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Abstract
We revisit the low-energy effectiveU (1) action of topologically twistedN = 2 SYM
theory with gauge group of rank one on a generic oriented smooth four-manifold
X with nontrivial fundamental group. After including a specific new set of Q-exact
operators to the known action, we express the integrand of the path integral of the
low-energy U (1) theory as an anti-holomorphic derivative. This allows us to use the
theory of mockmodular forms and indefinite theta functions for the explicit evaluation
of correlation functions of the theory, thus facilitating the computations compared to
previously used methods. As an explicit check of our results, we compute the path
integral for the product ruled surfaces X = �g × CP

1 for the reduction on either
factor and compare the results with existing literature. In the case of reduction on
the Riemann surface �g , via an equivalent topological A-model on CP

1, we will be
able to express the generating function of genus zero Gromov–Witten invariants of
the moduli space of flat rank one connections over �g in terms of an indefinite theta
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function, whence we would be able to make concrete numerical predictions of these
enumerative invariants in terms of modular data, thereby allowing us to derive results
in enumerative geometry from number theory.

Keywords Topological field theory · Supersymmetric gauge theory · Sigma models ·
Modular forms

Mathematics Subject Classification 81T45 (primary), 57R56, 53D45, 11F03

1 Introduction, summary and plan

The role of topological quantum field theory in modern physics and mathematics is
unambiguously important. One example is Donaldson–Witten (DW) theory, which is
a topological formulation of the N = 2 supersymmetric Yang–Mills theory on an
oriented smooth four-manifold X . Its equivalent IR (long distance) counterpart is an
abelian theory where Seiberg–Witten (SW) geometry dictates the physics [1]. Due
to an electric–magnetic duality in the IR, characteristic functions of the theory enjoy
powerful modular properties [2]. In the seminal paper [3], the solution of the IR theory
was derived using the technique of lattice reduction for simply connected X . In the
same paper, the famous relation

ZDW = Zu + ZSW (1)

was found, where ZSW denotes the generating function of SW invariants of the four-
manifold [4], while Zu denotes the contribution to ZDW from the Coulomb branch
of the low-energy effective U (1) theory, the so-called u-plane. The u-plane and its
contribution to the path integral were studied in detail in [3, 5–7]. The u-plane integral
Zu is of particular interest since it is non-vanishing only for four-manifolds with
b+
2 (X) ∈ {0, 1}. In turn, such four-manifolds are of particular interest since they are
the only candidate topologies that probe the Coulomb branch B of the theory.

Recently, interest in DW theory and in particular the u-plane integral was revived
due to observations relating the latter for special four-manifolds to the theory of mock
theta functions and harmonic Maass forms [8, 9]. For more generic, but simply con-
nected, compact four-manifolds it was later reformulated in terms of the modular
completion of a mock modular form [10–12]. In this series of papers, the possibility
to addQ-exact operators to the action without affecting the correlation functions was
studied in detail. In particular, a specific newQ-exact operator related to the 2-cycles
of the background geometry was added to the action of the low-energy U (1) theory,
which makes the connection to mock modular forms apparent and elegant [10, 12].
This technique circumvents the cumbersome method of lattice reduction and allows
to evaluate correlation functions efficiently. To the best of our knowledge, all of the
recent results relating Zu and mock modular forms are restricted to the case where the
low-energy U (1) theory is formulated on simply connected four-manifolds.

Taking inspiration from [7], we ask the natural question how these recent results
carry over to the case when the four-manifold X has a non-trivial fundamental group
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and nonzero first Betti number b1(X). When the four-manifold is non-simply con-
nected, the theory is more complicated. This is due to the fact that the manifold now
admits more structures, in the form of 1-form fields and 1- and 3-cycles, which are not
present in the simply connected case. These cycles give rise to further contact terms
in the low-energy U (1) action [5, 7]. As a result, we consider more general Q-exact
operators related to these cycles. Below, we give a summary of the paper highlighting
our results.

Summary of the paper
In this paper, we present a natural extension of the recent results [10, 12] to the case

of non-simply connected four-manifolds with b+
2 = 1. Specifically, we introduce a

number of new Q-exact operators in the low-energy effective U (1) theory that allow
us to express the integrand of the u-plane integral elegantly as the non-holomorphic
completion of a mock modular form. This further allows us to derive a closed-form
expression for the u-plane integral for any such four-manifold and for arbitrary period
point J , as is evident from the result of this paper, Eq. (52). This solution depends on
H1(X), a fact that is easily seen in the case of product ruled surfaces where it manifests
as a genus dependence, while when H1(X) is trivial, (52) reduces to Eq. (4.10) of [10].
As a byproduct of our computations,we present a complete classification of allQ-exact
operators that the theory admits.

DW theory on product ruled surfaces X = CP
1 × �g , with �g a genus g Riemann

surface, has been argued to be equivalent to a 2d topological A-model on CP
1 in the

limit of vanishing volume for �g [5, 13, 14]. In this paper, we present a concrete
derivation of this equivalence and in turn show that due to the relation between DW
theory and its low-energy U (1) effective theory as given by Eq. (1), a connection
between Gromov–Witten (GW) theory (realised physically by the A-model) andmock
modular forms (appearing in the low-energy effective action) exists, such that one can
compute GW invariants using modular data originating from the 4d theory, thereby
deriving results in enumerative geometry from number theory. As an example, we
make concrete numerical predictions of the genus zero GW invariants of the moduli
space of flat SU (2)-connections on�2 via their relation to an indefinite theta function.
The GW invariants studied here involve local and non-local operators which, as far
as we know, have not been studied.

Plan of the paper
The plan of the paper is as follows. In Sect. 2, we review the effectiveDW theory and

the low-energy SW geometry. We further discuss the new specific Q-exact operators
that we add to the action.

In Sect. 3, we rederive the u-plane integral Zu by including the Q-exact operators
and show how Zu can be written in terms of a mock modular form.

In Sect. 4, we apply our results to the two possible reductions of the product ruled
surfaces X = CP

1 × �g and check them towards existing literature [7, 15]. The
second reduction, where the volume of �g shrinks, will be related to the genus zero
GW invariants realised by the correlation functions of the A-model on CP

1.
In Sect. 5, we discuss the A-model on CP

1, and perform the computations that
produce the generating function ofGWinvariants. Togetherwith thefindings of Sect. 4,
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Table 1 Field content of DW
theory. The a, ā fields originate
from the vacuum expectation
value of the scalar field of the
UV theory. The D field is an
auxiliary field

Bosons Fermions Form degree

a, ā η 0

A ψ 1

D χ 2

wemake concrete numerical predictions of the genus zeroGW invariants of themoduli
space of flat SU (2)-connections on �2 via modular data.

In Sect. 6, we conclude our paper, where useful appendices follow thereafter.

2 Effective DW theory

DW theory is the topologically twisted formulation of the pureN = 2 supersymmetric
Yang–Mills theory with gauge group G of rank rG = 1 on a smooth four-manifold X
[1]. In the IR, the theory becomes aU (1)gauge theory that depends on the complexified
effective gauge coupling τ = θ

π
+ 8π i

g2
∈ H, whereH denotes the Poincaré half-plane.

DW theory contains a scalar fermionic BRST operator Q := ε Ȧ ḂQ Ȧ Ḃ that obeys
Q2 = 0.1 The field content of the theory is a collection of bosonic and fermionic
degree 0, 1 and 2 operator valued differential forms on X , where the degree of the
differential form is equal to the ghost number of the physical operator. In Table 1 we
summarise the field content of the DW theory.

The BRST transformations on these fields are

[Q, A] = ψ, [Q, ψ] = 4
√
2da,

[Q, a] = 0, [Q, ā] = √
2ı̊η,

[Q, η] = 0, [Q, χ ] = ı̊(F+ − D+),

[Q, D] = (dψ)+.

(2)

The physical observables of the theory belong to theQ-cohomology.We are interested
in computing the path integral of the theory, the u-plane integral or Coulomb branch
integral, when evaluated on a non-simply connected four-manifold. To this end, let us
first introduce some notation.

Let b j := b j (X) = dim H j (X) be the Betti numbers of the smooth, closed and
oriented four-manifold X with b2(X) = b+

2 (X) + b−
2 (X), where the first (second)

summand corresponds to the number of positive (negative) eigenvalues of the quadratic
form Q of X . For a ∈ Hi (X) and b ∈ H4−i (X) we define

B(a, b) =
∫
X
a ∧ b. (3)

1 Across the literature, this operator is often denoted as Q instead.
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For a ∈ H2(X) the quadratic form Q of X corresponds to

Q(a) := B(a, a). (4)

Furthermore, the signature of X is defined as σ(X) = b+
2 (X) − b−

2 (X). Hereafter we
consider four-manifolds with b+

2 (X) = 1. By Poincaré duality, we have that b0 = b4,
b1 = b3. We can assume b1 to be even, since the correlation function of the theory are
known to vanish unless 1 − b1 + b+

2 is even [3].
The Coulomb branch integral is the path integral of the low-energy U (1) theory

with the insertion of the observables arising from the descent formalism as well as
contact terms and Q-exact operators. It takes the form

Zu(p, γ, S,Y ) =
∫

[D�]ν(τ)e− ∫
X L′+I (S,Y )+IO+I∩ , (5)

where� = {a, ā, A, η, ψ, χ, D} is the collection of fields of the theory (as in Table 1).
Below, Sects. 2.1–2.5 are devoted to reviewing and explaining in detail all the

ingredients of the u-plane integral (5). Finally, in Sect. 2.6 we introduce the new Q-
exact operators IS following [10] as well as its generalisation I (S,Y ) that will allow
us to reformulate Zu as an integral over a mock modular form.

2.1 Seiberg–Witten geometry

In the seminal papers [2, 16], Seiberg and Witten found the exact low-energy solution
of N = 2 supersymmetric Yang–Mills with gauge group SU (2). The N = 2 vector
multiplet consists of a gauge field A, a scalar φ and Weyl fermions λ and ψ , all in
the adjoint representation. The potential of the theory is V (φ) = 1

g2
Tr[φ, φ†]2 and

we are interested in the moduli space of flat directions. These are found by setting
φ = aσ 3, with σ 3 the third Pauli matrix and a a complex parameter. However, note
that the Weyl group of SU (2) acts on a by a �→ −a. We can then construct a gauge
invariant parameter as

u = 1

16π2 〈Trφ2〉. (6)

This serves as a good coordinate on the moduli space.
There are two strong coupling singularities in the gauge theory, located at u = ±�2,

where a monopole and a dyon become massless, respectively [2]. Here, � is the
dynamical scale of the theory, which is generated by the renormalisation group flow.
This will be set equal to one later in the paper. The central charge of a dyonic state
with electric and magnetic charges (ne, nm) is given by

Z = nea + nmaD, (7)

where aD is the magnetic dual of a, aD = ∂F
∂a , with F the prepotential of the theory.
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−1 0 1 2 3 4

F TF T 2F T 3F

SF T 2SF

Fig. 1 Fundamental domain �0(4)\H of the congruence subgroup �0(4), the duality group of the pure SW
theory. It consists of six images of the key-hole fundamental domain F of SL(2,Z). The cusp at τ = ı̊∞
corresponds to weak coupling, while the cusps at τ = 0 and 2 correspond to the monopole and dyon points

The quantum moduli space of the gauge theory can be described in terms of a
certain family of elliptic curves, the so-called Seiberg–Witten (SW) curves,

y2 = x3 − ux2 + 1
4�

4x . (8)

The complex structure of the curve is identified with the complex coupling τ of the
gauge theory. The fields a and aD can be determined from the SW differential λSW as

a =
∫
A

λSW, aD =
∫
B

λSW, (9)

where A and B are the canonical basis of homology cycles on the elliptic curve.
By relating the j-invariant of the SW curve (8) to that of the Weierstraß curve, we

can solve for u in terms of Jacobi theta functions,

u(τ )

�2 = ϑ2(τ )4 + ϑ3(τ )4

2ϑ2(τ )2ϑ3(τ )2
= 1

8q
−1/4 + 5

2q
1/4 − 31

4 q
3/4 + O(q5/4), (10)

where q = e2π ı̊τ . See Appendix A for the definitions of the theta functions. Using this
formula it is straightforward to show that u is a modular function for the congruence
subgroup�0(4) ⊂ SL(2,Z). The fundamental domain of this group is shown in Fig. 1.
The cusp at τ = ı̊∞ corresponds to weak coupling, while the cusps at τ = 0 and
τ = 2 correspond to the monopole and dyon singularities, respectively.

From the curve (8) we can directly find other quantities that will be important for
the analysis in the paper, such as du

da or du
dτ . See for example [17] for a more detailed

discussion on how these quantities can be retrieved from the curve. These expressions
and their transformation properties under �0(4) are collected in Appendix A.2.

The u-plane integral can also be formulated for theories other than pure N = 2
SYM with gauge group SU (2). For pure N = 2 SYM with gauge group SU (N ) and
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N > 2, integrals over the respective Coulomb branches have been performed in [18].
The modular structure for those theories is, however, much more involved, as was
recently elaborated in [19]. More tractable Coulomb branches are rank one theories
with matter hypermultiplets, such as N = 2∗ (with one adjoint hypermultiplet) and
N = 2 supersymmetric QCD (with N f ≤ 4 fundamental hypermultiplets), both
with gauge group SU (2) [16]. Rank 1 Argyres-Douglas theories are non-Lagrangian
examples of N = 2 theories with 1-dimensional Coulomb branches [20, 21]. The
partition function has been studied only for the simplest of those, the (A1, A2) theory
[22]. The extension of such Coulomb branch integrals to manifolds with b1(X) > 0
is interesting because the ghost number selection rule admits the possibility of an
infinite number of non-vanishing correlation functions, in sharp contrast to the case
b1(X) = 0. The u-plane integral for N = 2∗ theory has been formulated in [23] and
evaluated in [24], based on the Coulomb branch geometry found in [25]. The modular
structure of N = 2 QCD on the other hand has been established much more recently
[17]. Integration over those Coulomb branches has yet to be completed [26].

2.2 Effective Lagrangian

The low-energyU (1) effectiveLagrangianLof the twisted theory is given in [3,(2.15)].
TheQ-exact terms as well as the kinetic terms do not contribute since the zero modes
are constant in DW theory on a four-manifold X with b+

2 (X) = 1. For such manifolds
there is a useful fact stating that for any β1, β2, β3, β4 ∈ H1(X ,Z), we have [27]

β1 ∧ β2 ∧ β3 ∧ β4 = 0. (11)

We will make extensive use of this fact below.
Let us defineL′ as the part of the zero-mode low-energyU (1) effective Lagrangian

that contributes to the u-plane integral. It is given by [3]

L′ = π ı̊ τ̄k2+ + π ı̊τk2− − y

8π
D ∧ ∗D + ı̊

√
2

16π

dτ̄

dā
ηχ ∧ (F+ + D)

− ı̊
√
2

27π

dτ

da
ψ ∧ ψ ∧ (F− + D),

(12)

where F± = 4πk± and for any two-form x we abbreviate B(x, x) = x2 as defined
in Eq. (3). In L′, we disregard any summands of L containing Q-exact terms, exact
differential forms and ∧-products of four 1-forms. Here and throughout the rest of the
paper we use units where the dynamical scale � of the low-energy effectiveU (1) the-
ory is equal to one. The gravitational contributions toL′ are described in the following
section.
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2.3 Measure factors

Assuming X is connected, the (holomorphic) measure factor [3, 28] is

ν(τ) := −
(
27/2π

) b1
2 2

3σ(X)
4 +1

π
(u2 − 1)

σ(X)
8

(
da

du

) σ(X)
2 +b1−2

. (13)

Here we used χ(X) + σ(X) = 4 − 2b1 to eliminate the Euler character of X , χ(X).
This expression reduces to Eq. (2.9) in [10] if we take b1 = 0. For the simply connected
theory one can use the microscopic definition of the theory to determine the effec-
tive gravitational couplings (e.g. by considering expansions of the Nekrasov partition
function) [29, 30].

The zero modes of the one-forms ψ live in the tangent space of a b1-dimensional
torus Tb1 = H1(X ,R)/H1(X ,Z) = H1(X ,O∗

X ) which corresponds to isomorphism
classes of invertible sheaves (for X a smooth complex variety that is holomorphic line
bundles) on X which are topologically trivial. We can expand ψ in zero modes as
ψ = ∑b1

i=1 ciβi with βi an integral basis of harmonic one-forms, and ci Grassmann
variables. We then have the measure

b1∏
i=1

dci√
y

= y− b1
2

b1∏
i=1

dci . (14)

The photon partition function will also include an integration over b1 zero modes
of the gauge field corresponding to flat connections [7]. These zero modes span the
tangent space of Tb1 . As a consequence of this, the photon partition function will have

an overall factor of y
1
2 (b1−1) [31]. Combining this with the measure factor (14) we see

that in the end there will only be a factor of y−1/2 surviving.
We can also consider the c j in the expansion of ψ as a basis of one-forms β#

j ∈
H1(Tb1,Z), dual to β j , such that

ψ =
b1∑
j=1

β j ⊗ β#
j . (15)

A useful fact about four-manifolds with b+
2 = 1 is that the image of the map

∧ : H1(X ,Z) ⊗ H1(X ,Z) → H2(X ,Z) (16)

is generated by a single rational cohomology class, which we denote as W [27].2

This means that we can write βi ∧ β j = ai jW , i, j = 1, . . . , b1, where ai j is an
anti-symmetric matrix. This further implies that the two-form on T

b1 can be written

2 This class is denoted � in [7] and � in [15]. However, since we want to reserve � for the Riemann
surfaces studied below and � for the dynamical scale of the theory we choose to call the class W .
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as

� =
∑
i< j

ai jβ
#
i ∧ β#

j , (17)

where β#
i ∈ H1(Tb1,Z), such that

vol(Tb1) =
∫
T
b1

�b1/2

(b1/2)! . (18)

Below, we will study four-manifolds of the type X = CP
1 × �g with �g a genus g

Riemann surface. For these manifolds we have thatW = [CP1] and vol(Tb1) = 1 [7].
Using the analysis above we can now write ψ ∧ ψ = 2(W ⊗ �) [7]. This will be

very useful later on when we want to perform the integral over Tb1 for the product
ruled surfaces.

2.4 Observables

Q-invariant observables can be constructed using the celebrated descent formalism.By
starting with the zero-form operatorO(0) = 2u, we find all k-form valued observables
O(k) for k = 1, 2, 3, 4 that areQ-invariant modulo exact forms by solving the descent
equations

dQ( j) = {Q,O( j+1)} (19)

inductively. This ensures that for a k-cycle�(k) ∈ Hk(X) in X , the integrals
∫
�(k) O(k)

areQ-invariant and only depend on �(k). Fortunately, there is a canonical solution to
the descent equations: Due to the fact that the translation generator isQ-exact, there is
the one-form valued descent operator K , which satisfies d = {Q, K } [3]. This implies
that (19) can be solved byO( j) = K jO(0), where the iterated (anti)-commutators are
implicit. The action of the operator K can be inferred from the BRST transformations
(2) as [3]

[K , a] = 1

4
√
2
ψ, [K , ā] = 0, [K , ψ] = −2(F− + D), [K , A] = −2ı̊χ,

[K , η] = − ı̊√
2
dā, [K , χ ] = −3

√
2ı̊

4
∗ dā, [K , D] = 3ı̊

4
(2dχ − ∗dη) .

(20)

Let us study the insertion of all possible observables. For ease of notation, let us
denote p = �(0) a point class, γ = �(1) a 1-cycle, S = �(2) a 2-cycle and Y = �(3)
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a 3-cycle. The cycles γ , S and Y can be expanded in formal sums as

γ =
b1∑
i=1

ζiγi , S =
b2∑
i=1

λi Si Y =
b3∑
i=1

θi Yi , (21)

where γi , Si and Yi are a basis of one-, two- and three-cycles, respectively, λi are
complex numbers, while ζi and θi are Grassmann variables. By the common abuse
of notation, we use the same notation for the 3-, 2- and 1-forms Poincaré dual to the
cycles and use the convention

∫
γ

ω1 =
∫
X

ω1 ∧ γ,

∫
S
ω2 =

∫
X

ω2 ∧ S,

∫
Y

ω3 =
∫
X

ω3 ∧ Y . (22)

The most general Q-invariant observable we can add is then

IO = 2pu + a1

∫
γ

Ku + a2

∫
S
K 2u + a3

∫
Y
K 3u, (23)

where a2 = ı̊√
2π

is fixed from matching with the mathematical literature [3] and3

Ku = 1

4
√
2

du

da
ψ,

K 2u = 1

32

d2u

da2
ψ ∧ ψ −

√
2

4

du

da
(F− + D),

K 3u = 1

27
√
2

d3u

da3
ψ ∧ ψ ∧ ψ − 3

16

d2u

da2
ψ ∧ (F− + D) − 3

√
2ı̊

16

du

da
(2dχ − ∗dη).

(24)

2.5 Contact terms

The existence of the canonical solution to the descent equations allows to map an
observable of theUV theory to the low-energyU (1) effective theory on theu-plane. For
instance, the operator I (S) = ∫

S K
2u of the UV theory is mapped to the same observ-

able Ĩ (S) = ∫
S K

2u in the IR. This is not quite true for products I (S1)I (S2) · · · I (Sn)
of such operators for distinct Riemann surfaces Si ∈ H2(X ,Z). At the intersection
of the surfaces, contact terms will appear [3, 5]. When mapping a product of surface
operators to the IR, the product is corrected by a sum over the intersection points. Due
to the Q-invariance, the inserted operator is holomorphic and the point at which it is
inserted is irrelevant.

3 We find two small typos in [7]: F+ should be replaced with F−, and the third term in K 3u misses a factor
of 1

2 . The contribution from K F− cancels.
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Such contact terms appear for all cycles in X that can intersect. They have been
classified and the corresponding contact terms have been found in [7,Equations (2.8)–
(2.12)],

I∩ =
∫
S∩S

T + a13

∫
Y∩γ

T + a32

∫
Y∩S

KT + a33

∫
Y∩Y

K 2T

+ a332

∫
S∩Y∩Y

∂3F
∂τ 30

+ a333

∫
Y∩Y∩Y

K
∂3F
∂τ 30

+ a3333

∫
Y∩Y∩Y∩Y

∂4F
∂τ 40

.

(25)

Here τ0 is the deformation parameter of the prepotential, related to the dynamical
scale by �4 = eπ ı̊τ0 . The coefficient functions can all be expressed as quasi-modular
functions on the u-plane. For instance, the contact term for S ∩ S is

T = u

2
− a

4

du

da
= ϑ4

2 + ϑ4
3 − E2

6ϑ2
2ϑ2

3

. (26)

In terms of the prepotential F , it is given by T (τ ) = 4
π ı̊

∂2F
∂τ 20

[32]. It furthermore

satisfies the identities [7]

4π ı̊
dT

da
=
(
d2u

da2

)2
da

dτ
+ π ı̊

du

da
,

dT

da
= 1

4

(
du

da
− a

d2u

da2

)
,

d2T

da2
= −a

4

d3u

da3
,

∂3F
∂τ 30

= −π2

24

(
2T − a

dT

da

)
.

(27)

We can use the action (20) to find

KT = 1

4
√
2

dT

da
ψ,

K 2T = 1

32

d2T

da2
ψ ∧ ψ − 1

2
√
2

dT

da
(F− + D).

(28)

The intersection constants can be obtained from duality invariance [7]

a1 = π− 1
2 2

3
4 e− π ı̊

4 , a3 = π− 3
2 2

1
4 e

π ı̊
4 /6,

a13 = −6π2a1a3, a32 = −6
√
2π ı̊a3, a33 = −9π2a23,

a332 = −72
√
2π ı̊a23, a333 = 36π2 ı̊a33, a3333 = −(6π)3 ı̊a43 .

(29)
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Due to the identity (11), the two last terms in (25) vanish and we can disregard them.
Thus, from (25) and (28) we see that all terms in I∩ except for one are only integrated
over ψ and τ , which we do in a later step. The remaining term

−
√
2a33
4

dT

da
B(F− + D,Y ∧ Y ). (30)

is to be integrated over D, χ and η.

2.6 Q-exact operators

Aswewill later see, the photon path integral combines with the insertion of the surface
observable to a Siegel–Narain theta function � J

μ(τ, z). See (47) for the definition.
This function can be expressed as a total derivative to a non-holomorphic modular
completion of an indefinite theta function, as has been previously shown in the simply
connected case [10, 12]. To facilitate the calculation further the authors of those papers
add theQ-exact operator IS .4 In this section we will generalise this operator insertion
to simplify the calculations also in the case of non-simply connected manifolds. This
then allows us to evaluate correlation functions efficiently using mock modular forms
[10–12].

Since our computations should be valid for any b1 ≥ 0 and in particular b1 = 0, this
suggests that it is instructive to add the sameQ-exact operator [10,(2.11) and (2.12)]

IS = − 1

4π

∫
S

{
Q,

dū

dā
χ

}

= −
√
2ı̊

4π

d2ū

dā2

∫
S
ηχ − ı̊

4π

dū

dā

∫
S
(F+ − D).

(31)

The u-plane integrand (5) with IS inserted can also in the case where b1 �= 0 be
written as an anti-holomorphic derivative. However, it does not give the same kind
of Siegel–Narain theta function as in the simply connected case. The reason is that
the putative elliptic argument z of � J

μ does not couple to H2−(X) symmetrically to
how its conjugate z̄ couples to H2+(X). The insertion of IS in the case b1 = 0 can be
viewed as the unique correction to the path integral that symmetrises the couplings
to H2±(X). Without such an insertion, the resulting theta functions are not symmetric,
see for instance [3,Equation (3.18)].

As we demonstrate below, for b1 �= 0 this issue can be cured by introducing
additionalQ-exact operators. More precisely, the new observables and related contact

4 This term is called Ĩ+(x) in [10, 11]. For ease of notation, we remove the tilde from such expressions
since we only discuss operators in the IR.
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terms require three new Q-exact terms. The first two

IY = −3ı̊ ā3
16

∫
Y

[
Q,

d2ū

dā2
χ ∧ ψ

]
+

√
2

27π

∫
X

{
Q,

dτ̄

dā
χ ∧ ψ ∧ ψ

}

= 3
√
2ā3
24

d3ū

dā3
B(ηχ,ψ ∧ Y ) + 3ā3

24
d2ū

dā2
B(F+ − D, ψ ∧ Y )

+ ı̊

26π

d2τ̄

dā2
B(ηχ,ψ ∧ ψ) +

√
2ı̊

27π

dτ̄

dā
B(F+ − D, ψ ∧ ψ)

(32)

compensate the observables (23). From the collection of contact terms (25), only the
one from the intersection Y ∩ Y gives a term (30) that is integrated over D, η and χ .
This term requires the addition of the Q-exact operator

IY∩Y = −
√
2ı̊ ā33
4

∫
Y∩Y

{
Q,

dT̄

dā
χ

}

= ā33
2

d2T̄

dā2
B(ηχ,Y ∧ Y ) +

√
2ā33
4

dT̄

dā
B(F+ − D,Y ∧ Y ).

(33)

We can note that, according to (29), ā33 = −a33. The sum of these additionalQ-exact
terms can be compactly written as

IY + IY∩Y = −√
2ηB(χ, ∂ā(yω̄)) − yB(F+ − D, ω̄), (34)

where we introduced the 2-form

ω :=
√
2ı̊

27π y

dτ

da
ψ ∧ ψ − 3a3

24y

d2u

da2
ψ ∧ Y −

√
2a33
4y

dT

da
Y ∧ Y . (35)

This 2-form has the property that yω is holomorphic and thus yω̄ is anti-holomorphic.
The form of (32) is derived in Appendix C, where we furthermore show that its one-
point function evaluates to zero, such that it is safe to include it into the path integral,
following the analysis in [11, 12]. We furthermore find it useful to follow [10] and
introduce the notation

ρ = S

2π

du

da
, b = Im(ρ)

y
. (36)

Anticipating the result as a Siegel–Narain theta function, the elliptic variable will turn
out to be z = ρ + 2ı̊ yω, which is a 2-form with holomorphic coefficients. In terms of
this variable, the sum of all Q-exact insertions (31), (32) and (33) combine nicely as

I (S,Y ) := IS + IY + IY∩Y

= − ı̊

2

(√
2B(ηχ, ∂ā z̄) + B(F+ − D, z̄)

)
.

(37)
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It is clear that this is purely anti-holomorphic. The operator I (S,Y ) is then included
into the path integral, as in (5).

3 The u-plane integral for �1(X) �= 0

The u-plane integral (5) can be expressed as

Zu(p, γ, S,Y ) =
∫

[dadādηdχdD]
∫
Pic(X)

dψ ν(τ)
1√
y
e− ∫

X L′+IO+I∩+I (S,Y ),

(38)

where
∫
Pic(X)

denotes a sum over isomorphism classes of line bundles, equivalent to

a sum over H2(X ,Z), followed by an integration over Tb1 .5 The ψ zero modes are
tangent to Pic(X), so the integral over these modes is understood as the integral of
a differential form on Pic(X) [3]. At this point let us make a remark. The Q-exact
operator I (S,Y ) is not strictly required in order to derive our end result (52). As a
matter of fact, as shown in [12] this operator can be added freely as α I (S,Y ), with
α any number.6 However, the case of α = 1 makes the analysis simpler and more
elegant, why we choose to include it.

Let us perform the integrals above in steps, using an economical notation. We
integrate first over the auxiliary field D, and then over the fermionic 0- and 2-forms,
η and χ .

3.1 Integration over D,� and �

Using (35) and (36), we can expand the terms in the exponential of (38) that are
affected by the integrals over D, η and χ as (ignoring the remaining terms for now)

−
∫
X
(L′ + a2K

2u + a3K
3u) + I (S,Y ) −

√
2a33
4

dT

da
B(F− + D,Y ∧ Y )

= −π ı̊ τ̄k2+ − π ı̊τk2− + y

8π
D2 −

√
2ı̊

4

dτ̄

dā
B(ηχ, k+) −

√
2ı̊

16π

dτ̄

dā
B(ηχ, D)

− ı̊√
2
B(ηχ,

dρ̄

dā
) − 2π ı̊ B(k−, ρ) − 2π ı̊ B(k+, ρ̄) + yB(D, b+)

+
√
2ı̊

25
B(ψ ∧ ψ,

dρ
da ) − √

2ηB(χ, ∂ā(yω̄)) + 4π yB(k−, ω−)

− 4π yB(k+, ω̄)

+ yB(D, ω+) + yB(D, ω̄+). (39)

5 Pic(X) corresponds to the analytic Picard group of X . When X is a smooth projective variety, we do not
differentiate between the analytic and the algebraic Picard groups since they are isomorphic by GAGA [33].
6 In particular, we can have α = 0.
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At any point we discard terms that vanish identically, such as 4-fermion terms or any
instance of (11) such as ψ ∧ ψ ∧ ψ ∧ ψ , ψ ∧ ψ ∧ ψ ∧ Y or ω ∧ ω. The exponential
(39) is Gaussian in D with saddle point

D =
√
2ı̊

4y

dτ̄

dā
ηχ − 4π(b+ + ω+ + ω̄+). (40)

This can be found by differentiating (39) with respect to D and setting it to zero.
Inserting D in (39) gives 7

+
√
2ı̊

25
B(ψ ∧ ψ,

dρ
da ) − 2π y(b+ + ω+ + ω̄+)2 − π ı̊ τ̄k2+ − π ı̊τk2−

− 2π ı̊ B(k−, ρ) − 2π ı̊ B(k+, ρ̄) + 4π yB(k−, ω) − 4π yB(k+, ω̄)

−
√
2ı̊

4

dτ̄

dā
B(ηχ, k+ − b+ − ω+ − ω̄+) − ı̊√

2
B(ηχ,

dρ̄+
dā )

− √
2ηB(χ, ∂ā(yω̄)). (41)

The third line are the only terms involving η and χ , which we will integrate over next.
Before, we can combine those terms in the expression

−
√
2ı̊

4

dτ̄

dā
B
(
ηχ, k − b − ω + ω̄ − 4ı̊ y∂τ̄ ω̄ + 2∂τ̄ ρ̄

)
. (42)

Integrating over η and χ , we can rewrite this in a compact way as a total anti-
holomorphic derivative times an overall factor that, as we discuss below, cancels with
contributions from the rest of the measure,

√
2ı̊

4

dτ̄

dā
B
(
k − b − ω + ω̄ − 4ı̊ y∂τ̄ ω̄ + 2∂τ̄ ρ̄, J

)

= √
y
dτ̄

dā
∂τ̄

√
2yB(k + b + ω + ω̄, J ), (43)

where ∂τ̄ acts on everything to its right and J = J/
√
Q(J ) ∈ H2+(X) is the normalised

self-dual harmonic form on X . This result follows directly from the identities

∂τ̄ y = ı̊

2
, ∂τ̄

√
2y =

√
2ı̊

4
√
y
, ∂τ̄

1

y
= 1

2ı̊ y2
, ∂τ̄b = b − ∂τ̄ ρ̄

2ı̊ y
, ∂τ̄ ω = 1

2ı̊ y
ω.

(44)

7 If we integrate over D instead of inserting the equations of motion we get an additional factor of 2π ı̊
√

2
y

in front of the integral [11]. The result of the integration does not change otherwise since both methods

agree for Gaußian integrals up to an overall factor of
√

π
a ı̊ , if we integrate eaD

2
over D. It is the same

factor as in the simply connected case because the quadratic D-term is the same. According to [3,p. 68] the
D determinant should be ignored because it cancels in any case with the fermionic determinants.
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As previously discussed, the photon path integral together with the measure for the
zero modes ofψ contains a sum over all fluxes times a factor of 1/

√
y and additionally

contributes (−1)B(k,K ), where K is the canonical class of X [31]. The 1/
√
y factor is

thus absorbed by the
√
y on the rhs of (43).

Using the change of variables

u : �0(4)\H ∼−→ CP
1 (45)

provided by (10), we can further integrate over dτ ∧ dτ̄ rather than over da∧ dā. This
motivates the definition of the transformed measure

ν̃ = ν
da

dτ
, (46)

such that da ∧ dā ν = dτ ∧ dτ̄ dā
dτ̄ ν̃. The factor dā

dτ̄ cancels with the dτ̄
dā of (43).

3.2 Siegel–Narain theta function

Let us demonstrate that the u-plane integrand for π1(X) �= 0, as in the simply con-
nected case [10], evaluates to a Siegel–Narain theta function. To this end, let us define

� J
μ(τ, z) = e−2π yβ2+

∑
k∈L+μ

∂τ̄

(√
2yB(k + β, J )

)

× (−1)B(k,K )q−k2−/2q̄k
2+/2e−2π ı̊ B(z,k−)−2π ı̊ B(z̄,k+)

(47)

with q = e2π ı̊τ and β = Imz
y ∈ L ⊗ R, where L = H2(X ,Z).

For the elliptic variable z = ρ + 2ı̊ yω, we have β = b + ω + ω̄ (here, we use that
yω is holomorphic). Both variables appear naturally in (41) and (43). In fact, we can
combine everything to find

Zu(p, γ, S,Y ) =
∫

�0(4)\H
dτ ∧ dτ̄

∫

T
b1

[dψ] ν̃ � J
μ(τ, ρ + 2ı̊ yω)eI

′
O+I ′∩ . (48)

Here,

I ′∩ =
∫
S∩S

T + a13

∫
Y∩γ

T + a332

∫
S∩Y∩Y

∂3F
∂τ 30

+ a32

4
√
2

dT

da

∫
Y∩S

ψ (49)

and

I ′
O = 2pu +

√
2a1
8

du

da

∫
γ

ψ +
√
2ı̊

26π

d2u

da2

∫
S
ψ ∧ ψ, (50)
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are the (holomorphic) remainders of the collections of 0, . . . , 3-form observables and
their contact terms that has not yet been integrated over, and we eliminated all terms
that do not contribute.

Let us check that (48) is indeed true from the computations in Sect. 3.1. Aside from
theψ ∧ψ term, the exponential of the first two lines in (41) immediately combine into
the definition (47) with said parameters, z = ρ +2ı̊ yω and z̄ = ρ̄ −2ı̊ yω̄. Everything
not exponentiated is given by the τ̄ derivative term in (43), which precisely gives the
derivative term in (47). This proves (48).

The expression (48) generalises the result of the u-plane integral [12,(4.32)] to
four-manifolds X with b1(X) > 0 by giving a decomposition of the integrand into a
holomorphic and metric-independent measure ν̃ eI

′
O+I ′∩ and a metric-dependent, non-

holomorphic component� J
μ(τ, z). Therefore, the evaluation techniques of [12] apply.

Namely, we can express the integrand of the u-plane integral as an anti-holomorphic
derivative,

d

dτ̄
ĤJ

μ(τ, τ̄ ) = ν̃ � J
μ(τ, z)eI

′
O+I ′∩ . (51)

The holomorphic exponential eI
′
O+I ′∩ does not affect the anti-holomorphic derivative,

and thus, the extension to π1(X) �= 0 is simply through the elliptic argument z =
ρ + 2ı̊ yω.

Once ĤJ
μ(τ, τ̄ ) is found, we can use coset representatives of SL(2,Z)/�0(4) to

map the six images ofF = SL(2,Z)\H back toF (see Fig. 1). The regularisation and
renormalisation of such integrals originating from insertions ofQ-exact operators has
been rigorously established in [11], and we review it in Appendix B. This then allows
to evaluate the partition function as

Zu(p, γ, S,Y ) = 4 Iμ(τ)
∣∣
q0 + Iμ(− 1

τ
)
∣∣
q0 + Iμ

( 2τ−1
τ

) ∣∣
q0 , (52)

where by |q0 we denote the q0 coefficient of the resulting Fourier expansion, and the
τ -integrand of (48) is given by 8

Iμ(τ) =
∫

T
b1

[dψ]ĤJ
μ(τ, τ̄ ). (53)

The prefactors in (52) can be recognised as the widths of the cusps ı̊∞, 0 and 1 of the
modular curve �0(4)\H.

To derive a suitable anti-derivative ĤJ
μ(τ, τ̄ ), it is auxiliary to choose a convenient

period point J . The u-plane integral for a different choice J ′ is then related to the
one for J by a wall-crossing formula, given explicitly in [7]. It is shown in [12] that
for convenient choices of J , � J

μ(τ, z) factors into holomorphic and anti-holomorphic
terms, and the anti-derivative ĤJ

μ can be found for both L even and odd. Furthermore,

8 One could also contemplate switching the order of integration and integrate over ψ first. This would,
however, not necessarily result in a similar function to (52), and it might not be possible to use the results
of [12].
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the u-plane integral can be evaluated using mock modular forms for point observables
p ∈ H0(X) and Appell–Lerch sums for surface observables z ∈ H2(X) [12].

In [11] it is furthermore shown that in the above mentioned renormalisation, any
Q-exact operator (such as I (S,Y )) decouples in DW theory. However, it is clear that
the insertion of I (S,Y ) crucially changes the integrand, making the Siegel–Narain
theta function symmetric. Instead of inserting I (S,Y ), we can contemplate adding
α I (S,Y ) for an arbitrary constant α. It was noticed in [12] that the Siegel–Narain
theta function � J

µ,α for b1 = 0 with the insertion α IS remains finite at weak coupling
(Imτ → ∞) if and only if α = 1. This can be seen from the exponential prefactor in
(47), whose exponent is negative definite if and only if z̄ (which we suppress in the
notation) is the complex conjugate of z.

3.3 Single-valuedness of the integrand

An essential requirement, for the consistency of the theory, is that the path integral (48)
is single-valued. For this it is advantageous to first change variables in theψ-integral as

ψ ′ = ψ + 12π ı̊a3√
2

da

dτ

d2u

da2
Y . (54)

This is because the coefficient function ofψ ∧ψ in yω is modular, while theψ ∧Y and
Y ∧Y coefficients of yω are only quasi-modular. Such shifts (54) leave the measure of∫ [dψ] invariant, as dψ = dψ ′. Due to the order of integration in (48), the change of
variables (54) is well-defined. Since Y is also Grassmann-odd, ψ and Y ∧-commute.
Using (29) and (27), this gives

ω =
√
2ı̊

27π y

dτ

da
ψ ′ ∧ ψ ′ + 9

√
2π2a23
16y

du

da
Y ∧ Y . (55)

Let us use the notation of Appendix A.2. It is argued in [7] that ψ ′ transforms as
(−1, 1)(1,0). Using (112), one then finds that yω = (−1, 1)(−1,0) transforms precisely
as ρ = (−1, 1)(−1,0), such that z = ρ + 2ı̊ yω = (−1, 1)(−1,0) is a modular form and
transforms exactly as in the π1(X) = 0 case.

Furthermore, it is auxiliary to define [7,(2.14)]

S′ = S + 4π ı̊ y
da

du
ω. (56)

It is well-defined, as S′ = (1, 1)(0,0) is fully invariant. In contrast to (54), this is
not a change of variables or a redefinition, but rather a substitution to simplify some
expressions. For instance, the elliptic variable now reads

z = S′

2π

du

da
, (57)

which takes the same form (36) as in the simply connected case.
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By incorporating the shift of ψ → ψ ′ together with (56), we find that the contact
terms and observables in (49) and (50) can be written as

IO+∩ = 2pu + S′2T +
√
2a1
8

du

da

∫
γ

ψ ′ − 3π2a1a3u
∫

γ

Y +
√
2

32

dτ

du
u
∫
S′

ψ ′ ∧ ψ ′

−3π ı̊

8
a3

du

da

∫
Y
S′ ∧ ψ ′ + 3

√
2

4
ı̊π3a23 u

∫
S′
Y ∧ Y . (58)

All terms but S′2T are modular functions with trivial multipliers. Due to (57), the
quasi-modular shift of T combines precisely with the one of �(τ, z).

Measure factor

Since� ∝ ϑ8
4

ϑ4
2ϑ4

3
, dadτ = π

8ı̊
ϑ8
4

ϑ2ϑ3
and da

du = 1
2ϑ2ϑ3, from (13)we have that ν ∝ ϑσ

4
(ϑ2ϑ3)

2−b1

and therefore

ν̃ ∝ ϑ8+σ
4

(ϑ2ϑ3)3−b1
. (59)

We find that under the generators of �0(4), ν̃ = (−1, e−π ı̊σ/4)(2−
b2
2 +b1,0). For this

we have used that σ + b2 = 2 and that b1 is even.
We also need to consider the fermion measure. As we have discussed earlier, this

comes with an overall factor of y− b1
2 which gets absorbed by a similar factor coming

from the photon partition function. This leaves us with
∏b1

i=1 dci , which has weight
(−b1, 0), since ψ has weight (1, 0) [31]. So after the integration over D, η and χ ,
and after changing integration variables from da ∧ dā to dτ ∧ dτ̄ , the measure of the
integral will have weight (−2 − b1,−2), and we thus need the rest of the integrand
to have weight (2 + b1, 2). Finally, the transformations of the Siegel–Narain theta
function � J

μ(τ, z) can be found in Appendix A.3.
The integrand of the u-plane integral (48) reads

J J
μ = dτ ∧ dτ̄

∫

T
b1

[dψ] ν̃ � J
μ(τ, z)eI

′
O+I ′∩ . (60)

Since it is integrated over the fundamental domain of �0(4), in order to check whether
the integral is well-defined J J

μ must transform as a modular function for �0(4) with
no phases. In Table 2 we collect the phases and weights of the individual factors as
discussed above. This shows that the integral is indeed well-defined.

4 Computation for product ruled surfaces

As an interesting application of our results we can study the u-plane integral for a
four-manifold of the type X = CP

1 × �g , where �g is a genus g Riemann surface.
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Table 2 Modular weights and phases of the u-plane integrand (60) under �0(4) transformations. This
proves that J J

μ (γ τ) = J J
μ (τ) for any γ ∈ �0(4)

Object dτ ∧ dτ̄
∫

T
b1

[dψ] ν̃ � J
μ(τ, z) eI

′
O+I∩ J J

μ

Weight (−2, −2) (−b1, 0) (2 − b2
2 + b1, 0) (

b2
2 , 2) (0, 0) (0, 0)

T 4 1 1 −1 −1 1 1

S−1T−1S 1 1 e−
π ı̊σ
4 e

π ı̊σ
4 e−

π ı̊ z2
τ+1 e

π ı̊ z2
τ+1 1

This is a product ruled surface with b+
2 (X) = 1 (see Appendix D.1). 9 The DW theory

for thesemanifolds was worked out in [7, 15] andwe can use these results as a check of
our formula. By shrinking the size of the Riemann surface �g we get a topological σ -
model, more specifically the topological A-model, onCP1 [13]. By calculating certain
correlation functions on both sides, we will be able to make an indirect connection
between mock modular forms and the topological σ -model on CP

1 in Sect. 5.
The product ruled surfaces that we consider have b1 = 2g, b2 = 2, b+

2 = 1,
KX = 0, which in turn means that σ = 0 and χ = 4(1−g) [7]. We consider a general
period point

J (θ) = 1√
2

(
eθ [CP1] + e−θ [�g]

)
, (61)

where [CP1] and [�g] are the cohomology classes that generate H2(X ,Z) [7].10 For
these manifolds we further have that the rational cohomology class W, discussed in
Sect. 2.3, is simply given by W = [CP1] [27]. The intersection matrix is

Q =
(
0 1
1 0

)
, (62)

such that indeed J (θ)2 = 1. Natural representatives of [CP1] and [�g] are found by
choosing coordinates z ∈ C for [CP1] and representing [�g] (for g > 1) as a quotient
of the Poincaré disk, D = {w : |w| < 1} with a Fuchsian group. This gives [7]

[CP1] = ı̊

2π

dz ∧ dz̄

(1 + |z|2)2 ,

[�g] = ı̊

2π(g − 1)

dw ∧ dw̄

(1 − |w|2)2 .

(63)

The scalar curvature for this metric is 8π(eθ −e−θ (g−1)). We see that this is positive
for e2θ > g − 1, such that we do not get any contributions from the Seiberg–Witten

9 One could alternatively consider products �g × �h of Riemann surfaces; however, those have b+
2 = 1

if and only if either g = 0 or h = 0, such that for g, h ≥ 1 the u-plane integral vanishes.
10 Sometimes we will be sloppy and write simply CP

1 and �g for these classes and hope that this does
not confuse the reader.
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invariants in these chambers. In particular, this is true when the volume of CP1 is
small, since this has θ large and positive.

The connection to the topological σ -model is made in the chamber where we shrink
the volume of �g [13]. For completeness, we will calculate the u-plane integral in
both chambers, where either of the factors shrink. The calculations are similar in both
cases and we will start with the chamber where the volume of CP1 is small.

From Eq. (13) we find that the measure factor for these manifolds simplifies to

ν̃ = − 2

π
(27/2π)g

(
da

du

)2(g−1) da

dτ
. (64)

For thesemanifolds we also have that the� J
μ of (48) can bewritten as a total derivative

� J
μ(τ, z) = ∂τ̄ �̂

J J ′
μ , (65)

of the indefinite theta function [34]

�̂J J ′
μ (τ, z) =

∑
k∈L+μ

1

2

[
E(
√
2yB(k + β, J )) − sgn(

√
2yB(k + β, J ′))

]

× (−1)B(k,K )q−k2/2e−2π ı̊ B(z,k),

(66)

where k2 = k2+ + k2−, J ′ is a reference vector11 lying in the negative cone such that
Q(J ′) < 0, and

E : R → (−1, 1), t �→ 2
∫ t

0
e−πx2dx (67)

is a reparametrisation of the error function. See also Appendix A.4 for more details
on these indefinite theta functions. This means that we can take as ĤJ

μ(τ, τ̄ ) in (53)

ĤJ
μ(τ, τ̄ ) = ν̃�̂J J ′

μ (τ, z)eI
′
O+I ′∩ . (68)

For the evaluation of the u-plane integral using this ĤJ
μ, one may replace �̂J J ′

μ in

(68) after the modular transformations as in (52) with the mock modular form �J J ′
μ

defined in Appendix A.4. This is also in line with the approach in [10].

4.1 ShrinkingCP1

Let us start by analysing the chamber where the volume of CP1 is small. In this
chamber we fix the primitive null vector to be J ′ = [CP1] = W . Due to (62), with

11 The reason for picking J ′ in the negative cone is to assure that it does not contribute to Eq. (65). Had
we picked J in the positive cone, we would end up with the wall-crossing contributions from the chambers
where J and J ′ live, respectively.
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this choice we have that B(ψ ∧ ψ, J ′) = 0, and in particular B(S′, J ′) = B(S,W ).
As above, we denote z = ρ + 2ı̊ yω and β = b + ω + ω̄. We can introduce the split
k = m + nW , with m chosen such that

B(m + β, J )

B(W , J )
∈ [0, 1). (69)

With this split the mock modular form �J J ′
μ coming from (68) can be written as

�JW
μ (τ, z) =

∑
n∈Z

∑
m∈L+μ

B(m+β,J )
B(W ,J )

∈[0,1)

q−m2
2 e−2π ı̊ B(z,m)q−nB(W ,m)e−2π ı̊ nB(ρ,W )

×1

2

[
sgn

(√
2y(B(m + β, J ) + nB(W , J )

)
− sgn

(√
2yB(m + β,W )

)]

=
∑

m∈L+μ
B(m+b,J )
B(W ,J )

∈[0,1)

q−m2
2 e−2π ı̊ B(z,m)

1 − q−B(W ,m)e−2π ı̊ B(ρ,W )
, (70)

where, in the second equality, we performed the sum over n. This is an Appell–
Lerch sum [34]. The u-plane vanishes in chambers where w2(E) · [CP1] �= 0 [3].
This means that we only have solutions for w2(E) = 0 or w2(E) = W , implying
that B(μ,W ) ∈ Z. The only solutions for the conditions on m are then m = 0 for
w2(E) = 0 and m = 1

2W for w2(E) = W , this means that the contributions from the
theta function are

�JW
0 (τ, z) = 1

1 − e−2π ı̊ B(ρ,W )
,

�JW
W (τ, z) = − e−π ı̊ B(ρ,W )

1 − e−2π ı̊ B(ρ,W )
.

(71)

We note that these are independent of ψ . The u-plane integral in this chamber can
now be written as

Zu,μ(p, γ, S,Y ) = 4

[(∫
T
b1

[dψ]eI ′
O+I ′∩

)
ν̃�JW

μ (τ, ρ)

]
q0

, (72)

with �JW
μ as above. If we only include point and surface observables it is straightfor-

ward to do the integral over the torus. The final result is

Zu,μ(p, S) =

⎧⎪⎪⎨
⎪⎪⎩

4

[(√
2ı̊

25π
d2u
da2

s
)g

e2pu+2stT ν̃ 1

1−e−ı̊ duda s

]
q0

, for μ = 0,

− 4

[(√
2ı̊

25π
d2u
da2

s
)g

e2pu+2stT ν̃ e− ı̊
2
du
da das

1−e−ı̊ duda s

]
q0

, for μ = W ,
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(73)

where we also defined S = s[�g] + t[CP1].12

4.2 Shrinking6g

We now go on to discuss the chamber where we instead shrink the volume of �g .
For this chamber we pick the primitive null vector to be J ′ = [�g]. The procedure is
similar to the above. However, note that now B(ψ ∧ ψ, J ′) �= 0. We start as before
by splitting k = m + n�g with m chosen such that

B(m + β, J )

B(�g, J )
∈ [0, 1). (74)

Let us start by looking at the contribution from infinity. After performing the sum
over n we find that the indefinite theta function becomes

�J ,[�g](τ, z) =
∑

m∈L+μ
B(m+β,J )
B(�g,J )

∈[0,1)

q−m2/2e−2π ı̊ B(z,m)

1 − q−B(�g,m)e−2π ı̊ B(z,�g)
. (75)

This is again an Appell–Lerch sum [34]. Following [15] we now pick ω2(E) =
[CP1] + ε[�g], with ε = 0, 1. For this flux there is no contribution from infinity,
as can be seen from the above by realising that there are now no solutions to the
conditions on m. We therefore turn to the other cusps.

For the monopole cusp at τ = 0 we can use the formulas in the appendix to define
the dual indefinite theta function as

�
J ,[�g]
μ,D (τD, zD) := τ−1e

π ı̊
z2D
τD �

J ,[�g]
μ (−1/τ, z/τ)

= �
J ,[�g]
0 (τD, zD − μ, z̄ − μ), (76)

where we used that KX = 0 and b2(X) = 2 together with the transformation formulas
of the appendix. Following the procedure from above, splitting and summing over n,
and simplifying by only including point and surface observables, we eventually find
that

�
J ,[�g]
0 (τD, zD − μ, z̄D − μ) = 1

1 − e−2π ı̊ B(zD−μ,�g)

=
(
1 + exp

[
−2π ı̊

(
B(ρD, �g) −

√
2

25π

(
dτ

da

)
D

�

)])−1

. (77)

12 There is a small discrepancy between this result and that of [7], namely they differ by an overall phase
ı̊ g . This is most likely due to a known discrepancy in the literature for the normalisation of ψ .

123



30 Page 24 of 53 J. Aspman et al.

Here we have used that B(μ,�g) = 1
2 and that ψ ∧ ψ = 2W ⊗ � together with the

explicit expressions for ω when only including points and surfaces as observables. We
also continue to denote dual functions with a subscript D. The explicit expressions
for these are given in the appendix, Eq. (115).

Next, we want to integrate over the torus. If we only write down the parts that are
actually dependent on ψ , or equivalently �, the integral over the torus is

∫
T
b1
dψ exp

[√
2ı̊

25π

(
d2u

da2

)
D
W ∧ S ⊗ �

]

(
1 + exp

[
−2π ı̊

(
B(ρD, �g) −

√
2

25π

(
dτ

da

)
D

�

)])−1

.

(78)

A neat trick we can use is to realise that

1

1 + et+x
= 1

1 + et
+
∑
n≥1

Li−n(−et )
xn

n! , (79)

where Lin(y) is the polylogarithm [15]. Using this and again splitting S = s[�g] +
t[CP1] we find that the integral over the torus evaluates to

g∑
n=1

(
g

n

)
Li−n

(
− exp

[
−i t

(
du

da

)
D

])(√
2ı̊

25π

(
d2u

da2

)
D
s

)g−n (√
2ı̊

24

(
dτ

da

)
D

)n

(80)

where we dropped the first term coming from (79) since this does not contribute to the
u-plane integral (it will give a term whose q-series starts with a positive exponent).
Combining thiswith the other terms in theu-plane integral,wefind that the contribution
from the cusp at τ = 0 is given by

Z ε
g,τ=0 =

[ 2
π
e2puD+2stTD

g∑
n=1

(
g

n

)
Li−n

(
− exp

[
−i t

(
du

da

)
D

])

(
− ı̊

2

(
da

du

)2

D

(
d2u

da2

)
D
s

)g−n

×
(

−ı̊π

(
da

du

)2

D

(
dτ

da

)
D

)n (
du

da

)2

D

(
da

dτ

)
D

]
q0D

. (81)
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The contribution from the other cusp is easily calculated using the same procedure.
The result is

Z ε
g,τ=2 =

[2ı̊
π

(−1)εe−2puD−2stTD
g∑

n=1

(
g

n

)
Li−n

(
− exp

[
−t

(
du

da

)
D

])

(
ı̊

2

(
da

du

)2

D

(
d2u

da2

)
D
s

)g−n

×
(

−π

(
da

du

)2

D

(
dτ

da

)
D

)n (
du

da

)2

D

(
da

dτ

)
D

]
q0D

.

(82)

The full u-plane integral in this chamber is then the sum of these two terms.13

Genus one

For g = 1 the Seiberg–Witten contributions vanish and the only contributions comes
from the u-plane integral [15]. The above expressions can be simplified to

Z ε
1 := Z ε

1,τ=0 + Z ε
1,τ=2 = 2ı̊

[
eı̊ t fD+2stTD+2puD(

1 + eı̊ t fD
)2 + (−1)ε

et fD−2stTD−2puD(
1 + et fD

)2
]

q0

,

(83)

where we introduced fD = ( du
da

)
D to keep the expressions shorter. We can make

various expansions for this. For example, if s = t = 0 we get

Z0
1(p) = ı̊

(
1 + 2p2 + 2

3
p4 + 4

45
p6 + 2

315
p8 + O(p9)

)
,

Z1
1(p) = 2ı̊

(
p + 2

3
p3 + 2

15
p5 + 4

315
p7 + O(p9)

)
.

(84)

For p = 0 we instead find (expanding in small t)

Z0
1(s, t) = ı̊

(
1 + 1

2
s2t2 − st3 + 1

24
(16 + s4)t4 + 1

6
s3t5

+ 1

720
s2(240 + s4)t6 + O(t7)

)
,

Z1
1(s, t) = ı̊

(
st − t2 + 1

6
s3t3 − 1

2
s2t4 + 1

120
s(80 + s4)t5

− 1

360
(136 + 15s4)t6 + O(t7)

)
.

(85)

13 These expressions again differ from that of the older literature [15] by an overall phase (−1)ε
(−ı̊

)g .
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Genus two

For g = 2 we find

Z ε
2 = π ı̊

2

[(
dτ

da

)
D

(
da

du

)2

D
e−2(stTD+puD)

×
(

− e4stTD+4puD sec2(t fD/2) (aDs − tan(t fD/2))

+ (−1)ε sech2(t fD/2) (aDs − tanh(t fD/2))

)]
q0

,

(86)

where by aD we actually mean ı̊
π

( da
dτ

)
D

(
d2u
da2

)
D
, by use of the relation (114) [35].

For s = t = 0 we simply get zero, but for p = 0 we get

Z0
1(s, t) = 1

8
s2t − 1

8
st2 + 4 + s4

48
t3 − 1

48
s3t4 + s4 − 40

960
s2t5 + 272 − 3s4

2880
st6 + O(t7),

Z1
1(s, t) = 1

8
s − 1

8
t + 1

16
s3t2 − 1

16
s2t3 + 1

192
s5t4 − 1

192
s4t5 + s4 − 160

5760
s3t6 + O(t7).

(87)

For g = 2 there will also be the Seiberg–Witten contributions given by [15,Eq.(3.33)],

Zg=2
SW (p, s, t) = 1

32
(−1)ε

(
e−2p−st sin(2s − 2t) − (−1)εe2p+st sinh(2s − 2t)

)
.

(88)

The first few terms in the expansion for small s and t , and p = 0, are

Zg=2,ε=0
SW (s, t) =

(
− s3

12
− s7

630
+ O(s8)

)
+
(
s2

8
− s6

180
+ O(s8)

)
t

+
(

− s

8
+ s5

120
+ O(s8)

)
t2 + O(t3),

(89)

and

Zg=2,ε=1
SW (s, t) =

(
− s

8
− s5

60
+ O(s8)

)
+
(
1

8
+ O(s8)

)
t

+
(
s3

48
− s7

2520
+ O(s8)

)
t2 + O(t3).

(90)
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Fig. 2 Schematic diagram of the relation between the 4d and 2d theories

5 Revisiting the A-model computations

The previous discussion is focused on the low-energy U (1) effective action of DW
theory on a generic oriented and non-simply connected four-manifold X , i.e. the
u-plane formalism. There were indications that for X a product ruled surface, the
correlation functions calculated in the previous section are related to Gromov–Witten
invariants [13–15, 36–38], that correspond to correlation functions of an N = (2, 2)
topological A-model in two dimensions, at the limit where the volume of one of the
factors of X vanishes. The aim of this section is to obtain Gromov–Witten invariants,
i.e., values of correlation functions of an N = (2, 2) topological A-model in two
dimensions, by direct comparison with results obtained from the previous section.
There, an explicit calculation was carried out in the case of a product four-manifold,
X = CP

1 × �g with g = 2, where both the u-plane and Seiberg–Witten terms
contribute, shown in (87), (89) and (90). These expressions are the ones we shall use
to obtain Gromov–Witten invariants.

Using the fact that the twisted N = 2 gauge theory is topological, we are free to
shrink �g . We thus obtain an effective 2d theory on CP1: theN = (2, 2) topological
A-model on worldsheet CP1, with the target space being the moduli spaceMflat(�g)

of flat SU (2) connections on �g . As a consequence, flat SU (2) connections along the
directions tangent to�g are required to prevent the effective 2d action from blowing up
when the limit of small �g is taken. This result is rederived in Appendix E, following
[13].

There is, however, a subtle point about the relation of the 2d A-model to both 4d
theories, in that the relation should hold only within the limit of �g → 0. More will
be said about this further on. Nevertheless, what we can achieve with this relation
are predictions for Gromov–Witten invariants via coefficients from the expansion of
a 4d low-energy U (1) effective theory. This also offers an alternative approach in the
calculation of Gromov–Witten invariants from 4d theories via physical principles, as
illustrated in Fig. 2.

We will now proceed to obtain Gromov–Witten invariants in a similar fashion to
the steps in the previous sections in obtaining the u-plane integral. The N = (2, 2)
topologically twisted A-model has the action
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S = 1

e2

∫
CP1

(
d2zGi j̄

(1
2
∂zϕ

i∂z̄ϕ
j̄ + 1

2
∂z̄ϕ

i∂zϕ
j̄ + ı̊ρ j̄

z ∇z̄χ
i + ı̊ρi

z̄∇zχ
j̄
)

− Ri j̄kl̄ρ
i
z̄ρ

j̄
z χ

kχ l̄
)

+ ı̊θ
∫
CP1

ϕ∗ω,

(91)

with z, z̄ as worldsheet coordinates and i, ī etc, are coordinates on Mflat(�g) for
the map ϕ : CP

1 → Mflat(�g). In Eq. (91), e denotes the gauge coupling and θ

the instanton theta angle. The last term is a pullback of a Kähler form ω that directly
descends from the instanton term of

∫
F∧F in 4d. The bosonic field is the worldsheet

scalar ϕ, and fermionic fields are the scalar χ and 1-form ρ. The covariant derivative
on the worldsheet is defined as ∇zχ

ī = ∂zχ
ī + χ j̄� ī

j̄ k̄
∂zϕ

k̄ and Ri j̄kl̄ is the Riemann

curvature tensor onMflat(�g). The BPS condition of the A-model localises (91) to a
moduli space of holomorphic maps

Mmaps(CP
1, β) = {ϕ : CP1 → Mflat(�g) | ∂z̄ϕ

i = 0}, (92)

with the condition coming directly from that of the 4d theory, namely F+ = 0. Here,
β is the homology class of the map ϕ into the moduli space of flat connections on�g:

β = ϕ∗[CP1] ∈ H2
(Mflat(�g),Z

)
. (93)

The class β can be further indexed as βI according to the dimension of each stratum
of Mflat that is

βI = ϕ∗[CP1] ∈ H2
(M(I )

flat(�g),Z
)
, (94)

where I = dim(Mflat).
Since we wish to obtain the Gromov–Witten invariants by comparison with coef-

ficients from (87), (89) and (90) as obtained via calculations in the u-plane from the
previous sections, only the dimensionally reduced version of the 4d surface operators
on �g ×CP

1 as S = s[�g]+ t[CP1] will be considered in this section. Note that sur-
face operator insertions on �g are non-local operators in 4d (on �g), but get reduced
to local point operators in 2d on CP

1 as �g → 0.
The surface operator inserted is Tr

∫
s(ψμψν + φFμν)dxμ ∧ dxν . When inserted on

S ∈ �g , it becomes a point operator on CP
1, as mentioned:

O(0) = Tr
∫
S

(
ψwψw̄ + φFww̄

)
dw ∧ dw̄

= ωi j̄χ
iχ j̄ ∈ H0(CP1) ⊗ �2(Mmaps).

(95)

Here Fww̄ = 0 was used, where w, w̄ are complex coordinates on �g , and ωi j is the
Kähler form (see Appendix E). Note thatO(0) is consistent with the features required
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for being a point operator on the worldsheet, since it does not contain worldsheet
indices. The presence of worldsheet indices requires a contraction with the worldsheet
metric gzz̄ , thereby making the operator Q-exact. Hence, this operator is indeed Q-
closed. The ghost number of O(0) is two, reflecting the fact that it is a 2-form on
Mmaps.

On the other hand, when inserted into S′ ∈ CP
1, it remains as a surface operator:

O(2) = Tr
∫
S′

(
ψzψz̄ + φFzz̄

)
dz ∧ dz̄

= Tr
∫
S′

(
χ iχ j̄�i j̄ Fzz̄

)
dz ∧ dz̄ ∈ H2(CP1) ⊗ �2(Mmaps).

(96)

Here the ψz, ψz̄ drop out since they do not survive the reduction, while Fzz̄ contains
the components of the gauge field Az , Az̄ on CP

1 which are auxiliary fields (see Eq.
(187)). The fermionic parts of Az , Az̄ do not contribute since there are no ρ zero
modes, to be explained below). Using Fμν = ∂μAν − ∂ν Aμ + [Aμ, Aν], Fzz̄ can then
be written in terms of ϕi , ϕ ī .

Next, we have to look at which fermionic zero modes exist in the 2d theory after
dimensional reduction. The self-dual 2-form fermions χμν descend down to ρi

z̄ , ρ ī
z ,

which are one-forms over CP1. This dimensional reduction is coming from the high
energy theory, in which the gauge group SU (2) is still left unbroken. Connections in
this regime then remain irreducible and regular [1], and hence, we should not expect
ρ zero modes. The only other fermionic zero modes are from the χ fields from the
vertex operators, which can be absorbed by the measure of the fermionic zero modes
in the path integral. The path integral that generates the GW invariants takes the form

ZGW =
∑

β∈H2(Mflat)

∫
β

[D�] e−SeO(0)+O(2)
, (97)

where � represents all fields we integrate over and we also perform a discrete sum
over β. This is equivalent to summing over the 4d instanton numbers k.

In the evaluation of Eq. (97), all fields will have both zero and fluctuating modes.
However, due to the independence of (97) on the coupling, we are free to take the weak
coupling limit. The functional integral over the fluctuating modes in the action then
equals ±1 and zero modes for both bosons and fermions are annihilated in the kinetic
terms in the actionwhenwe take thequadratic approximation.With this approximation,
fluctuating modes in the operators O(0) and O(2) can be suppressed, and we are then
left with fields in terms of zero modes only. These shall henceforth be labelled asO(0)

and O(2) as well. It is necessary to have fields only in terms of zero modes since both
bosonic and fermionic zero modes correspond to tangent vectors in Mmaps.

The resulting fields should then correspond to differential forms in this moduli
space which, when combined together to obtain the correct index for the absorption of
fermionic zero modes give us a top form onMmaps to be integrated over. In particular,
recall that the ghost numbers of O(0) and O(2) are two, reflecting their degree as
differential forms inMmaps. To achieve that, we expand the vertex operators in powers
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of O(i) from the vertex to soak up the extra zero modes of χ i and χ ī in the measure.
We then obtain correlation functions, for each β, that localises on Mmaps. Only the
terms which allow for the correct absorption of fermionic zero modes give a nonzero
contribution to Eq. (97). In the end, we obtain the usual Gromov–Witten invariants
associated with a 2d topological A-model. From the relation in dotted lines in Fig. 2,
we are able to conclude, in the limit of small �g:

ZGW = Zu + ZSW (98)

On both sides of Eq. (98), we have generating functions which contain terms that
are graded by the instanton numbers. This is because the instanton term in the 4d action
also descends down to a corresponding term in the 2d effective action. One can thus
identify terms on both sides of (98) and we can then see that modular forms appearing
in the u-plane integral can play an indirect (computation facilitating) role in Gromov–
Witten invariants for holomorphic maps to the moduli space of flat connections on a
Riemann surface.

With regard to wall-crossing, despite the condition of b+
2 = 1, where wall-crossing

phenomena are expected in Zu + ZSW, we should not expect to see wall-crossing
behaviour for ZGW. This is due to the fact that in shrinking �g , we are restricting
ourselves to the chamber of small �g and we should not expect any walls within a
chamber, by definition. Hence the relation (98) should only be understood to hold
within this particular chamber.

We can make a further comparison of (98) in another way: looking at how the
operators O(0) and O(2) in 2d were derived, we see that they come from dimensional
reduction of the operators in the four-dimensional high-energy theory. As mentioned,
we consider only surface operators on�g×CP

1 as S = s[�g]+t[CP1]. TheGromov–
Witten generating functional Eq. (97) with only (4d) surface operators inserted will
then be

ZGW =
∑
β

∫
Mmaps

[D�] e−S0 e−B(ω,β)esO(0)+tO(2)
, (99)

where S = S0 + B(ω, β) and B(ω, β) as the instanton contribution to the action.
Expanding the generating function (99), we can then compare Gromov–Witten

invariantswith Zu+ZSW for different powers of s and t . In the genus two case 14 where
we have ϕ : CP1 → Mflat(�2) and we have to include both the u-plane and Seiberg–
Witten contributions, we can compare (99) with (87), (89) and (90). Performing the
procedure mentioned above of taking the weak coupling limit and integrating out

14 Gauge equivalent classes of flat G-connections on a manifold M correspond to equivalence classes of
homomorphisms f : π1(M) → G for a gauge groupG, up to conjugation. The number of homology cycles
on M minus the number of restrictions and redundancy of conjugations determine the number of solutions
for a linearisation of the flat connection equations, which then determine the dimension ofMflat. For g = 0
we require at least 3 punctures on �0 forMflat(�0) to be well-defined. For g = 1, thoughMflat(�1) can
be well-defined with 1 puncture, it is still possible to define a Mflat(�1) without punctures, albeit with
certain complications that we wish to avoid. Since there are no punctures being considered on �g , we shall
only consider cases of g ≥ 2. The formula for dimMflat(�g) is dimMflat(�g) = rank(G)(2g − 2) and
rank(G) = 3 for gauge group G = SU (2).
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fluctuating modes in the action, we are left with O(0) and O(2) insertions in the path
integral. The operators in the vertex will just be expanded and collected to match
the different index numbers for the absorption of the correct number of fermionic
zero modes. For example, for a map of index 0, where Mmaps = Mflat(�2), we
can have an invariant with the usual point operators that are inserted at xi ∈ CP

1.
These are identified with the pullback of ωi ∈ H∗(Mflat) by the evaluation map
evi : Mmaps → Mflat at xi .

In the s3 term, we have

− 1

12
=
∫
Mmaps

[DχDϕ] (O(0))3e−B(ω,β6)

=
∫
Mmaps

[DχDϕ](ωi j̄ )
3χ6e−B(ω,β6)

= e−B(ω,β6)

∫
Mmaps

ev∗
1ω1 ∧ ev∗

2ω2 ∧ ev∗
3ω3.

(100)

We can also look at the less commonly studied non-local surface operators. Collecting
the s3t2 terms, we require terms from (99) to have a total of index 10:

1

12
=
∫
Mmaps

[DχDϕ] (O(0))3(O(2))2e−B(ω,β10)

=
∫
Mmaps

[DχDϕ]
[
(ωi j̄ )

3
(∫

S′
�kl̄ Fzz̄dz ∧ dz̄

)2]
χ10e−B(ω,β10).

(101)

In (100) and (101), β6 and β10 are the homology classes for terms of index 6 and
10, respectively. We can identify βI with d, the degree of the map. From [36, 37,
39], the given formula for the index I = dim(Mmaps) and degree d ≥ 0 of ϕ :
CP

1 → Mmaps(�2) is I = 6+4d. This formula relates dim(Mmaps) to the instanton
number (degree of the map). The example in (101) then corresponds to an invariant
(H0

CP1
)⊗3 ⊗ (H2

CP1
)⊗2 ⊗�10

Mmaps
of a degree 1 map. The prescription for comparison

is thus simple: since O(0) and O(2) are labelled by s and t , respectively, we just have
to insert the relevant number ofO(0)’s andO(2)’s based on the corresponding powers
in the polynomial.

Hence, for an index 14 term, we can have

− 1

48
=
∫
Mmaps

[DχDϕ] (O(0))3(O(2))4e−B(ω,β14), (102)

of (H0
CP1

)⊗3 ⊗ (H2
CP1

)⊗4 ⊗ �14
Mmaps

of a degree 2 map. And an index 18 term as

1

192
=
∫
Mmaps

[DχDϕ] (O(0))5(O(2))4e−B(ω,β18) (103)
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for (H0
CP1

)⊗5 ⊗ (H2
CP1

)⊗4 ⊗ �18
Mmaps

of a degree 3 map. At first glance, the existence
of a negative sign in (102) might be a surprise, since these numbers actually represent
values of correlation functions between operators, i.e. scattering amplitudes. The A-
model considered, however, is non-unitary [40], implying the existence of negative
norm states.

As a consistency check, we can see that the lowest dimension ofMmaps is 6, which
agrees with (87), (89) and (90) since the lowest combined power of s and t is cubic,
which have an index of I = 6. This is because terms with I < 6 (equivalently, maps
of negative degree d < 0) vanish. In fact, a quick examination of the combined powers
of s and t of various terms in (87), (89) and (90) show that the index of all terms obey
the formula. This thus provides further evidence of having a direct correspondence
between values obtained via computations in the 4d low-energy regime from previous
sections and that of the 2d A-model.

6 Conclusions

In this paper, we studied the low-energyU (1) path integral of DW theory evaluated on
non-simply connected four-manifolds. Following the analysis of [10, 11], we derived
the full solution for the correlation functions of the theory in terms of the modular
completion of a mock modular form. The result can be readily extended to the case
with surface defects [41] or theories with matter hypermultiplets [3, 5, 16, 17, 24, 26,
42, 43] and even class S theories [44, 45], although we leave this for future work.

We also presented a concrete reduction of the theory onCP1×�g over�g , whence
we obtained a topological A-model onCP1, thereby demonstrating a novel connection
between mock modular forms and genus zero Gromov–Witten invariants.

We can also consider four-manifolds of the form X = M3 × M1 with suitable
topological numbers that allow probing the Coulomb branch. We expect that the mock
modular form reformulation of Zu can be applied in this case too, whence relations
between mock modular forms and topological invariants of 3-manifolds M3 can be
precisely formulated, thereby allowing us to derive results in geometric topology from
number theory. We will leave this for future work as well.

Acknowledgements We are happy to thank Robin Karlsson, Jan Manschot and Gregory Moore for corre-
spondence and discussions, and the two referees for their helpful comments and remarks. JA is funded by the
Irish Research Council under Award Number GOIPG/2020/910. GK acknowledges support of the OP RDE
funded Project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. EF is supported by
the TCD Provost’s PhD Project Award. MC-Tan is supported by theMOE Tier 2 Grant R-144-000-396-112.

Funding Open Access funding provided by the IReL Consortium

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

123



The u-plane integral, mock modularity and enumerative… Page 33 of 53 30

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Automorphic forms

In this appendix, we collect some important aspects of modular and automorphic
forms.

A.1 Modular forms

The Jacobi theta functions ϑ j : H → C, j = 2, 3, 4, are defined as

ϑ2(τ ) =
∑

r∈Z+ 1
2

qr
2/2, ϑ3(τ ) =

∑
n∈Z

qn
2/2, ϑ4(τ ) =

∑
n∈Z

(−1)nqn
2/2,

(104)

with q = e2π iτ . They transform under SL(2,Z) in the following way:

S : ϑ2(−1/τ) =
√

−ı̊τϑ4(τ ), ϑ3(−1/τ) =
√

−ı̊τϑ3(τ ), ϑ4(−1/τ) =
√

−ı̊τϑ2(τ )

T : ϑ2(τ + 1) = e
π ı̊
4 ϑ2(τ ), ϑ3(τ + 1) = ϑ4(τ ), ϑ4(τ + 1) = ϑ3(τ ).

(105)

Under the generators T 4, ST−1S of �0(4), they transform as

ϑ2(τ + 4) = −ϑ2(τ ), ϑ2

(
τ

τ + 1

)
= √

τ + 1ϑ3(τ ),

ϑ3(τ + 4) = ϑ3(τ ), ϑ3

(
τ

τ + 1

)
= √

τ + 1ϑ2(τ ),

ϑ4(τ + 4) = ϑ4(τ ), ϑ4

(
τ

τ + 1

)
= e− π ı̊

4
√

τ + 1ϑ4(τ ).

(106)

The Eisenstein series Ek : H → C for even k ≥ 2 are defined as the q-series

Ek(τ ) = 1 − 2k

Bk

∞∑
n=1

σk−1(n) qn, (107)

with σk(n) = ∑
d|n dk the divisor sum. For k ≥ 4, Ek is a modular form of SL(2,Z)

of weight k. On the other hand E2 is a quasi-modular form, which means that the
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SL(2,Z) transformation of E2 includes a shift in addition to the weight,

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ ) − 6ı̊

π
c(cτ + d). (108)

A.2 Ingredients of the u-plane integrand

In this section, we give explicit modular expressions for the ingredients of the u-plane
integrand. The integrand transforms under the duality group�0(4), which is generated
by T 4 and S−1T−1S. Let us introduce the shorthand f = (φ1, φ2)

(k,l) if a function
f is a non-holomorphic modular form of weight (k, l) for �0(4) with multipliers, i.e.
transforms as

f (τ + 4, τ̄ + 4) = φ1 f (τ, τ̄ ),

f

(
τ

τ + 1
,

τ̄

τ̄ + 1

)
= φ2(τ + 1)k(τ̄ + 1)l f (τ, τ̄ ).

(109)

It is clear that

(φ1, φ2)
(k1,l1)(ϕ1, ϕ2)

(k2,l2) = (φ1ϕ1, φ2ϕ2)
(k1+k2,l1+l2),

(φ1, φ2)(k,l) = (φ̄1, φ̄2)
(l,k),

1

(φ1, φ2)(k,l)
= (φ̄1, φ̄2)

(−k,−l),

(110)

since |φi | = 1. The functions

d2u

da2
= 4

2E2 + ϑ4
2 + ϑ4

3

3ϑ8
4

,
u

�2 = ϑ4
2 + ϑ4

3

2ϑ2
2ϑ2

3

,
a

�
= 2E2 + ϑ4

2 + ϑ4
3

6ϑ2ϑ3
,

du

dτ
= π�2

4ı̊

ϑ8
4

ϑ2
2ϑ2

3

,
da

du
= 1

2�
ϑ2ϑ3,

dτ

da
= 8ı̊

π�

ϑ2ϑ3

ϑ8
4

(111)

transform as

u = (1, 1)(0,0),
du

dτ
= (1, 1)(2,0),

da

du
= (−1, 1)(1,0),

ρ = (−1, 1)(−1,0),
dτ

da
= (−1, 1)(−3,0), y = (1, 1)(−1,−1)

(112)

The derivative d2u
da2

is invariant under T 4 but quasi-modular,

d2u

da2

(
τ

τ + 1

)
= 1

(τ + 1)2
d2u

da2
− 16ı̊

π

1

(τ + 1)3ϑ8
4

(113)
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We also have that [35, 46]

a = ı̊

π

d2u

da2
da

dτ
. (114)

We will also need what we call the dual expressions for the above quantities. These
are the expressions for the dual variable τD = −1/τ , disregarding themodularweights.
They are

uD = ϑ4
3 + ϑ4

4

2ϑ2
3ϑ2

4

,

(
da

du

)
D

= 1

2ı̊
ϑ3ϑ4,

(
da

dτ

)
D

= π

8

ϑ8
2

ϑ3ϑ4
,

(
d2u

da2

)
D

= 4

3

2E2 − ϑ4
3 − ϑ4

4

ϑ8
2

,

(115)

as well as

TD = − 1

24

(
E2

(
du

da

)2

D
− 8uD

)
. (116)

A.3 Siegel–Narain theta function

Siegel–Narain theta functions form a large class of theta functions of which the Jacobi
theta functions are a special case (see [10]) . We restrict here to a specific Siegel–
Narain theta function for which the associated lattice L is a uni-modular lattice of
signature (1, n − 1) (or a Lorentzian lattice). We denote the bilinear form by B(x, y)
and the quadratic form B(x, x) ≡ Q(x) ≡ x2. Let K be a characteristic vector of L ,
such that Q(k) + B(k, K ) ∈ 2Z for each k ∈ L .

Given an element J ∈ L ⊗Rwith Q(J ) > 0, we may decompose the space L ⊗R

in a positive definite subspace L+ spanned by J , and a negative definite subspace L−,
orthogonal to L+. Let J = J/

√
Q(J ) be the normalisation of J . The projections of

a vector k ∈ L to L+ and L− are then given by

k+ = B(k, J ) J , k− = k − k+. (117)

Given this notation,we can introduce theSiegel–Narain theta functionof our interest
� J

μ : H × C → C. Let J be as discussed above (117) and μ ∈ L ⊗ R. Then � J
μ is

defined by15

� J
μ(τ, z) = e−2π yb2+

∑
k∈L+μ

∂τ̄ (
√
2yB(k + b, J )) (−1)B(k,K )q−k2−/2q̄k

2+/2

× e−2π i B(z,k−)−2π i B(z̄,k+),

(118)

15 For brevity we list in � J
μ only the holomorphic arguments τ and z, even though the function does also

depend on τ̄ and z̄.
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where b = Im(z)/y ∈ L ⊗ R.
One finds for the modular transformations of � J

μ under the generators of SL(2,Z)

the following identities

� J
μ+K/2(τ + 1, z) = eπ i(μ2−K 2/4) � J

μ+K/2(τ, z + μ),

� J
μ+K/2(−1/τ, z/τ) = −i(−iτ)

n
2 (i τ̄ )2 exp

(
−π i z2/τ + π i K 2/2

)
(−1)B(μ,K )

× � J
K/2(τ, z − μ).

(119)

For μ ∈ L/2 one can show that � J
μ is a modular form of the congruence subgroup

�0(4). The action of the generators of �0(4) on � J
μ with μ ∈ L/2 is given by

� J
μ(τ,−z) = −e2π i B(μ,K ) � J

μ(τ, z), (120)

� J
μ

(
τ

τ+1 ,
z

τ+1

)
= (τ + 1)

n
2 (τ̄ + 1)2 exp

(
−π i z2

τ+1 + π i
4 K 2

)
� J

μ(τ, z), (121)

� J
μ(τ + 4, z) = e2π i B(μ,K ) �μ(τ, z). (122)

Notice that for � = 4 we can use that 2μ2 + B(μ, K ) ∈ Z.

A.4 Indefinite theta functions

In this appendix we present various aspects of indefinite theta functions and their
modular completions. We assume that the associated lattice L is unimodular and of
signature (1, n − 1).

To define the indefinite theta function, we choose two positive definite vectors J
and J ′ ∈ L ⊗ R with B(J , J ′) > 0, such that they both lie in the same positive cone
of L . Let J and J ′ be their normalisations as before. The arguments of theta function
are τ ∈ H, z ∈ L ⊗C and μ ∈ L ⊗R. We let b = Im(z)/y ∈ L ⊗R. In terms of this
data, the indefinite theta function �J J ′

μ is defined as

�J J ′
μ (τ, z) =

∑
k∈L+μ

1
2

(
sgn(B(k + b, J )) − sgn(B(k + b, J ′))

)

(−1)B(k,K )q−k2/2e−2π i B(z,k).

(123)

It is possible to show that the sum over L is convergent [34]. However, �J J ′
μ does

only transform as a modular form after the addition of certain non-holomorphic terms.
References [34, 47] explain that the modular completion �̂J J ′

μ of �J J ′
μ is obtained by

substituting (rescaled) error functions for the sgn-functions in (123). The completion
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�̂J J ′
μ then transforms as a modular form of weight n/2 and is explicitly given by

�̂J J ′
μ (τ, z) =

∑
k∈L+μ

1
2

(
E(
√
2y B(k + b, J )) − E(

√
2y B(k + b, J ′))

)

× (−1)B(k,K )q−k2/2e−2π i B(z,k),

(124)

where E is a reparametrisation of the error function (67). Note that in the limit y → ∞,
E in (124) approaches the original sgn-function of (123),

lim
y→∞ E

(√
2y u

)
= sgn(u).

If we analytically continue E to a function with complex argument, then this limit is
only convergent for −π

4 < Arg(u) < π
4 .

The transformation properties under SL(2,Z) follow from chapter 2 of Zwegers’
thesis [34] orVignéras [48]. One finds for the action of the generators on �̂J J ′

μ+K/2(τ, z)

�̂J J ′
μ+K/2(τ + 1, z) = eπ i(μ2−K 2/4) �̂J J ′

μ+K/2(τ, z + μ),

�̂J J ′
μ+K/2(−1/τ, z/τ) = i(−iτ)n/2 exp

(
−π i z2/τ + π i K 2/2

)
�̂J J ′

K/2(τ, z − μ).

(125)

For our application, the τ̄ -derivative of �̂J J ′
μ is of particular interest. This gives the

“shadow” of �J J ′
μ , whose modular properties are easier to determine than those of

�J J ′
μ . We obtain here

∂τ̄ �̂
J J ′
μ (τ, z) = � J

μ(τ, z) − � J ′
μ (τ, z), (126)

with � J
μ defined in (118). The modular properties of � J

μ are given in (119) and can
be obtained using standard Poisson resummation.

The completion (124) may simplify if the lattice L contains vectors k0 ∈ L with
norm k20 = 0. For such lattices J and/or J ′ can be chosen to equal such a vector,
and careful analysis of the limit shows that the error function reduces to the original
sgn-function [34]. We assume now that J ′ ∈ L such that (J ′)2 = 0. To ensure
convergence of the sum, one needs to require furthermore that B(k + b, J ′) �= 0 for
any k ∈ L + K/2 + μ, except if one also has B(k + b, J ) = 0. Then the completion
�̂J J ′

μ is given by

�̂J J ′
μ (τ, z) =

∑
k∈L+K/2+μ

1
2

(
E(
√
2yB(k + b, J )) − sgn(B(k + b, J ′))

)

× (−1)B(k,K )q−k2/2e−2π i B(z,k),

(127)
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with shadow

∂τ̄ �̂
J J ′
μ (τ, z) = � J

μ(τ, z). (128)

B Regularising the u-plane integral

The u-plane integrand can diverge at the cusps. We therefore need to be careful about
regularising the integral. This procedure wasworked out in detail in [11] for the simply
connected case, but the analysis goes through without alteration when allowing for
π1(X) �= 0. For completeness, we summarise the important steps and refer the reader
to [11] for more details.

We are interested in evaluating integrals on the form (52) or (161). To make the
analysis simpler, we map these integrals over the fundamental domain H/�0(4) to
integrals over the ordinary key-hole domain F of SL(2,Z) by mapping the six copies
of F in H/�0(4) back to F (see Fig. 1). This means that the integrals now take the
form

∫
F
dτ ∧ dτ̄ y−s f (τ, τ̄ ), (129)

where f (τ, τ̄ ) is a non-holomorphicmodular form for SL(2,Z) ofweight (2−s, 2−s),
and it corresponds to the sumof the six transformations of the corresponding integrands
by the elements of SL(2,Z)/�0(4). It has a Fourier expansion

f (τ, τ̄ ) =
∑

m,n�−∞
c(m, n)qmq̄n, (130)

with c(m, n) only nonzero for m − n ∈ Z. These coefficients are bounded

c(m, n) < e
√
Km+√

Kn, (131)

for some constant K > 0 and the sum over m and n is therefore absolute convergent
for y < ∞. The integral does, however, diverge when m + n ≤ 0. Which is the
domain of our integrals when considering addition of the Q-exact operators. To deal
with this we start by compactifying F to a domain FY by introducing a cut-off Y ≥ y
for τ → ı̊∞ and some Y � 1 and defining the integral

I f (Y ) =
∫
FY

dτ ∧ dτ̄ y−s f (τ, τ̄ ). (132)
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We can now regularise our integrals by using the generalised exponential integral
El(z), defined by

El(z) =

⎧⎪⎨
⎪⎩
zl−1

∫∞
z e−t t−ldt, for z ∈ C

∗,
1

l−1 , for z = 0, l �= 0,

0, for z = 0, l = 1,

(133)

where for non-integral l, the branch of t−l is fixed by restricting the argument of any
complex number ρ ∈ C

∗ to lie in the domain (−π, π ]. The regularised integral is

Ir
f = lim

Y→∞

[
I f (Y ) − 2ı̊

∑
m�−∞

c(m,m)Y 1−s Es(4πmY )

]
. (134)

Now, to evaluate the integrals we can make use of Stokes theorem. Since in our
case we have ∂τ̄ ĥ = y−s f for some ĥ a modular form of weight 2 and f as in the
above. This can be integrated using El(z) to give

ĥ(τ, τ̄ ) = h(τ ) + 2ı̊ y1−s
∑

m,n�−∞
c(m, n)qm−n Es(4πny), (135)

for s �= 1 and when s = 1 we need to change the terms with n = 0 in the sum to

− 2ı̊ log(y)
∑

m�−∞
c(m, 0)qm . (136)

Here, h is a (weakly) holomorphic function with Fourier expansion

h(τ ) =
∑

m�−∞
d(m)qm, (137)

and h(τ ) is uniquely determined by the coefficients d(m) with m < 0. We can now
use Stokes theorem and the integral over FY becomes

d(0) + 2ı̊ lim
Y→∞

∑
m�−∞

Y 1−sc(m,m)Es(4πmY ), (138)

and regularising this as in (134) we find that the only contribution of the regularised
integral is the constant term of h(τ ),

Ir
f = d(0). (139)

In Appendix C.3 we demonstrate that the correlation function of theQ-exact oper-
ator I (S,Y ) that we add can be written as

〈I (S,Y )〉 =
∫
H/�0(4)

dτ ∧ dτ̄ ∂τ̄ FI , (140)
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where

FI (τ, τ̄ ) = y−s
∑
m,n

c(m, n)qmq̄n . (141)

We then have that

∂τ̄ FI = −ı̊ y−s
∑
m,n

c(m, n)(2πn + 1
2 sy

−1)qmq̄n, (142)

which in the above prescription allow us to identify FI with some ĥ1 + ĥ2, where
both ĥ1 and ĥ2 are of the form (135) but with s replaced by s + 1 in the later case.
But, since FI is a modular form of weight 2 the sum h1 + h2 should vanish, as there
is no such holomorphic modular form, and in particular the sum of the constant terms
d1(0) + d2(0) = 0, which in term shows us that 〈I (S,Y )〉 = 0. We can thus safely
add this operator to the action.

C Construction of I(S,Y)

In this appendix, we explain the construction of the Q-exact operator I (S,Y ) in
(37), which aids the evaluation of the u-plane integral using mock modular forms.
A constructive approach is to classify all Q-exact operators in DW theory, add all
of them to the path integral, evaluate the path integral and solve for all coefficient
functions that lead to the desired properties. For two reasons, this is fortunately not
necessary. First, it is convenient that most such operators do not even alter the u-plane
integrand after integrating out the fermions and the auxiliary field. Second, the path
integral can be performed without insertions of any additional operators, or with the
insertion of just IS as was done in the case that b1(X) = 0 [10]. Such calculations
lead to integrands that do not contain the Siegel–Narain theta function � J

μ(τ, z) for
any z; however, only a few terms are missing with an educated guess of z. Only very
specific Q-exact operators can provide the necessary terms for the new integrands to
complete into � J

μ(τ, z).
In Sect. C.1, we classify all possible Q-exact operators that contribute to the u-

plane integrand. In Sect. C.2 we demonstrate how the correct Q-exact operators can
be selected, for the simplified example where the intersection Y ∩ Y is empty (such
that there is no intersection term for Y ∩ Y ). In Sect. C.3 we finally show that the
Q-exact operators we add do not alter the u-plane integral.

C.1 Q-exact observables

Let us complete the result of [11] by computing the all Q-exact observables on a
four-manifold X with π1(X) �= 0. Let us first collect

C1 = {ψ},
C2 = {D, F±, χ, ψ ∧ ψ},
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C3 = {ψ ∧ D, ψ ∧ χ,ψ ∧ F±, ψ ∧ ψ ∧ ψ},
C4 = {ψ ∧ ψ ∧ D, ψ ∧ ψ ∧ χ,ψ ∧ ψ ∧ F±, ψ ∧ ψ ∧ ψ ∧ ψ,

D ∧ D, D ∧ F+, D ∧ χ, F± ∧ F±, F+ ∧ χ}.

These are all 1 . . . 4-forms that can be constructed out of the field content in Table 1.
Since any operator must be gauge invariant, we do not use the 1-form A to construct
operators but only F = dA. Furthermore, some operators are identically zero due
to fermion saturation. The sets Ck are then generating sets for the spaces of k-form
observables [11],

Ok =
1∑
j=0

∑
X∈Ck

fX , j (a, ā)η j X . (143)

Here, fX , j (a, ā) are real-analytic functionswithout singularities away from strong and
weak coupling. The most generic 0-form observable is O0 = f0(a, ā) + f1(a, ā)η.
Let us restrict now to the Q-exact k-observables [Q,Ok}

∫
that survive integration.

These do in particular either contain ηχ or neither, since otherwise they would not
survive the fermionic integration, and they do not contain any derivative term dX , as
we consider b+

2 (X) = 1 and thus their zero modes vanish. By the notation [Q,O} we
furthermore mean either {Q,O} or [Q,O], depending on whether O is Grassmann
odd or even.

Recall the action (2) of the supersymmetry generatorQ. It follows that [Q, F±] =
(dψ)±. The identities

[A, BC] = +B[A,C] + [A, B]C
[A, BC] = −B{A,C} + {A, B}C
{A, BC} = −B[A,C] + {A, B}C

(144)

are helpful when computing (anti-)commutators. The action ofQ on functions f (a, ā)

is given by

[Q, f (a, ā)] = ∂ā f (a, ā)[Q, ā] = √
2ı̊∂ā f (a, ā)η. (145)

The general Q-exact observable [Q,Ok} from (143) is very tedious to compute,
luckily in [Q,Ok}

∫
generally not many terms survive. Furthermore, (143) has 2|Ck |

terms; however, due to (2) and (144) we have [Q, ηO} = −η[Q,O} and for the terms
with j = 1 it remains to multiply the j = 0 term by −η. Then only one of [Q,O} and
−η[Q,O} is Grassmann even in the variables η and χ , such that only one of those
can contribute to [Q,O}

∫
. Lastly, ifO = ∏

l Õl is a composite operator, itsQ-action
[Q,O} is an alternating sum ∼ ∑

l [Q, Õl}∏k �=l Õk , and so if all such summands
do not contribute (which can be easily checked) then the whole commutator does not

either. With this, it is now slightly less work to extract those summands O
∫
k of (143)
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that contribute, [Q,Ok}
∫

= [Q,O
∫
k }. They are

O
∫
2 = f1χ,

O
∫
3 = f2ψ ∧ χ,

O
∫
4 = f3ψ ∧ ψ ∧ χ + f4D ∧ χ + f5F+ ∧ χ,

(146)

while [Q,O0}
∫

= [Q,O1}
∫

= 0. Their Q-commutators give

{Q,O
∫
2 } = +√

2ı̊∂ā f1ηχ + ı̊ f1(F+ − D),

[Q,O
∫
3 ] = −√

2ı̊∂ā f2ηχ ∧ ψ − ı̊ f2(F+ − D) ∧ ψ,

{Q,O
∫
4 } = +√

2ı̊∂ā f3ηχ ∧ ψ ∧ ψ + ı̊ f3(F+ − D) ∧ ψ ∧ ψ

+ √
2ı̊∂ā f4ηχ ∧ D + ı̊ f4D ∧ (F+ − D)

+ √
2ı̊∂ā f5ηχ ∧ F+ + ı̊ f5F+ ∧ (F+ − D).

(147)

These are all Q-exact operators in DW theory. The followingQ-exact terms can then
be added to the action

I2 =
∫
S
{Q,O

∫
2 }, I3 =

∫
Y
[Q,O

∫
3 ], I4 =

∫
X
{Q,O

∫
4 }. (148)

C.2 Solution for IY

By adding only IS as suggested in [10, 11, 41], the u-plane integrand can be written
as a total derivative; however, it does not complete to a Siegel–Narain theta function.
Let us construct the operator IY such that this becomes true. For simplicity, we ignore
the contact terms I∩. This is possible since all contact terms other than the Y ∩ Y are
integrated over ψ and τ only and therefore do not affect the path integral calculation.
For simplicity and only in this section, we take the intersection Y ∩ Y to be empty.

We therefore aim to find the functions f1, . . . f5. In the case π1(X) = 0, the total
integrand must go back to (38). If f4 and f5 are nonzero, this is not the case since they
alter the integral. 16 We therefore set f4 = f5 = 0. Thus, in the simply connected case,
we have I2 = IS , which implies f1 = − 1

4π
dū
dā . We shall therefore consider adding the

correction

IY = −√
2ı̊∂ā f2ηB(χ,ψ ∧ Y ) − ı̊ f2B(F+ − D, ψ ∧ Y )

+ √
2ı̊∂ā f3ηB(χ,ψ ∧ ψ) + ı̊ f3B(F+ − D, ψ ∧ ψ).

(149)

to the exponential in (38). The terms ψ ∧ Y and ψ ∧ ψ are precisely the terms that
lead to the problems if only IS is added. We can organise h := f3ψ ∧ ψ − f2ψ ∧ Y ,

16 This is certainly true if f4 and f5 can be varied. It is possible in principle that for specific functions f4
and f5 the π1(X) = 0 integral does not change.
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such that

IY = √
2ı̊ηB(χ, ∂āh) + ı̊ B(F+ − D, h). (150)

Inserting it into the path integral we find

D =
√
2ı̊

4y

dτ̄

dā
ηχ − 4π(b+ + ω+) + 4π ı̊

y
h+. (151)

After integrating out D, this produces new terms

4π ı̊ B(k+ + b+, h) +
√
2

4y

dτ̄

dā
ηB(χ, h) + √

2ı̊ηB(χ, ∂āh) (152)

to (41) (notice that ω ∧ h = h ∧ h = 0). The first term is only integrated over ψ and
τ , so it will not play a role immediately. The second and third terms yield after the
fermionic integration,

dτ̄

dā

(
−

√
2

4y
h − √

2ı̊∂τ̄h

)
. (153)

In view of (43) and the above discussion, we can aim this new contribution to give the
missing factor

√
y
dτ̄

dā
∂τ̄

√
2y ω̄ = dτ̄

dā

(√
2ı̊

4
ω̄ + √

2y∂τ̄ ω̄

)
, (154)

such that the Siegel–Narain theta function has an elliptic variable z = ρ + 2ı̊ yω and
β = b+ω + ω̄. 17 Motivated by the computation (44), we make the ansatz h = ı̊ cyω̄,
with c ∈ C some number. From this it follows that y∂τ̄ ω̄ = − ı̊

c∂τ̄h − ı̊
2 ω̄. Notice that

h is purely anti-holomorphic, while ω̄ is not. We find that (153) equals (154) precisely
for c = 1. From this, it is easy to find

f2 = 3ı̊a3
16

d2ū

dā2
, f3 =

√
2

27π

dτ̄

dā
. (155)

In the simply connected case, the correction I2 = IS is necessary in order for the
surface observable Ĩ−(S) to combine into a Siegel–Narain function such that the u-
plane integral is a total derivative. In the case π1(X) �= 0, an analogous procedure is
required for the 3-cycle Y , which combines to a 2-form as ψ ∧ Y . In the π1(X) �= 0
Lagrangian (12) there is a new termψ ∧ψ that is integrated over η, χ and D, such that
the u-plane integral is a total derivative but does not contain a SN theta function. After
the insertion of an anti-holomorphic Q-exact 4-form operator, the integrand indeed
becomes a Siegel–Narain theta function.

17 Another possibility would be to choose h to be holomorphic and cancelling the ω inside the derivative.
This is possible, however, the ω dependence does not drop from the SN theta function.
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C.3 Ward-Takahashi identity for IY

In [11] it was shown that the vacuum expectation value of any Q-exact operators
vanish in the simply connected case. This then allows one to safely add such operators
to the u-plane integral. In this appendix we only consider the operator insertion IY , the
analyses is similar for the other factors in I (S,Y ). To this end, we will demonstrate
that 〈IY 〉 can be written as an integral where the integrand can be written as a total
derivative. We can then use the renormalisation procedure of [11], as discussed in
Sect. B, to show that 〈IY 〉 = 0, such that the insertion of this operator does not change
the u-plane integral.

To see that the one-point function can be written as a total derivative we start from

〈IY 〉 =
∫

[dadηdχdD]
∫
Pic(X)

dψν(τ)
∑

k∈L+μ

IY e
− ∫

X L′
, (156)

with L′ as in (12) and ν(τ) as in (13).
The integration over D yields

〈IY 〉 = 2π i
∫

[dadηdχ ]
∫
Pic(X)

dψν(τ)

×
∑

k∈L+μ

√
2

y

(
− √

2ηχ ∧ ∂ā(yω̄) − 4π yk+ ∧ ω̄

+ i
√
2

4

(
dτ̄

dā
ηχ − 1

8

dτ

da
ψ ∧ ψ

)
∧ ω̄

)
e− ∫ L′′

,

(157)

where now

L′′ = π i τ̄k2+ + π iτk2− + i
√
2

4

dτ̄

dā
ηχ ∧ k+ − i

√
2

25
dτ

da
ψ ∧ ψ ∧ k−

+ 1

211

(
i

3

d2τ

da2
− 1

2π y

(
dτ

da

)2
)

ψ ∧ ψ ∧ ψ ∧ ψ

− 1

26π y

(
dτ̄

dā

)2

ηχ ∧ ηχ + 1

8π y

dτ

da

dτ̄

dā
ψ ∧ ψ ∧ ηχ.

(158)

Next, we integrate over η and χ . This yields

〈IY 〉 =
∫

[da]
∫
Pic(X)

dψν(τ)
∑

k∈L+μ

4π i√
y
e− ∫ L′′′

× B

(
y∂āω̄ + i

4

dτ̄

dā
ω̄ − y

(
π i

dτ̄

dā
k2+ + i

213π y2

(
dτ

da

)2 dτ̄

dā
ψ4

)
ω̄, J

)
,

(159)
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where by k2+ and ψ4 we mean B(k+, k+) and B(ψ ∧ ψ,ψ ∧ ψ) and we now have

L′′′ = π i τ̄k2+ + π iτk2− − i
√
2

25
dτ

da
ψ ∧ ψ ∧ k−

+
(

i

3 · 211
d2τ

da2
− 1

212π y

(
dτ

da

)2
)

ψ4, (160)

and its now straightforward to recognise that we indeed can write the integrand as a
total derivative

〈IY 〉 = 4π i
∫

dτ ∧ dτ̄
∫
Pic(X)

dψ∂τ̄

∑
k∈L+μ

(
ν̃(τ )B(

√
yω̄, J )e− ∫ L′′′)

. (161)

We can now use the renormalisation procedure of [11] to show that 〈IY 〉 in fact
vanishes. The broad strokes are summarised in Sect. B, and further details can be
found in [11,Sec. 5].

D Classical topological invariants

Let X and Y be topological spaces, and consider the homology over a field K. The
Künneth theorem states that there exists an isomorphism

Hn(X × Y ,K) ∼=
n⊕

k=0

Hk(X ,K) ⊗ Hn−k(Y ,K). (162)

Written in terms of Poincaré polynomials pX (z) := ∑∞
k=0 bk(X)zk , that is, generating

functions of Betti numbers bk(X) := rank Hk(X), we have

pX×Y (z) = pX (z)pY (z). (163)

The Betti numbers are then related as

bn(X × Y ) =
n∑

k=0

bk(X)bn−k(Y ). (164)

Poincaré duality states that bk(M) = bn−k(M) for any oriented closed n-manifold M .
The manifolds M under consideration satisfy b+

2 (M) = 1 and vanish unless b1(M) is
even. The topological invariants are then related as σ + b2 = 2 and χ + σ = 4− 2b1.

Example. Note that pX (−1) = χ(X) gives the Euler characteristic of X .
Example. The circle S

1 has Betti numbers b0(S1) = b1(S1) = 1 and all other
zero. We therefore have p S1(z) = 1 + z (more generally, p Sn (z) = 1 + zn). For the
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torus Tn := (S1)×n , it follows from (163) that

pTn (z) = p S1(z)
n = (1 + z)n =

n∑
k=0

(
n

k

)
zk, (165)

that is, bk(Tn) = (n
k

)
.

D.1 Classification of product four-manifolds with b+
2 = 1

Let us study all decompositions of M into Cartesian products of smooth, closed,
oriented, connected 1, 2, 3-manifolds such that b+

2 (M) = 1. The dimension 4 has five
partitions, namely 4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1. First, note that if
M = X × Y , then σ(M) = 0.18 The same is true for all decompositions of 4. Since
σ(M)+b2(M) = 2b+

2 (M), we have that b+
2 (M) = 1

2b2(M)wheneverM is a product.
Let us begin with 4 = 1 + 1 + 1 + 1. If X is a 1-manifold, then b0(X) = 1,

and by Poincaré duality also b1(X) = 1, such that X ∼= S
1. One easily computes

b+
2 (S1 × S

1 × S
1 × S

1) = 3, and thus the u-plane integral vanishes.
For 4 = 2 + 1 + 1 the most general manifold is M = �g × S

1 × S
1 with �g a

genus g Riemann surface. One finds that b+
2 (M) = 1 + 2g, such that only at genus

g = 0 the u-plane integral is nonzero. This gives the manifold

CP
1 × S

1 × S
1 (167)

with χ = σ = 0 and b1 = 2.
For 4 = 2+ 2 the most generic 4-manifold is M = �h × �g , a product of genus g

and h Riemann surfaces. It has b+
2 = 1 + 2gh, and w.l.o.g. we can take h = 0, such

that �h is a 2-sphere. Then the product ruled surface

CP
1 × �g, g ∈ N0 (168)

has σ = 0, χ = 4(1 − g) and b1 = 2g.
When 4 = 3+ 1 we have M = Y ×S

1, where b1(Y ) = b2(Y ) by Poincaré duality.
It has b+

2 (M) = b1(Y ), such that for b+
2 (M) = 1 we have pY (z) = 1+ z + z2 + z3 =

p S2(z)p S1(z) and therefore M ∼= S
2 × S

1 × S
1, just as in (167).

Now (168) in fact includes (167) because �1 ∼= T
2 = S

1 × S
1. This proves that

the Betti numbers of any smooth, closed, oriented and connected product 4-manifold
with b+

2 = 1 are given by those of (168). The simplest examples are at genus 0 and 1,
which are CP1 × CP

1 and CP
1 × S

1 × S
1.

18 Sketch of the proof: From (162) we have that

H2(X × Y ) = H0(X) ⊗ H2(Y ) ⊕ H1(X) ⊗ H1(Y ) ⊕ H2(X) ⊗ H0(Y ). (166)

Since H2(X ×Y ) is symmetric in X and Y , the intersection form H2(X ×Y ,R)×H2(X ×Y ,R) → R has
equally many positive as negative eigenvalues, b+

2 (X × Y ) = b−
2 (X × Y ). Therefore, σ(M) = b+

2 (M) −
b−
2 (M) = 0.
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D.2 Gromov–Witten invariants as A-model correlation functions

For a smooth projective variety X , GW invariants essentially count, in a refined way,
algebraic curveswith certain incidence conditions. Physically,GW invariants are given
in terms of specific correlation functions in the topological A-model and count specific
holomorphic curves. This construction is well known [39] but we will provide a small
review in this section.

The action of the A-model is written explicitly in (91) for our case of interest in the
main body of the paper. For the purposes of this subsection, we can recast it as

S ∼
∫

�

{Q, V } +
∫

�

ϕ∗ω, (169)

with V = gi j̄ (ρ
ī
z∂z̄ϕ

j + ∂zϕ
īρ

j
z̄ ) and ϕ : � → X where � is the worldsheet and X is

the target space. The second summand corresponds to the pullback of the Kähler form
of X and it only depends on the cohomology class of ω as well as the homotopy type
of ϕ making it invariant under continuous deformations of g = g(�). As discussed
in the main body of the paper, the correlation functions are given in the form:

〈O1, . . . ,On〉 =
∫

[D�]O1 . . .One
−S (170)

The fixed loci of the supersymmetry transformations (see [39]) are given as

∂īϕ
j = 0, (171)

∂iϕ
j̄ = 0, (172)

and ϕ that satisfy these equations are called worldsheet instantons. For an image of
ϕ(�) in X , there is a class β ∈ H2(X ,Z) whose basis is given by {c1, . . . , cm},
m = dim(H2(X ,Z)) = b2(X). Restricting to the bosonic part Sbos of (169) for
worldsheet instantons, it is possible to show that Sbos = B(ω, β) which corresponds
to the volume of the image of the worldsheet, where ω is the Kähler form. Then

B(ω, β) = −ı̊θ

(∫
β

ω

)
(173)

= −ı̊θ

( m∑
i=1

ni

∫
ci

ω

)
(174)

= −ı̊θ

(∑
i

ni ti

)
(175)

for weights ni such that

ti := B(ω, ci ). (176)
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Correlation functions vanish unless

n∑
i

pi =
n∑
i

qn (177)

= dim(X)(1 − g) + B(c1(X), β), (178)

where pi and qi are the holomorphic (chiral) and anti-holomorphic (anti-chiral)
degrees of the operator Oi . For example, a three-point function gives

〈O1O2O3〉 = #(D1 ∩ D2 ∩ D3)e
B(ω,β) (179)

where exp(B(ω, β)) is the instanton contribution to the correlation function.
The correlation function essentially contains the information on the counts the

number of holomorphic maps of genus g at n intersection points to the class β such
that the operator insertions Oi are mapped into divisors Di of X .

E Reduction of DW theory to 2d

Using A, B and a, b to denote indices on the large and small Riemann surfaces,
respectively, for a four-manifold M4 of the form � × C , where each factor is a real
2d surface, the metric can be written in a block diagonal form

ds2 = (G�)ABdx
Adx B + ε(GC )abdx

adxb. (180)

Eventually, we want to let ε → 0 in order to shrink C . The high energy DW action
(after twisting) can be written as

SDW = 1

e2

∫
M4

√
GM4Tr

(
− 1

4
FμνFμν + DμφDμφ† + ı̊ηDμψμ

−ı̊χα̇β̇

(
σ̄μν

)α̇β̇
Dμψν + 1√

2
χα̇β̇ [χα̇β̇ , φ] − 1

2
√
2
ψμ[ψμ, φ†]

+ı̊
√
2η[φ, η] − ı̊

2
[φ, φ†]2

)
. (181)

Using (180), we have
√
GC → ε

√
GC , gab → ε−1gab. Thus, for the inner product

of two 2-form terms O(2), we have

∫
M4

O(2) ∧ ∗O(2)

=
∫
M4

√
GM4O

μν

(2)O(2)μν = ε

∫
M4

√
G�

√
GCg

μρgνλO(2)μνO(2)ρλ

= ε

∫
M4

√
G�

√
GC

(
gACgBDO(2)ABO(2)CD + ε−2gacgbdO(2)abO(2)cd

123



The u-plane integral, mock modularity and enumerative… Page 49 of 53 30

+2ε−1gACgbdO(2)AbO(2)Cd

)
. (182)

Taking ε → 0,we see that only the termsO(2)Ab withmixed indices survive. Repeating
the same process for the inner product of 1-forms gives us O(1)a , where only 1-forms
with a small index survives. Note also that the scalar interaction terms [φ, φ†]2 and
η[φ, η] in (181) do not survive when the metric is deformed.

Upon reduction on C for M4 = � × C , the fields φ, φ†, η and A� have no
derivatives on�, and become auxiliary fields which can be integrated out. What is left
of the fermionic fields are ψC and χ�C which can be interpreted as a 0-form, 1-form
on �, respectively. The bosonic field left will be the gauge field AC . From (182), we
see that deformation of the metric forces us to have O(2)ab = 0. For the field strength
Fμν , we thus have

Fab = 0. (183)

Since AC is the only leftover bosonic field on �, we must have configurations of
AC that gives us SU (2) flat connections on C . We can thus take AC to be a map
AC : � → MC , where MC is the moduli space of flat connections on C . We can
express variations of AC about configurations that give flat connections on C in terms
of basis cotangent vectors αIC on MC by

∂Aw̄

∂ϕi
= αiw̄ − Dw̄Ei , (184)

where EI are connections on MC , and the indices i, ī etc, are for collective com-
plex coordinates on MC , z, z̄ are complex coordinates on �, and w, w̄ are complex
coordinates on C . The connection Ei helps define a covariant derivative on MC ,

∇i = ∂i − ı̊ Ei . (185)

The remaining fermionic fields ψC and χ�C , being cotangent vectors onMC , can be
expressed as linear combinations of αiw̄, αīw :

ψw̄ = χ iαiw̄, ψw = χ īαīw χzw = ρ ī
zαīw, χz̄w̄ = ρi

z̄αiw̄. (186)

Next, we integrate out the fields in 4d that do not depend on derivatives on �, namely
φ, φ†, η and Az . The equation of motion for Az gives [13, 49]

Az = ∂zϕ
i Ei + ∂zϕ

ī Eī − �ī jρ
ī
zχ

j , (187)

(and corresponding terms for Az̄) where �i j̄ is the curvature on MC , defined by

�i j̄ = ı̊
[∇i ,∇ j̄

]
. (188)
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For φ and φ†, we obtain

DwDw̄φ = ı̊
{
ψw,ψw̄

}
, DwDw̄φ† = ı̊ gzz̄

{
χzw, χ z̄w̄}. (189)

Lastly, we obtain, for η, the constraints Dwψw̄ = Dw̄ψw = Dwχz̄w̄ = Dw̄χzw = 0.
Since the moduli spaces of flat connections on Riemann surfaces are Kähler man-

ifolds, we introduce a metric (symmetric in its indices) and symplectic form on MC

as

Gi j̄ =
∫
C

Tr(αi ∧ � α j̄ ),

ωi j̄ =
∫
C

Tr(αi ∧ α j̄ ),

(190)

respectively. Given these two objects, we can also obtain the connection coefficients
and the Riemann tensor on MC

�k
i j = ∂ j Gik̄ =

∫
C
d2w Tr(αk̄w∇ jαiw̄) ,

Ri j̄kl̄ = ∂l̄�
j
ik =

∫
C
d2w Tr(∇iα j̄w∇l̄αkw̄ + ∇kα j̄w∇l̄αiw̄).

(191)

These (and the conjugates with barred indices) are the only components of the con-
nection and the Riemann tensor due to the fact thatMC is a Kähler manifold.

We now use (187) and the constraints from integrating η out to obtain the field
strength as

Fzw = ∂z Aw − DwAz

= ∂zϕ
īαīw + ∇ jαīwρ ī

zχ
j

(192)

where the relation Dw̄�i j̄ = ∇ j̄αiw̄ has been used. Next, with the identity
[αw̄i , αwk̄] = ı̊ Dw̄Dw�i k̄ and (189), we obtain

φ = χ iχ j̄�i j̄ , φ† = gzz̄ρ j̄
z ρ

i
z̄�i j̄ . (193)

Dealingwith the kinetic terms in the 4d theory,we can substitute (193) into DwφDw̄φ†,
and together with the square of the second term in (192) that comes from F ∧ �F , we
will obtain the Riemann tensor ofMC as shown in (191). Similarly, the square of the
first term in (192) with the Kähler metric will give the kinetic term for the bosonic
field in the 2d A-model.

The only fermionic kinetic term left in 4d after reduction on C is χzwDz̄ψw̄ and
χz̄w̄Dzψw. Since there is a covariant derivative on �, we make use of the expression
for Az in (187), and together with the cross terms of (192) from F ∧ �F , we obtain
the kinetic terms for the fermion fields χ i , χ ī , ρ ī

z and ρi
z̄ . In particular, we obtain the

covariant derivative on � as ∇z̄χ
i = ∂z̄χ

i + χ j�i
jk∂z̄ϕ

i .
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Table 3 Fields and ghost charges of the 4d and 2d actions

4dN = 2 DW U (1) ghost charge 2d A-model U (1) ghost charge

Aμ 0 ϕi , ϕ ī 0

ψμ 1 χ i , χ ī 1

χμν −1 ρ īz , ρ
i
z̄ −1

η −1 – –

φ 2 – –

φ† −2 – –

D 0 – –

One can also add an instanton term ı̊θ
8π2

∫
M4

Tr (F ∧ F) to the DW action in (181),
which then translates to the pullback of the Kähler form in the A-model [50].

At the end, we obtain the A-model, whose action is

S = 1

e2

∫
�

(
d2zGi j̄

(1
2
∂zϕ

i∂z̄ϕ
j̄ + 1

2
∂z̄ϕ

i∂zϕ
j̄ + ı̊ρ j̄

z ∇z̄χ
i + ı̊ρi

z̄∇zχ
j̄
)

−Ri j̄kl̄ρ
i
z̄ρ

j̄
z χ

kχ l̄
)

+ ı̊θ
∫

�

ϕ∗ω. (194)

Explicitly, the pullback of the Kähler form goes as (with I , J as real coordinates on
MC )

ı̊θ
∫

�

ϕ∗ω = ı̊θ

2π2

∫
�

gzz̄ωI J ∂zϕ
I ∂z̄ϕ

J . (195)

This term is the same as the corresponding one in the purely bosonic nonlinear sigma
model, even after adding supersymmetry. There are no fermions despite it being super-
symmetric. This is due to the fact that it is a topological term which does not change
under small continuous variations of the fields. Hence, there are neither bosonic nor
fermionic degrees of freedom which allows it to remain supersymmetric.

Wecan compare thefields fromboth theories inTable 3. Fields that becomeauxiliary
after reduction are left out from the 2d side of the table. On the 2d side, the bosonic
field is the map X : � → MC and from the ghost charge, can be identified with the
leftover gauge field AC . Similarly, we can identify the corresponding fermionic fields
as well.
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