈Pa

Mp0 f (y)
)2

� η2
(

−
∫
5Q0

| f |p0 dμ
)2/p0

.

Remark 5.3 (Control on the q∗
0 -average of g) The sum of the q∗

0 -averages of g is

controlled by using Hölder’s inequality in �
q0
2 . Since 2

q0
= 1 − 1

q∗
0
, summing over all

cubes P in E we obtain

∑
P

|P|
(

−
∫
P
|g|q∗

0 dμ

)1/q∗
0 ≤

(∑
P

|P|
) 2

q0

(∑
P

∫
P
|g|q∗

0 dμ

)1/q∗
0

≤ |Q0|
(

−
∫
Q0

|g|q∗
0 dμ

)1/q∗
0

� |Q0|
(

−
∫
5Q0

|g|q∗
0 dμ

)1/q∗
0

.

(5.1.3)

5.2 Out Term

Consider (IIout). Applying Fubini and Hölder’s inequality, we have

∫
P

∫ �(P)2

0
|Qt fout|2g dt

t
dμ

≤
∫ �(P)2

0

(
−
∫
P
|Qt fout|q0 dμ

)2/q0 dt

t

(
−
∫
P
|g|q∗

0 dμ

)1/q∗
0 |P| .

The average of g is controlled as in (5.1.3). Apply Lemma 5.1 to the first factor:
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∫ �(P)2

0

(
−
∫
P
|Qt fout|q0 dμ

)2/q0 dt

t

�
∫ �(P)2

0

(∑
k≥2

√
t

2k�(P)

(
−
∫
Sk

| f |p0 dμ
)1/p0 )2 dt

t

�
(∑

k≥2

2−k
(

−
∫
Sk

| f |p0 dμ
)1/p0 )2

which is controlled as in Remark 5.2. This case is concluded.

5.3 Cross Term

Consider (IIcross). We exchange the integrals, then an application of Hölder’s and
Cauchy–Schwarz inequality give

∫
P

∫ �(P)2

0
(Qt fin)(Qt fout)g

dt

t
dμ

≤
∫ �(P)2

0

(
−
∫
P
|(Qt fin)(Qt fout)|q0/2 dμ

)2/q0 dt

t

(
−
∫
P
|g|q∗

0 dμ

)1/q∗
0 |P|

≤
∫ �(P)2

0

(
−
∫
P
|Qt fin|q0 dμ

)1/q0 (
−
∫
P
|Qt fout|q0 dμ

)1/q0 dt

t(
−
∫
P

|g|q∗
0 dμ

)1/q∗
0 |P| .

The off-diagonal estimates for Qt in Lemma 5.1 applied to fin and fout imply that

∫ �(P)2

0

(
−
∫
P
|Qt fin|q0 dμ

)1/q0 (
−
∫
P
|Qt fout|q0 dμ

)1/q0 dt

t

�
∫ �(P)2

0

( √
t

�(P)

)2
dt

t

(
−
∫
5P

| f |p0 dμ
)1/p0 ∑

k≥2

2−k
(

−
∫
Sk (P)

| f |p0 dμ
)1/p0

� η2
(

−
∫
5Q0

| f |p0 dμ
)2/p0

where the last estimate follows as in Remark 5.2.

5.4 Large Scales

Consider II>. Let Pa be the dyadic parent of P , so that �(Pa) = 2�(P). Then
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∫
P

∫ ∞

�(P)2
|Qt f (x)|2 dt

t
g dμ

=
∫
P

∫ �(Pa)2

�(P)2
|Qt f (x)|2 dt

t
g dμ +

∫
P

∫ ∞

�(Pa)2
|Qt f (x)|2 dt

t
g dμ. (5.4.1)

In the first term, we exchange the integrals and apply Hölder’s inequality

∫ �(Pa)2

�(P)2

∫
P
|Qt f (x)|2g dμ dt

t

≤
∫ �(Pa)2

�(P)2

(
−
∫
P
|Qt f (x)|q0 dμ

)2/q0 dt

t

(
−
∫
P
|g|q∗

0 dμ

)1/q∗
0 |P| .

Applying Lemma 5.1 and using that
√
t is comparable with �(P), we obtain

∫ �(Pa)2

�(P)2

(
−
∫
P
|Qt f |q0 dμ

)2/q0 dt

t

�
∫ �(Pa)2

�(P)2

((
�(P)√

t

)ν (
−
∫
5P

| f |p0 dμ
)1/p0

+
∑
k≥2

√
t

2k�(P)

(
−
∫
Sk

| f |p0 dμ
)1/p0

⎞
⎠

2
dt

t

�

⎛
⎝
(

−
∫
5P

| f |p0 dμ
)1/p0

+
∑
k≥2

2−k
(

−
∫
Sk

| f |p0 dμ
)1/p0

⎞
⎠

2

,

which again is controlled as in Remark 5.2. The average of g is estimated as in (5.1.3).
The second term in (5.4.1), after applying Hölder’s inequality, is controlled by the

maximal truncation

∫
P

∫ ∞

�(Pa)2
|Qt f (x)|2 dt

t
g dμ

≤
(

−
∫
P

( ∫ ∞

�(Pa)2
|Qt f (x)|2 dt

t

)q0/2
dμ

)2/q0 (
−
∫
P
|g|q∗

0 dμ

)1/q∗
0 |P|

� inf
x∈Pa

(S∗
Q0

f )2(x)

(
−
∫
P
|g|q∗

0 dμ

)1/q∗
0 |P|

� η2
(

−
∫
5Q0

| f |p0 dμ
)2/p0 (

−
∫
P
|g|q∗

0 dμ

)1/q∗
0 |P| .
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We have shown that

∫
Q0

∫ ∞

0
|Qt f |2g dt

t
dμ � η2

(
−
∫
5Q0

| f |p0 dμ

)2/p0 (
−
∫
5Q0

|g|q∗
0 dμ

)1/q∗
0 |Q0|

+
∑
P

∫
P

∫ �(P)2

0
|Qt f 15P |2 dt

t
g dμ.

Let S = {Q0}. We add all P in the sum to S and we repeat the argument on each
term in the sum. This iteration gives the desired bound: a sum of averages of f and g
on cubes in the collection S. We can choose η > 0 such that |E(Q)| ≤ 1

2 |Q| for each
Q ∈ S. Then S is sparse since each Q ∈ S has a subset FQ := Q \ E(Q) with the
property that {FQ}Q∈S is a disjoint family and |FQ | > 1

2 |Q| by construction. ��

6 Weighted Boundedness

In this section, we provide the proof of Theorem1.8.We begin by recalling the notation
p∗ := (p/2)′ = p

p−2 for p > 2. We will also make use of the notation

φ(p) :=
(
q0
p

)′ ( p

p0
− 1

)
+ 1

for 1 ≤ p0 < 2 < q0 ≤ ∞ and p ∈ (p0, q0), which was previously introduced in
Sect. 2.3.

Remark 6.1 Define the critical index p through

p := 2 + p0 − 2p0
q0

= 2 + p0
q∗
0
. (6.0.2)

The critical exponent is the unique p ∈ (1,∞) that satisfies the relation p∗ = φ(p).
It is easy to check that p is contained in the interval (2, q0) and that it satisfies the
relation

1

p − p0
=
(
q0
p

)′ 1

2q∗
0
. (6.0.3)

Thus, we also have that

γ (p) = max

(
1

p − p0
,

(
q0
p

)′ 1

2q∗
0

)
=
(
q0
p

)′ 1

2q∗
0

if and only if p ≥ p, and γ (p) = (p − p0)−1 if and only if p ≤ p. In [8], the critical
exponent for the linear sparse domination is 1 + p0/q ′

0 which is evidently analogous
to the definition of p in (6.0.2).
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6.1 Proof of Theorem 1.8

Fix p ∈ (2, q0). Notice that by (2.3.1),

[
w

(
q0
p )′
]
Aφ(p)

≤
(
[w]A p

p0

· [w]RH
(
q0
p )′

)(
q0
p )′

.

This tells us that in order to prove the estimate in Theorem 1.8, it is sufficient to
demonstrate the stronger estimate

∑
P∈S

(
−
∫
5P

| f |p0 dμ

)2/p0 (
−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P|

≤ C0

[
w

(
q0
p )′
] 2γ (p)

(q0/p)′

Aφ(p)

‖ f ‖2L p(w) ‖g‖L p∗ (σ ) .

(6.1.1)

By Theorem 2.2, for each P ∈ S there will exist P̄ ∈ D for which 5P ⊂ P̄ and∣∣P̄∣∣ � |5P|. Then ∣∣P̄∣∣ � |P| by the doubling property of dyadic cubes. As the
collection S is sparse, there must exist a collection of disjoint sets {EP }P∈S such that
EP ⊂ P and |P| � |EP | for all P ∈ S. We, therefore, have

∣∣P̄∣∣ � |EP | .

Define the weight v := w(q0/p)′ and r := φ(p) =
(
q0
p

)′ ( p
p0

− 1
)

+ 1. Set u to be

the dual weight of v in Ar , u := v1−r ′
. We have

(
−
∫
P̄

| f |p0 dμ

) 2
p0 =

(
1

u(P̄)

∫
P̄

∣∣∣∣ f u− 1
p0

∣∣∣∣
p0
u dμ

) 2
p0
(

−
∫
P̄
u dμ

) 2
p0

and

(
−
∫
P̄

|g|q∗
0 dμ

) 1
q∗
0

=
(

1

v(P̄)

∫
P̄

∣∣∣∣gv
− 1

q∗
0

∣∣∣∣
q∗
0

v dμ

) 1
q∗
0
(

−
∫
P̄

v dμ

) 1
q∗
0

.

Applying these two relations to our sparse form leads to

∑
P∈S

(
−
∫
5P

| f |p0 dμ

)2/p0 (
−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P|

�
∑
P∈S

(
−
∫
P̄

| f |p0 dμ

) 2
p0
(

−
∫
P̄

|g|q∗
0 dμ

) 1
q∗
0 |P|
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=
∑
P∈S

(
1

u(P̄)

∫
P̄

∣∣∣∣ f u− 1
p0

∣∣∣∣
p0
u dμ

) 2
p0

(
1

v(P̄)

∫
P̄

∣∣∣∣gv
− 1

q∗
0

∣∣∣∣
q∗
0

v dμ

) 1
q∗
0

·
(

−
∫
P̄

v dμ

) 1
q∗
0

(
−
∫
P̄
u dμ

) 2
p0 |P| . (6.1.2)

Case 1: p ≥ p. Note that by Remark 6.1 this assumption is equivalent to assuming

that γ (p) =
(
q0
p

)′
1

2q∗
0
. If we define

κ(p) := 2

p0
− r − 1

q∗
0

,

then our assumption is also equivalent to the condition κ(p) ≤ 0. The fact that u is
the conjugate weight of v in Ar implies that for P ∈ S,

(
−
∫
P̄

v dμ

) 1
q∗
0

(
−
∫
P̄
u dμ

) 2
p0 =

(
−
∫
P̄

v dμ

) 1
q∗
0

(
−
∫
P̄
u dμ

) r−1
q∗
0

(
−
∫
P̄
u dμ

)κ(p)

≤ [v]
1/q∗

0
Ar

(
−
∫
P̄
u dμ

)κ(p)

.

This estimate can be applied to (6.1.2) to produce

∑
P∈S

(
−
∫
5P

| f |p0 dμ

)2/p0 (
−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P|

� [v]
1
q∗
0
Ar

∑
P∈S

(
1

u(P̄)

∫
P̄

∣∣∣∣ f u− 1
p0

∣∣∣∣
p0
u dμ

) 2
p0

(
1

v(P̄)

∫
P̄

∣∣∣∣gv
− 1

q∗
0

∣∣∣∣
q∗
0

v dμ

) 1
q∗
0

(
−
∫
P̄
u dμ

)κ(p)

|P| .
(6.1.3)

Since
∣∣P̄∣∣ � |EP | and κ(p) ≤ 0,

(
−
∫
P̄
u dμ

)κ(p)

|P| �
(

−
∫
EP

u dμ

)κ(p)

|EP |

= u(EP )κ(p) |EP |1−κ(p) .
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For λ := (1 − κ(p))−1 notice that

λ

p/2
+ λ

p∗ − λκ(p) = λ(1 − κ(p)) = 1.

Also, it is straightforward to check by substituting in the definition u := v1−r ′
that the

constant function 1 can be decomposed as

1 = u
1
p/2 v

1
p∗ u−κ(p).

From this, Hölder’s inequality implies

|EP | =
∫
EP

u
λ
p/2 v

λ
p∗ u−λκ(p) dμ

≤
(∫

EP

u

) λ
p/2
(∫

EP

v

) λ
p∗
(∫

EP

u

)−λκ(p)

,

and, therefore, raising to the power 1/λ produces

u(EP )κ(p) |EP |1/λ ≤ u(EP )2/pv(EP )1/p
∗
.

Applying this estimate to (6.1.3) and Hölder’s inequality leads to

∑
P∈S

(
−
∫
5P

| f |p0 dμ

)2/p0 (
−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P|

� [v]
1
q∗
0
Ar

∑
P∈S

(
1

u(P̄)

∫
P̄

∣∣∣∣ f u− 1
p0

∣∣∣∣
p0
u dμ

) 2
p0

(
1

v(P̄)

∫
P̄

∣∣∣∣gv
− 1

q∗
0

∣∣∣∣
q∗
0

v dμ

) 1
q∗
0

u(EP )
2
p v(EP )

1
p∗

≤ [v]
1
q∗
0
Ar

∑
P∈S

(∫
EP

MD
p0,u( f u

− 1
p0 )pu dμ

) 2
p
(∫

EP

MD
q∗
0 ,v(gv

− 1
q∗
0 )p

∗
v dμ

) 1
p∗

≤ [v]
1
q∗
0
Ar

(∑
P∈S

∫
EP

MD
p0,u( f u

− 1
p0 )pu dμ

) 2
p
(∑
P∈S

∫
EP

MD
q∗
0 ,v(gv

− 1
q∗
0 )p

∗
v dμ

) 1
p∗

≤ [v]
1
q∗
0
Ar

(∫
MD

p0,u( f u
− 1

p0 )pu dμ

) 2
p
(∫

MD
q∗
0 ,v(gv

− 1
q∗
0 )p

∗
v dμ

) 1
p∗

.

Since p > p0 the operatorMD
p0,u is bounded on L p(u dμ) with constant indepen-

dent of u. Similarly, since p∗ > q∗
0 the operatorMD

q∗
0 ,v

is bounded on L p∗
(v dμ) with
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constant independent of v. These observations lead to the estimate

∑
P∈S

(
−
∫
5P

| f |p0 dμ

)2/p0 (
−
∫
5P

|g|q∗
0 dμ

)1/q∗
0 |P|

� [v]
1
q∗
0
Ar

(∫
| f |p u1− p

p0 dμ

) 2
p
(∫

|g|p∗
v
1− p∗

q∗
0 dμ

)
.

From this estimate and the relation 1
q∗
0

= 2γ (p)
(q0/p)′ it is clear that (6.1.1) will follow if it

can be shown that u
1− p

p0 = w and v
1− p∗

q∗
0 = σ . Let’s first prove that u

1− p
p0 = w. As

u is defined through u = v1−r ′ = w

(
q0
p

)′
(1−r ′)

we have

u
1− p

p0 = w

(
q0
p

)′
(1−r ′)

(
1− p

p0

)
= w(1−r ′)(1−r) = w,

where the second equality follows from the definition r = φ(p).

It remains to show that v
1− p∗

q∗
0 = σ . The definitions v = w

(
q0
p

)′
and σ = w1−p∗

transform this relation into

w

(
q0
p

)′(
1− p∗

q∗
0

)
= w1−p∗

.

It must, therefore, be proved that

(
q0
p

)′ (
1 − p∗

q∗
0

)
= 1 − p∗.

This is equivalent to showing that

(
q0

q0 − p

)(
1 − p(q0 − 2)

q0(p − 2)

)
= 1 − p

p − 2
.

Through simple algebraic manipulation, it is easy to check that the two sides of the

above equality indeed coincide. This validates the relation v
1− p∗

q∗
0 = σ and completes

our proof for p ≥ p.
Case 2: p ≤ p. This assumption is equivalent to assuming that γ (p) = 1

p−p0
or,

alternatively, κ(p) ≥ 0. Define

κ̄(p) := 1

q∗
0

− 2

p0(r − 1)
.
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Then

(
−
∫
P̄

v dμ

) 1
q∗
0

(
−
∫
P̄
u dμ

) 2
p0 =

(
−
∫
P̄

v dμ

) 2
p0(r−1)

(
−
∫
P̄
u dμ

) 2
p0
(

−
∫
P̄

v dμ

)κ̄(p)

≤ [v]
2

p0(r−1)

Ar

(
−
∫
P̄

v dμ

)κ̄(p)

.

Combining this with (6.1.2) gives

∑
P∈S

(
−
∫
5P

| f |p0 dμ

) 2
p0
(

−
∫
5P

|g|q∗
0 dμ

) 1
q∗
0 |P|

� [v]
2

p0(r−1)

Ar

∑
P∈S

(
1

u(P̄)

∫
P̄

∣∣∣∣ f u− 1
p0

∣∣∣∣
p0
u dμ

) 2
p0

(
1

v(P̄)

∫
P̄

∣∣∣∣gv
− 1

q∗
0

∣∣∣∣
q∗
0

v dμ

) 1
q∗
0

(
−
∫
P̄

v dμ

)κ̄(p)

|P| .
(6.1.4)

It is clear that κ̄(p) = −(r − 1)−1κ(p) ≤ 0. It then follows from this and
∣∣P̄∣∣ � |EP |

that

(
−
∫
P̄

v dμ

)κ̄(p)

|P| �
(

−
∫
EP

v dμ

)κ̄(p)

|EP |

= v(EP )κ̄(p) |EP |1−κ̄(p) .

Define λ̄ := (1 − κ̄(p))−1. Then we have

λ̄

p/2
+ λ̄

p∗ − λ̄κ̄(p) = λ̄(1 − κ̄(p)) = 1.

Also, it is straightforward to check by substituting in the definition u = v1−r ′
that the

constant function 1 can be decomposed as

1 = u
1
p/2 v

1
p∗ v−κ̄(p).

Hölder’s inequality then implies

|EP | =
∫
EP

u
λ̄
p/2 v

λ̄
p∗ v−λ̄κ̄(p) dμ

≤
(∫

EP

u

) λ̄
p/2
(∫

EP

v

) λ̄
p∗
(∫

EP

v

)−λ̄κ̄(p)

.
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Raising to the power 1/λ̄ produces

v(EP )κ̄(p) |EP |1/λ̄ ≤ u(EP )2/pv(EP )1/p
∗
.

Applying this to (6.1.4), since 1/λ̄ = 1 − κ̄(p), yields

∑
P∈S

(
−
∫
5P

| f |p0 dμ

) 2
p0
(

−
∫
5P

|g|q∗
0 dμ

) 1
q∗
0 |P|

� [v]
2

p0(r−1)

Ar

∑
P∈S

(
1

u(P̄)

∫
P̄

∣∣∣∣ f u− 1
p0

∣∣∣∣
p0
u dμ

) 2
p0

(
1

v(P̄)

∫
P̄

∣∣∣∣gv
− 1

q∗
0

∣∣∣∣
q∗
0

v dμ

) 1
q∗
0

u(EP )
2
p v(EP )

1
p∗ .

After noting that 2
p0(r−1) = 2γ (p)

(q0/p)′ the proof of (6.1.1) then proceeds in an identical
manner to the case p ≥ p. ��

6.2 Proof of Corollary 1.9

We start by noting that

‖S f ‖2Lp(w) =
∥∥∥(S f )2

∥∥∥
L

p
2 (w)

= sup
‖g‖

Lp
∗

(σ )
=1

∣∣∣〈(S f )2, g〉
∣∣∣ ,

where σ := w1−( p2
)′ = w1−p∗

is the A p
2
-conjugate weight of w. Thus, in order to

prove the desired result, it is sufficient to demonstrate the estimate

∣∣∣〈(S f )2, g〉
∣∣∣ �

[
w(q0/p)′

] 1
q∗
0

Aφ(p)

‖ f ‖2Lp(w) ‖g‖Lp(σ ) . (6.2.1)

For the critical index p this is an easy consequence of Theorem 1.7, estimate (6.1.1)
and a density argument.

Applying the sharp restricted range extrapolation (Theorem 2.15) yields that for
any p ∈ (p0, q0) and weight w ∈ A p

p0
∩ RH(

q0
p )′ ,

‖S f ‖L p(w) �
[
w

(
q0
p )′
]β(p,p)/(2q∗

0 )

Aφ(p)
(6.2.2)

where β(p, p) = max
(
1, (q0−p)(p−p0)

(q0−p)(p−p0)

)
.

We check that this matches the power γ (p) in Corollary 1.9. Let ω(p) := (q0 −
p)/(p − p0) for p ∈ (p0, q0). Then β(p, p) = max(1, ω(p)/ω(p)). Since ω(p) is
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decreasing in p and β(p, p) = 1, then β(p, p) = 1 for p ∈ [p, q0). In this range of
exponent we have

‖S f ‖L p(w) �
[
w

(
q0
p )′
]1/(2q∗

0 )

Aφ(p)
�
(
[w]A p

p0

· [w]RH
(
q0
p )′

)(
q0
p )′/(2q∗

0 )

,

where the last inequality is the bound on the weight characteristic given in (2.3.1).
When p < p, instead β(p, p) = ω(p)/ω(p). Using the identity (6.0.3) for p, one

can see that ω(p) · 2q∗
0 = q0. This immediately gives

β(p, p)

2q∗
0

= ω(p)

ω(p) · 2q∗
0

= ω(p)

q0
= 1

(q0/p)′
1

p − p0
.

Then (6.2.2) followed by (2.3.1) implies that for p ∈ (p0, p)

‖S f ‖L p(w) �
[
w

(
q0
p )′
] 1

(q0/p)′
1

p−p0

Aφ(p)
�
(
[w]A p

p0

· [w]RH
(
q0
p )′

)1/(p−p0)

The exponent in the above inequality matches the hypothesised exponent of (2.3.1),
allowing us to conclude our proof. ��

7 Sharpness of the Sparse form for p > 2

In this section we will use the notation∼ to indicate asymptotic behaviour and we will
work inRwith the Lebesgue measure. The sharpness in Theorem 1.8 is a consequence
of the following proposition. The proof, although different, follows the reasoning in
[8, §7].

Proposition 7.1 For p ∈ (2, q0), there exists a sparse collection S and for every
0 < ε < 1, there exist sequences of functions fε and gε and weights wε such that

∑
P∈S

(
−
∫
P

| fε |p0 dx

)2/p0 (
−
∫
P

|gε |q∗
0 dx

)1/q∗
0 |P|

∼
(
[wε]A p

p0

· [wε]RH
(
q0
p )′

)2γ (p)

‖ fε‖2L p(wε)
‖gε‖L(p/2)′ (σε)

(7.0.3)

as ε → 0, where

γ (p) := max

(
1

p − p0
,

(
q0
p

)′ 1

2q∗
0

)
and σε := w1−(p/2)′

ε .

Proof The proof is divided into two cases, the case where p ≤ p and the case where
p ≥ p. In both of them, the sparse collection considered is S = {In := [0, 2−n] :
for n ∈ N}.
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For 2 < p ≤ p and fixed 0 < ε < 1, consider the functions

fε(x) := x
− 1

p0
+ε

χ[0,1]

gε(x) := x
− 1

p∗0
+ε

χ[0,1]

wε(x) := |x | p
p0

−1−ε
χ[0,1]

σε(x) = |x |
(

p
p0

−1−ε
)
(1−p∗)

χ[0,1],

where σε is the dual weight to wε in Ap/2.
Then

(
−
∫
P

| fε |p0 dx

)2/p0
=
(

2
n
p0

−nε

(p0ε)1/p0

)2

∼ ε−2/p02−2nε22n/p0

(
−
∫
P

|gε |q∗
0 dx

)1/q∗
0 ∼ 2

n
p∗0

−nε

(
1 − q∗

0
p∗
0

+ q∗
0 ε
)1/q∗

0
∼ 2−nε2n/p∗

0 .

as ε → 0. The left hand side of (7.0.3) follows the asymptotic behaviour

∑
P∈S

(
−
∫
P

| fε |p0 dx

)2/p0 (
−
∫
P

|gε |q∗
0 dx

)1/q∗
0 |P| ∼ ε−2/p0

∞∑
n=0

2−3nε ∼ ε−2/p0ε−1.

For power weights, the asymptotics of the Ap and RHq characteristics are well
understood, see for instance [12]. Therefore, as ε → 0, we have

[wε]A p
p0

∼ ε
−
(

p
p0

−1
)
,

[wε]RH
(
q0
p )′

∼ 1.

Moreover we compute the norms on the right hand side of (7.0.3). We have

‖ fε‖L p(wε)
=
(∫ 1

0
x

−p
p0

+pε
x

p
p0

−1−ε
dx

)1/p

=
(∫ 1

0
x−1+(p−1)ε dx

)1/p

∼ ε−1/p,

as ε → 0.

‖gε‖L(p/2)′ (σε)
=
(∫ 1

0
x

−p∗
p∗0

+p∗ε
x

(
p
p0

−1−ε
)
(1−p∗) dx

)1/p∗
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=
(∫ 1

0
x

−1+(2p∗−1)ε− p∗
p∗0

+ p
p0

− pp∗
p0

+p∗
dx

)1/p∗

.

Using the definition of p∗ and p∗
0 , we note − p∗

p∗
0

+ p
p0

− pp∗
p0

+ p∗ = 0, therefore,

‖gε‖L(p/2)′ (σε)
=
(∫ 1

0
x−1+(2p∗−1)ε dx

)1/p∗

∼ ε−1/p∗
,

as ε → 0.

We conclude that the right hand side of (7.0.3) behaves as ε
−
(

p
p0

−1
)(

2
p−p0

)

ε−2/pε−1/p∗ = ε−1ε−2/p0 as ε → 0, which is exactly the asymptotic behaviour
of the left hand side of (7.0.3) as desired.
For p ≤ p < q0 and fixed 0 < ε < 1, consider the functions

fε(x) := x
− 1

q0
+ε

χ[0,1]

gε(x) := x
− 1

q∗
0

+ε
χ[0,1]

σε(x) := |x |
p∗
q∗
0

−1−ε
χ[0,1]

wε = |x |
(

p∗
q∗
0

−1−ε

)
(1−p/2)

,

where σε is the dual weight to wε in Ap/2.
Then

(
−
∫
P

|gε |q∗
0 dx

)1/q∗
0 = 2

n
q∗
0

−nε

(
q∗
0 ε
)1/q∗

0
∼ ε−1/q∗

0 2−nε2n/q∗
0 ,

(
−
∫
P

| fε |p0 dx

)1/p0
= 2

n
q0

−nε

(
1 − p0

q0
+ p0ε

)1/p0 ∼ 2−nε2n/q0 .

as ε → 0. And the right hand side of (7.0.3) follows the asymptotic behaviour

∑
P∈S

(
−
∫
P

| fε |p0 dx

)2/p0 (
−
∫
P

|gε |q∗
0 dx

)1/q∗
0 |P| ∼ ε−1/q∗

0

∞∑
n=0

2−n2
2n
q0

−2εn
2
−nε+ n

q∗
0

∼ ε−1/q∗
0

∞∑
n=0

2−3nε ∼ ε−1/q∗
0 ε−1.

For the power weights wε , as ε → 0, we have

[wε]A p
p0

∼ 1,
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[wε]RH
(
q0
p )′

∼ ε
−1

(q0/p)′ .

Moreover we compute

‖gε‖L(p/2)′ (σε)
=
(∫ 1

0
x−1+(p∗−1)ε dx

)1/p∗

∼ ε−1/p∗
,

as ε → 0, and

‖ fε‖L p(wε)
=
⎛
⎝
∫ 1

0
x

−p
q0

+ε p
x

(
p∗
q∗
0

−1−ε

)
(1− p

2 )
dx

⎞
⎠

1/p

=
(∫ 1

0
x

(
3p
2 −1

)
ε−1− p

q0
+ p∗

q∗
0

− pp∗
2q∗

0
+ p

2 dx

)1/p

.

Using the definition of p∗ and q∗
0 , we note − p

q0
+ p∗

q∗
0

− pp∗
2q∗

0
+ p

2 = 0, therefore,

‖ fε‖L p(wε)
=
(∫ 1

0
x (3p/2−1)ε−1 dx

)1/p

∼ ε−1/p.

We conclude the right hand side of (7.0.3) behaves as ε−1/q∗
0 ε−2/pε−1/p∗ =

ε−1ε−1/q∗
0 as ε → 0, which is exactly the asymptotic for the left hand side of (7.0.3)

as desired. ��

7.1 Upper Bound on Asymptotic Behaviour

In this section we discuss the connection between sharp weighted estimates for an
operator T and the asymptotic behaviour of its unweighted norm ‖T ‖L p→L p . We
recall the definition of γ (q0) from [26, Definition 5.1]. Let T be a bounded operator
on L p for p ∈ (p0, q0).

Definition 7.2 For q0 < ∞ define

γ (q0) := sup
{
γ ≥ 0 | ∀ε > 0, lim sup

p→q0
(q0 − p)γ−ε‖T ‖L p→L p = ∞}

,

and for q0 = ∞

γ (∞) := sup
{
γ ≥ 0 | ∀ε > 0, lim sup

p→∞
‖T ‖L p→L p

pγ−ε
= ∞}

.
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We say that an operator T admits a (p0, q0) quadratic sparse domination if it
satisfies a bound as the one in Theorem 1.7. We have the following upper bound on
the unweighted norm of T .

Proposition 7.3 Let q∗ := (q/2)′. If T admits a (p0, q0) quadratic sparse domination
then for p > 2 we have

‖T ‖L p→L p �
[(

p

p0

)′] 1
p0
[(

p∗

q∗
0

)′] 1
2

1
q∗
0

and in particular

γ (q0) ≤ 1

2q∗
0
. (7.1.1)

Proof As in [26, Remark 3.4], let S be a η-sparse family. For p > 2 we have

∑
P∈S

(
−
∫
P
| f |p0 dμ

)2/p0 (
−
∫
P
|g|q∗

0 dμ

)1/q∗
0 |P|

� 1

η
‖MD

p0
2

(| f |2)‖L p/2‖MD
q∗
0
g‖L(p/2)′

� 1

η

[(
p

p0

)′] 2
p0
[(

p∗

q∗
0

)′] 1
q∗
0 ‖ f ‖2L p‖g‖L p∗

where the last inequality follows from the bound on the L p-norm of MD in (2.1.1),
since

‖MD
p0
2

(| f |2)‖L p/2 = ‖MD (| f |p0)‖2/p0
L p/p0

.

��

Remark 7.4 The upper bound on γ (q0) in (7.1.1) implies that, if γ (q0) equals 1/(2q∗
0 )

then the weighted estimates (1.0.6) are sharp.
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