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ERROR ESTIMATION AND ADAPTIVITY FOR STOCHASTIC1

COLLOCATION FINITE ELEMENTS2

PART II: MULTILEVEL APPROXIMATION3

ALEX BESPALOV AND DAVID J. SILVESTER4

Abstract. A multilevel adaptive refinement strategy for solving linear elliptic partial
differential equations with random data is recalled in this work. The strategy extends
the a posteriori error estimation framework introduced by Guignard & Nobile in 2018
(SIAM J. Numer. Anal., 56, 3121–3143) to cover problems with a nonaffine parametric
coefficient dependence. A suboptimal, but nonetheless reliable and convenient imple-
mentation of the strategy involves approximation of the decoupled PDE problems with a
common finite element approximation space. Computational results obtained using such
a single-level strategy are presented in part I of this work (Bespalov, Silvester & Xu,
SIAM J. Sci. Comp., 44 (2022), A3393–A3412). Results obtained using a potentially
more efficient multilevel approximation strategy, where meshes are individually tailored,
are discussed herein. The results demonstrate that the optimal convergence rates can be
achieved, but only when solving specific types of problems. The codes used to generate
the numerical results are available online.

1. Introduction5

Partial differential equations (PDEs) with uncertain inputs have provided engineers6

and scientists with enhanced fidelity in the modelling of real-life phenomena, especially7

within the last two decades. Sparse grid stochastic collocation representations of paramet-8

ric uncertainty, in combination with finite element discretization of physical space, have9

emerged as an efficient alternative to Monte-Carlo strategies over this period, especially10

in the context of nonlinear PDE models or linear PDE problems that are nonlinear in the11

parameterization of the uncertainty.12

While the combination of sparse grid interpolation with hierarchies of spatial approx-13

imations has given rise to effective multilevel and multi-index stochastic collocation ap-14

proaches in [6, 18, 14], enabling sample-dependent adaptivity in this context is a rela-15

tively new development, see, for example [15, 17]. In our precursor paper [5] (part I), we16

proposed a novel error estimation strategy and the associated adaptive framework for sto-17

chastic collocation finite element method (SC-FEM) and presented a critical comparison18

of alternative strategies in the context of solving a model problem that combines strong19

anisotropy in the parametric dependence with singular behavior in the physical space.20

The hierarchical a posteriori error estimates and indicators proposed in [5] and utilized in21

the present work require additional PDE solves and thus incur additional computational22

cost compared to the residual-based error estimates proposed in [13] and used in [11, 9].23

Date: November 14, 2022.
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However, unlike the error estimates in [13, 11, 9], our hierarchical error estimation frame-24

work is not restricted to PDEs with affine-parametric representation of the coefficient in25

combination with a deterministic right-hand side function.26

The numerical results presented in [5] demonstrate the effectivity and robustness of27

our error estimation strategy as well as the utility of the error indicators guiding the28

adaptive refinement process. The results in [5] also showed that optimality of convergence29

is difficult to achieve using a simple single-level approach where a single finite element30

space is associated with all active collocation points. The main aim of this contribution is31

to see if optimal convergence rates can be recovered by computing results using a multilevel32

implementation of the algorithm outlined in [5]. Here, the optimal rate is understood as33

the best possible algebraic rate that can be achieved for parametric solutions from a34

given approximation class; for instance, for problems with sufficiently smooth parametric35

inputs, this is the rate of the chosen finite element approximations for the corresponding36

parameter-free problem; see, for example, [7, 12, 3] in the context of stochastic Galerkin37

finite element method (SGFEM).38

While the convergence of a modified version of the adaptive algorithm in [13] has been39

established by Eigel et al. [9] and independently by Feischl & Scaglioni [11], our focus in the40

present contribution is different. In particular, we address “the interplay of parametric41

refinement and finite element refinement”, which is identified by the authors of [11] as42

playing a critical role in establishing the convergence of adaptive SC-FEM algorithms.43

The model problems that are of interest are stated in section 2. The only difference44

from the problem statement in [5] is that we also cover the case where the right-hand45

side function has a parametric dependence. The adaptive solution algorithm from [5] is46

extended to cover the case of a non-deterministic right-hand side function in section 3. The47

novel contribution of this work primarily lies in section 4, where we compare numerical48

results obtained with our multilevel algorithm with those generated using a single-level49

strategy and with those computed using a multilevel SGFEM code.50

2. Parametric model problems51

Let D ⊂ R
2 be a bounded Lipschitz domain with polygonal boundary ∂D. Let Γ :=52

Γ1 × Γ2 × · · · × ΓM denote the parameter domain in R
M , where M ∈ N and each Γm53

(m = 1, . . . ,M) is a bounded interval in R. We introduce a probability measure π(y) :=54 ∏M
m=1 πm(ym) on (Γ,B(Γ)); here, πm denotes a Borel probability measure on Γm (m =55

1, . . . ,M) and B(Γ) is the Borel σ-algebra on Γ.56

The first model problem is the parametric elliptic problem analyzed in [5]: we seek57

u : D × Γ→ R satisfying58

−∇ · (a(·,y)∇u(·,y)) = f in D,

u(·,y) = 0 on ∂D,
(1a)59

60

π-almost everywhere on Γ. The second model problem is to find u : D×Γ→ R satisfying61

−∇2u(·,y)) = f(·,y) in D,

u(·,y) = 0 on ∂D,
(1b)62

63

π-almost everywhere on Γ.64
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In the first model problem, the deterministic right-hand side function f ∈ L2(D) and65

the coefficient a is a random field on (Γ,B(Γ), π) over L∞(D). In this case we will assume66

that there exist constants amin, amax such that67

0 < amin ≤ ess inf
x∈D

a(x,y) ≤ ess sup
x∈D

a(x,y) ≤ amax <∞ π-a.e. on Γ. (2)68

This assumption implies the following norm equivalence: for any v ∈ X := H1
0 (D) there69

holds70

a
1/2
min‖∇v‖L2(D) ≤ ‖a1/2(·,y)∇v‖L2(D) ≤ a1/2max‖∇v‖L2(D) π-a.e. on Γ. (3)71

The parametric problem (1a) is understood in the weak sense: given f ∈ L2(D), find72

u : Γ→ X such that73 ∫

D

a(x,y)∇u(x,y) · ∇v(x) dx =

∫

D

f(x)v(x) dx ∀v ∈ X, π-a.e. on Γ. (4)74

75

The above assumptions on a and f guarantee that the parametric problem (1a) admits76

a unique weak solution u in the Bochner space V := Lp
π(Γ;X) for any p ∈ [1,∞]; see [1,77

Lemma 1.1] for details. In the sequel, we restrict attention to p = 2 and denote by ‖ · ‖78

the norm in V = L2
π(Γ;X); we also define ‖ · ‖X := ‖∇ · ‖L2(D).79

The second parametric elliptic problem (1b) combines uncertainty in the source term80

with an isotropic diffusion coefficient field. In this case the right-hand side function f81

simply needs to be a random field that is smooth enough to ensure that (1b) also admits82

a unique weak solution u in the Bochner space V.83

3. Multilevel stochastic collocation finite element method84

Full details of the construction of a multilevel stochastic collocation finite element85

approximation of the first parametric elliptic problem can be found in [5]. The parametric86

approximation is associated with a monotone (or, downward-closed) finite set Λ• ⊂ N
M

87

of multi-indices, where Λ• = {ν = (ν1, . . . , νM) : νm ∈ N, ∀m = 1, . . . ,M} is such that88

#Λ• < ∞1. Each component νm (m = 1, . . . ,M) of the multi-index ν ∈ Λ• corresponds89

to a set of κ(νm) points along the mth coordinate axis in R
M , and the associated sparse90

grid Y• = YΛ•
of collocation points on Γ is given by2

91

YΛ•
:=

⋃

ν∈Λ•

Y (ν) =
⋃

ν∈Λ•

Yκ(ν1)
1 × Yκ(ν2)

2 × . . .× Yκ(νM )
M .92

Each collocation point z ∈ YΛ•
⊂ Γ is associated with a piecewise linear finite element93

approximation space X•z = S1
0 (T•z) defined on a mesh T•z and an enhanced space X̂•z94

defined on the mesh T̂•z obtained by uniform refinement of T•z. The spatial detail space95

Y•z is the approximation space associated with the newly introduced (mid-edge) nodes,96

i.e., X̂•z = X•z ⊕ Y•z. We assume that any finite element mesh employed for the spa-97

tial discretization is obtained by (uniform or local) refinement of a given (coarse) initial98

mesh T0.99

1Here and throughout the paper, we use • as a placeholder for the iteration counter, see, for example,
Λℓ in Algorithm 1. The notation is identical to that used in [5].

2 In particular, the definition of the sparse grid YΛ•
hinges on the nestedness property of the underlying

1D nodes.
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The SC-FEM approximation of the solution u to either of the parametric problems (1a)100

or (1b) is given by101

uSC
• (x,y) :=

∑

z∈Y•

u•z(x)L•z(y), (5)102

where u•z ∈ X•z are Galerkin approximations satisfying (6a) or (6b) for z ∈ Y•, and103

{L•z(y) = LY•

z
(y) : z ∈ Y•} is a set of polynomial basis functions associated with Y•104

and satisfying L•z(z
′) = δ

zz
′ for any z, z′ ∈ Y•.

3 The enhancement of the parametric105

component of the SC-FEM approximation (5) is done by enriching the index set Λ• with106

multi-indices selected from the reduced margin set R• = R(Λ•); this corresponds to adding107

some collocation points from the set Ŷ• \ Y•, where Ŷ• := YΛ•∪R(Λ•).108

To keep the discussion concise we simply summarize the components of the adaptive109

refinement strategy. The three components are:110

• solution of a deterministic finite element problem at each sparse grid collocation111

point. That is, the computation of u•z ∈ X•z satisfying either112

∫

D

a(x, z)∇u•z(x) · ∇v(x) dx =

∫

D

f(x)v(x) dx ∀v ∈ X•z (6a)113

114

in the case of the first parametric problem (1a), or115

∫

D

∇u•z(x) · ∇v(x) dx =

∫

D

f(x, z)v(x) dx ∀v ∈ X•z (6b)116

117

in the case of the second parametric problem (1b). The enhanced Galerkin solution118

satisfying (6a) or (6b) for all v ∈ X̂•z is denoted by û•z ∈ X̂•z.119

• computation of the spatial hierarchical error indicators. For each z ∈ Y•, we define120

µ•z := ‖e•z‖X, where e•z ∈ Y•z satisfies121

∫

D

∇e•z(x) · ∇v(x) dx =

∫

D

f(x)v(x) dx

−
∫

D

a(x, z)∇u•z(x) · ∇v(x) dx ∀v ∈ Y•z

(7a)122

123

in the case of the first parametric problem (1a), or satisfies124

∫

D

∇e•z(x) · ∇v(x) dx =

∫

D

f(x, z)v(x) dx

−
∫

D

∇u•z(x) · ∇v(x) dx ∀v ∈ Y•z

(7b)125

126

in the case of the second parametric problem (1b); the corresponding local error127

indicators µ•z(ξ) associated with interior edge midpoints ξ ∈ N+
•z are given by128

components of the solution vector to the linear system stemming from the discrete129

formulation (7a) or (7b).130

3 An efficient implementation of the representation given in (5) can be effected using the standard
combination technique (see equation (10) in [5]).
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• computation of the parametric error indicators4
131

τ̃•ν =
∑

z
′∈Ỹ•ν

∥∥∥∥u0z′ −
∑

z∈Y•

u0zL•z(z
′)

∥∥∥∥
X

‖L̂•z′‖L2
π(Γ) ∀ν ∈ R(Λ•), (8)132

133

where Ỹ•ν := YΛ•∪{ν} \ YΛ•
⊂ Ŷ• \ Y• are the collocation points ‘generated’ by134

the multi-index ν ∈ R(Λ•), the functions u0z′ ∈ X0z′ for z′ ∈ Ỹ•ν and u0z ∈ X0z135

for z ∈ Y• are Galerkin approximations on some meshes T0z′ and T0z, respectively,136

that are to be specified (e.g., u0z satisfies (6a) or (6b) with X•z replaced by X0z),137

and L̂•z′(y) = LŶ•

z
′ (y) denotes the Lagrange polynomial basis function associated138

with the point z′ ∈ Ŷ• satisfying L̂•z′(z
′′) = δ

z
′
z
′′ for any z′, z′′ ∈ Ŷ•. The error139

indicator τ̃•ν given by (8) provides an upper bound for the norm of the hierarchi-140

cal surplus associated with the parametric enhancement of the current SC-FEM141

approximation (effected by adding ν ∈ R(Λ•) to Λ•); cf. [5, Remarks 1, 3 and 4].142

We emphasize that the computation of parametric error indicators according to (8) is143

in line with the hierarchical a posteriori error estimation strategy developed in [5] (see144

section 4 therein). In the standard single-level SC-FEM setting discussed in [5, section 5],145

the meshes T0z′ and T0z underlying the Galerkin approximations u0z′ and u0z in (8) are146

all selected to be identical to the (single) finite element mesh T•z = T• that underlies the147

current SC-FEM solution uSC
• in (5). In this case, the indicators in (8) are written as148

τ̃•ν =
∑

z
′∈Ỹ•ν

‖u•z′ − uSC
• (·, z′)‖X ‖L̂•z′‖L2

π(Γ) ∀ν ∈ R(Λ•),149

150

where u•z′ ∈ X•z′ = S1
0 (T•) for all z′ ∈ Ỹ•ν and for all ν ∈ R(Λ•).151

In the multilevel SC-FEM setting presented in the adaptive algorithm below, the meshes152

underlying Galerkin approximations for different collocation points might be different. In153

this case, when computing the parametric error indicators in (8), the meshes T0z′ (z′ ∈ Ỹ•ν)154

and T0z (z ∈ Y•) are all selected to be identical to the coarsest finite element mesh T0.155

With the above ingredients in place, the solution to the problems in section 2 can be156

generated using the iterative strategy described in Algorithm 1 together with the marking157

strategy in Algorithm 2.158

Algorithm 1. Input: Λ0 = {1}; T0z := T0 for all z ∈ Ŷ0 = YΛ0∪R(Λ0); marking criterion.159

Set the iteration counter ℓ := 0, the output counter k and the tolerance.160

(i) Compute Galerkin approximations
{
uℓz ∈ Xℓz : z ∈ Ŷℓ

}
by solving (6a) or (6b).161

(ii) Compute spatial error indicators
{
µℓz = ‖eℓz‖X : z ∈ Yℓ

}
by solving (7a) or (7b).162

(iii) Compute the parametric error indicators
{
τ̃ℓν : ν ∈ R(Λℓ)

}
given by (8).163

(iv) Use a marking criterion (e.g., Algorithm 2) to determineMℓz ⊆ N+
ℓz for all z ∈ Yℓ164

and Υℓ ⊆ R(Λℓ).165

(v) For all z ∈ Yℓ, set T(ℓ+1)z := refine(Tℓz,Mℓz)
5.166

4This construction assumes that the enriched index set Λ̂• is obtained using the reduced margin of Λ•,
see Remark 3 in [5].

5Hereafter, T◦ := refine(T•,M•) means that T◦ is the coarsest newest vertex bisection refinement of T•
such that all marked edge midpoints in M• are vertices of T◦.
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(vi) Set Λℓ+1 := Λℓ ∪ Υℓ, run Algorithm 3 for each z′ ∈ ∪
ν∈Υℓ

Ỹℓν to construct meshes167

T(ℓ+1)z′ and initialize T(ℓ+1)z := T0z = T0 for all z ∈ Ŷℓ+1 \ Yℓ+1.168

(vii) If ℓ = jk, j ∈ N, compute the spatial and parametric error estimates µℓ and τℓ169

given by (11) and (12), respectively, and exit if µℓ + τℓ < errortolerance.170

(viii) Increase the counter ℓ 7→ ℓ+ 1 and goto (i).171

Output: For some specific ℓ∗ = jk ∈ N, the algorithm returns the multilevel SC-FEM172

approximation uSC
ℓ∗

computed via (5) from Galerkin approximations
{
uℓ∗z ∈ Xℓ∗z : z ∈ Yℓ∗

}
173

together with a corresponding error estimate µℓ∗ + τℓ∗.174

A general marking strategy for step (iv) of Algorithm 1 is specified next. We will adopt175

this strategy in the numerical experiments discussed in the next section.176

Algorithm 2. Input: error indicators {µℓz : z ∈ Yℓ}, {µℓz(ξ) : z ∈ Yℓ, ξ ∈ N+
ℓz}, and177

{τ̃ℓν : ν ∈ R(Λℓ)}; marking parameters 0 < θX, θY ≤ 1 and ϑ > 0.178

• If
∑

z∈Yℓ
µℓz‖Lℓz‖L2

π(Γ) ≥ ϑ
∑

ν∈R(Λℓ)
τ̃ℓν , then proceed as follows:179

◦ set Υℓ := ∅180

◦ for each z ∈ Yℓ, determine Mℓz ⊆ N+
ℓz such that181

θX
∑

z∈Yℓ

∑

ξ∈N+

ℓz

µℓz(ξ)‖Lℓz‖L2
π(Γ) ≤

∑

z∈Yℓ

∑

ξ∈Mℓz

µℓz(ξ)‖Lℓz‖L2
π(Γ) (9)182

with a cumulative cardinality
∑

z∈Yℓ
#Mℓz that is minimized over all the sets183

that satisfy (9).184

• Otherwise, i.e., if
∑

z∈Yℓ
µℓz‖Lℓz‖L2

π(Γ) < ϑ
∑

ν∈R(Λℓ)
τ̃ℓν, proceed as follows:185

◦ set Mℓz := ∅ for all z ∈ Yℓ186

◦ determine Υℓ ⊆ R(Λℓ) of minimal cardinality such that187

θY
∑

ν∈R(Λℓ)

τ̃ℓν ≤
∑

ν∈Υℓ

τ̃ℓν . (10)188

Output: Mℓz ⊆ N+
ℓz for all z ∈ Yℓ and Υℓ ⊆ R(Λℓ).189

The purpose of the marking strategy is twofold. First, the (global) error estimates190

µ̄ℓ :=
∥∥(µℓz‖Lℓz‖L2

π(Γ))z∈Yℓ

∥∥
ℓ1

and τ̄ℓ :=
∥∥(τ̃ℓν)ν∈R(Λℓ)

∥∥
ℓ1

stemming from the corresponding191

error indicators (cf. (13)) are used to identify the refinement type (spatial vs. paramet-192

ric). Specifically, if the spatial estimate µ̄ℓ dominates the parametric estimate τ̄ℓ then a193

spatial refinement is enforced (by keeping the same set of collocation points but enhancing194

finite element spaces associated with these points); otherwise, a parametric refinement is195

effected (by keeping the finite element spaces for existing collocation points unchanged196

but augmenting the index set and thus adding new collocation points). The role of the197

parameter ϑ in Algorithm 2 is to prioritize one of these refinement types; e.g., choosing198

ϑ > 1 prioritizes parametric refinement. The second purpose of the marking strategy is199

to actually generate the marking sets (of interior edge midpoints of the current spatial200

meshes or multi-indices from the current index set) that will feed into the refinement201

process in steps (v) and (vi) of Algorithm 1. To that end, we use Dörfler marking on the202

corresponding set of error indicators (see (9), (10)). We note that Algorithm 2 performs203

the marking of spatial degrees of freedom (i.e., the interior edge midpoints of finite ele-204

ment meshes) across all current collocation points (see (9)). Empirically we have found205
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that the multilevel SC-FEM with this ‘combined’ spatial marking performs better than206

the multilevel SC-FEM with a ‘separate’ marking of spatial degrees of freedom for in-207

dividual current collocation points that was proposed in the first part of this work; cf.208

equation (36) in [5].209

We point out that if the computational mesh T•z for a collocation point z ∈ Y• does210

not change from one iteration to another, then the corresponding Galerkin approximation211

u•z ∈ X•z and the associated spatial error indicator µ•z do not need to be recomputed212

at the new iteration. In particular, at the iterations that follow parametric refinement,213

Galerkin approximations and the associated spatial error indicators need to be computed214

only for the newly added collocation points.215

As discussed in section 4 of [5], the computation of the error estimates in step (vii) of216

Algorithm 1 is best done periodically because of the significant computational overhead.217

Specifically, recalling the notation ‖ · ‖ := ‖ · ‖L2
π(Γ;X), the spatial error estimate is given by218

µ• :=

∥∥∥∥
∑

z∈Y•

(û•z − u•z)L•z

∥∥∥∥. (11)219

220

It requires computation of the enhanced Galerkin approximation û•z ∈ X̂•z and thus221

requires the solution of the PDE on the mesh T̂•z—a uniform refinement of T•z—for each222

collocation point generated by the current index set. Recalling the earlier discussion of223

the error indicators (8) (see also Remarks 1 and 3 in [5]), we see that the parametric error224

estimate225

τ• :=

∥∥∥∥
∑

z
′∈Ŷ•\Y•

(
u0z′ −

∑

z∈Y•

u0zL•z(z
′)
)
L̂•z′

∥∥∥∥ (12)226

227

requires additional PDE solves on the coarsest mesh T0z′ := T0 for all margin collocation228

points z′ ∈ Ŷ•\Y•. (The coarsest-mesh Galerkin approximations u0z in (12) for the current229

collocation points z ∈ Y• will have been computed in preceding iterations and, thus, can230

be reused). The key point here is that computation of the error estimates is only needed231

to give reliable termination of the adaptive process (and to provide reassurance that the232

SC-FEM error is decreasing at an acceptable rate). On the other hand, the error estimates233

µ• and τ• satisfy the following inequalities (see equation (27) and Remarks 1, 3, 4 in [5],234

respectively)235

µ• .
∑

z∈Y•

µ•z ‖L•z‖L2
π(Γ) and τ• ≤

∑

ν∈R(Λ•)

τ̃•ν (13)236

that motivate the use of the spatial and parametric error indicators in the marking strategy237

within the adaptive algorithm.238

Regarding the implementation aspects of computing the above error estimates, we note239

that the sum in (11) involves Galerkin approximations over different finite element meshes.240

In our implementation, the computation of this sum is effected by interpolating piecewise241

linear functions u•z and û•z at the nodes of the mesh
⊕

z∈Y•

T̂•z—the overlay (or, the242

coarsest common refinement) of the meshes T̂•z, z ∈ Y•—and by subtracting/summing243

the obtained coefficient vectors representing these piecewise linear functions over the same244

mesh
⊕

z∈Y•

T̂•z. In this respect, the implementation of the parametric error estimate245

in (12) is rather straightforward, as the involved Galerkin approximations u0z and u0z′246

are all computed on the same coarsest finite element mesh T0.247

7



The other detail that is missing in the statement of Algorithm 1 is the identification of a248

strategy for defining suitable meshes T(ℓ+1)z′ corresponding to the newly added collocation249

points in step (vi). This specification of sample-specific initial meshes turns out to be250

crucial if optimal rates of convergence are to be realized in practice. If an initial mesh251

associated with a collocation point is too coarse, then adding this collocation point will252

introduce a large spatial error at the next iteration step. Conversely, if the initial mesh is253

too fine, as in the case of a single-level implementation of the algorithm, then the growth254

in the number of degrees of freedom is not matched by the resulting error reduction.255

Indeed, the conclusion reached in [11] on this point is that “while the theoretical results256

are strongest for the fully adaptive algorithm ... the single mesh algorithm seems to be257

more efficient”. A mesh initialization strategy that attempts to balance the conflicting258

requirements is given in Algorithm 3. Specifically, for a given (newly added) collocation259

point z′ 6∈ Y•, we start with the coarsest mesh T0 and iterate the standard SOLVE →260

ESTIMATE → MARK → REFINE loop until the resolution of the mesh is such that261

the estimated error in the corresponding Galerkin solution u•z′ is on par with the error262

estimates for Galerkin solutions associated with other collocation points z ∈ Y• (that263

are ‘rolled over’ from the previous iteration). This is ensured by the choice of stopping264

tolerance tol in Algorithm 3. We note that in the multilevel SGFEM, such a mesh265

initialization procedure is not needed. Instead, for every newly ‘activated’ multi-index, the266

associated finite element mesh is set to the coarsest mesh T0; see [2]. Due to the inherent267

orthogonality of the parametric components of SGFEM approximations associated with268

different multi-indices, this initialization by the coarsest mesh does not affect optimal269

convergence properties of the multilevel SGFEM; see [3].270

Algorithm 3. Input: spatial error indicators
{
µℓz : z ∈ Yℓ

}
; the set of collocation points271

Yℓ+1 = YΛℓ+1
; the collocation point z′ ∈ Yℓ+1 \ Yℓ; marking parameter θ.272

Set the tolerance tol := (#Yℓ)
−1

∑
z∈Yℓ

µℓz‖L(ℓ+1)z‖L2
π(Γ) and the iteration counter n := 0;273

initialize the mesh T0z′ := T0.274

(i) Compute the Galerkin approximation unz′ ∈ Xnz′ by solving (6a) or (6b).275

(ii) Compute the error estimate µnz′ = ‖enz′‖X by solving (7a) or (7b) and compute276

the corresponding local error indicators
{
µnz′(ξ) : ξ ∈ N+

nz′

}
.277

(iii) If µnz′‖L(ℓ+1)z′‖L2
π(Γ)

< tol, set T(ℓ+1)z′ := Tnz′ and exit.278

(iv) Determine Mnz′ ⊆ N+
nz′ of minimal cardinality such that279

θ
∑

ξ∈N+

nz
′

µnz′(ξ)
2 ≤

∑

ξ∈M
nz

′

µnz′(ξ)
2.280

(v) Set T(n+1)z′ := refine(Tnz′ ,Mnz′).281

(vi) Increase the counter n 7→ n + 1 and goto (i).282

Output: The mesh T(ℓ+1)z′ associated with the collocation point z′.283

Results presented in the next section will show that a well-designed multilevel strat-284

egy can give significant efficiency gains compared to a single-level SC-FEM algorithm285

if the parameterized problem has local features that vary in spatial location across the286

parameter space.287
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4. Numerical experiments288

Results for three test cases are discussed in this section of the paper. The performance289

of our adaptive SC multilevel algorithm will be directly compared with that of the single-290

level algorithm discussed in [5] to see if any gains in efficiency can be realized. The291

output counter k is set to 1 in all the experiments to facilitate a comparison of the error292

estimates and indicators. The first two test cases are identical to those discussed in §5 of293

[5]. The third test case is a refinement of the one-peak test problem that was introduced294

by Kornhuber & Youett [16] in order to assess the efficiency of adaptive Monte Carlo295

methods. In all computations we employ sparse grids based on Clenshaw–Curtis points296

with the standard doubling rule.297

The single-level refinement strategy that is the basis for comparison is the obvious and298

natural simplification of the multilevel strategy described in §3. In particular, to effect a299

spatial refinement in the single-level case, we use a Dörfler-type marking with threshold300

θX to produce sets of marked interior edge midpoints from the (single) grid Tℓ. A refined301

triangulation Tℓ+1 can then be constructed using the union of these individual marking302

sets, i.e., Tℓ+1 := refine
(
Tℓ,

⋃
z∈Yℓ
Mℓz

)
.303

4.1. Test case I: affine coefficient data. We set f = 1 and look to solve the first304

model problem on the square-shaped domain D = (0, 1)2 with random field coefficient305

given by306

a(x,y) = a0(x) +

M∑

m=1

am(x) ym, x ∈ D, y ∈ Γ. (14)307

308

The specific problem we consider is taken from [4]. The parameters ym in (14) are the309

images of uniformly distributed independent mean-zero random variables, so that πm =310

πm(ym) is the associated probability measure on Γm = [−1, 1]. The expansion coefficients311

am, m ∈ N0 are chosen to represent planar Fourier modes of increasing total order. Thus,312

we fix a0(x) := 1 and set313

am(x) := αm cos(2πβ1(m) x1) cos(2πβ2(m) x2), x = (x1, x2) ∈ (0, 1)× (0, 1). (15)314

The modes are ordered so that for any m ∈ N,315

β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m) (16)316

with k(m) = ⌊−1/2+
√
1/4 + 2m⌋ and the amplitude coefficients are constructed so that317

αm = ᾱm−2 with ᾱ = 0.547. This is referred to as the slow decay case in [4].318

A reference solution to this problem with M set to 4 is illustrated in Fig. 1 in [5]. This319

solution was generated by running the single-level algorithm with the errortolerance set320

to 6e-3, starting from a uniform initial mesh with 81 vertices and a sparse grid consisting321

of a single collocation point. The threshold parameter ϑ was set to 1, the marking322

parameters θX and θY were set to 0.3. The error tolerance was satisfied after 25 iterations323

comprising 20 spatial refinement steps and 5 parametric refinement steps. There were324

13 Clenshaw–Curtis sparse grid collocation points when the iteration terminated. These325

points are visualized in Fig. 1. The associated sparse grid indices are listed in Table 1326

in [5]. The final spatial mesh is shown in Fig. 2 in [5]. The number of vertices in this327

mesh is 16,473 so the total number of degrees of freedom when the error tolerance was328

satisfied when running the single-level algorithm was 214,149.329
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10

Figure 1. Selected collocation point (left) and corresponding spatial mesh (right) that is gen-
erated by the multilevel adaptive strategy for test case I.

The first test of the multilevel algorithm is to repeat the above experiment; that is,330

starting from the same point with identical marking parameters ϑ = 1, θX = θY = 0.3331

and the same initial coarse mesh T0 (we also set the marking parameter θ in Algorithm 3332

to the same value as θX in all our experiments). Specifying the same error tolerance 6e-3333

led to the same sparse grid of 13 collocation points, in this case after 26 rather than334
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Figure 2. Evolution of the single-level error estimates (left) and the multilevel error estimates
and sum of the error indicators (right) for test case I with error tolerance set to 6e-3. The axes
limits are identical in the left and right plots.

25 iterations. A comparison of the single-level and multilevel error estimates is given in335

Fig. 2. While the final number of degrees of freedom is reduced from 214,149 to 137,943336

in the multilevel case, the rate of convergence is still far from optimal (close to O(dof−1/3)).337

The degree of refinement of the final meshes associated with some specific colloca-338

tion points is illustrated in Fig. 1. The two finest meshes had over 32,000 vertices and339

are associated with the pair of collocation points that are activated by the multi-index340

(3, 1, 1, 1) that is introduced at the final iteration (one of these collocation points and the341

corresponding mesh are shown in the bottom plot). The two coarsest meshes had close to342

3,600 vertices; one of these is shown in the middle plot. The mesh that is associated with343

the mean field a0 = 1 has 11,157 vertices and is shown in the topmost plot. As might be344

anticipated, the level of refinement of this mesh is less than that of the final mesh that is345

generated by the single-level strategy.346

It is worth pointing out that in our extensive experimentations with other choices of347

marking parameters the adaptive multilevel SC-FEM algorithm did not exhibit a faster348

convergence rate compared to that of the single-level algorithm for the respective choice349

of marking parameters. This is in contrast to SGFEM, where multilevel adaptivity always350

results in a faster convergence rate than that of the single-level counterpart for problems351

with affine-parametric coefficients including the test case considered here; see [10, 8, 2, 3].352

Furthermore, for this class of problems, the analysis in [3] has shown that, under an353

appropriate saturation assumption, the adaptive multilevel SGFEM algorithm driven by354

a two-level a posteriori error estimator and employing a Dörfler-type marking on the joint355

set of spatial and parametric indicators yields optimal convergence rates with respect to356

the number of degrees of freedom in the underlying multilevel approximation space.357

4.2. Test case II: nonaffine coefficient data. In this case, we set f = 1 and look358

to solve the first model problem on the L-shaped domain D = (−1, 1)2\(−1, 0]2 with359

coefficient a(x,y) = exp(h(x,y)), where the exponent field h(x,y) has affine dependence360
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on parameters ym ∈ [−1, 1] that are images of uniformly distributed independent mean-361

zero random variables,362

h(x,y) = h0(x) +
4∑

m=1

hm(x) ym, x ∈ D, y ∈ Γ. (17)363

364

We further specify h0(x) = 1 and hm(x) =
√
λmϕm(x) (m = 1, . . . , 4). Here {(λm, ϕm)}∞m=1365

are the eigenpairs of the integral operator
∫
D∪(−1,0]2

Cov[h](x, x′)ϕ(x′) dx′ with a synthetic366

covariance function given by367

Cov[h](x, x′) = σ2 exp (−|x1 − x′
1| − |x2 − x′

2|) . (18)368
369

The standard deviation σ is set to 1.5 in order to mirror the most challenging test case370

in §5.2 of [5]. The convergence of the multilevel adaptive algorithm, starting with one371

collocation point and with the initial grid shown in Fig. 7 of [5] is compared with the372

single-level result in Fig. 3. The multilevel algorithm is again run using the marking373

parameters θX = θY = 0.3 specified in [5] and the same error tolerance, that is 6e-3.374
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Figure 3. Evolution of the single-level error estimates (left) and the multilevel error estimates
(right) for test case II with error tolerance set to 6e-3. The axes limits are identical in the left
and right plots.

These results reinforce the view that performance gains from the multilevel strategy375

are difficult to realize. While the number of active collocation points is smaller in the376

multilevel case (51 vs 57; the multi-index (2, 1, 2, 2) added at the final single-level iteration377

is not included), the total number of degrees of freedom when the tolerance is reached378

is almost identical (2,212,393 vs 2,190,847). The issue here is that meshes associated379

with mixed indices with multiple active dimensions have multiple features that require380

resolution. Thus, the most refined grid associated with the index that is introduced in381

the final parametric enhancement has 428,972 vertices. This is significantly more refined382

than the final grid that is generated in the single-level implementation, which had 37,133383

vertices. This fact, together with the increase in the number of adaptive steps taken384

(37 vs 31) means that the overall computation time is significantly increased when the385

12



multilevel strategy is adopted. In addition, since the generated locally refined meshes386

are not necessarily nested, the need to store all the meshes imposes significant memory387

requirements.388

The plots in Fig. 3 also show that the use of the coarsest-mesh approximations for389

computing the parametric error estimates τℓ in (12) does not affect the overall effectivity390

of the error estimation in the multilevel algorithm. Indeed, in the single-level algorithm391

(where parametric error estimates employ the (single) refined mesh underlying the cur-392

rent SC-FEM solution uSC
ℓ ), the effectivity indices Θℓ computed6 at each iteration range393

between 1.047 and 1.296, whereas for the multilevel algorithm they stay between 0.930394

and 1.257.395

4.3. Test case III: one-peak problem. We are looking to solve the Poisson equation396

−∇2u = f in a unit square domain D = (−4, 4)× (−4, 4) with Dirichlet boundary data397

u = g. The source term f and boundary data are uncertain and are parameterized398

by y = (y1, y2), representing the image of a pair of independent random variables with399

yj ∼ U [−1, 1]. In the vanilla case discussed in [16], the same test problem is posed on the400

unit domain I = (−1, 1) × (−1, 1) with yj ∼ U [−1/4, 1/4]. The source term f and the401

boundary data g are chosen so that the problem has a specific pathwise solution given by402

u(x,y) = exp(−β{(x1 − y1)
2 + (x2 − y2)

2}),403
404

where a scaling factor β = 50 is chosen to generate a highly localized Gaussian profile405

centered at the uncertain spatial location (y1, y2).406

Figure 4. One-peak problem solutions on the unit domain: α = 1.54 (top), α = 9.46 (bottom).

6The effectivity indices are computed using a reference solution as explained in [5], see equa-
tion (43) therein.
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In the paper [17], the one-peak test problem defined on the unit domain is made407

anisotropic by scaling the solution in the first coordinate direction by a linear function408

α(y1) = 18y1 + 11/2 so that α takes values in the interval [1, 10]. The corresponding409

pathwise solution is then given by410

u(x,y) = exp(−β{α(y1)(x1 − y1)
2 + (x2 − y2)

2}). (19)411
412

The solution (19) is generated by specifying an uncertain forcing function413

f(x,y) = d(x1, x2, y1, y2) · exp(−β{α(y1)(x1 − y1)
2 + (x2 − y2)

2}) (20a)414
415

with416

d(x1, x2, y1, y2) = −4β2
{
α2(y1)(x1 − y1)

2 + (x2 − y2)
2
}
+ 2β(α(y1) + 1). (20b)417

418

Realisations of the exact solution (19) with β = 50 are shown at two distinct sample419

points in Fig. 4. The anisotropy introduced by the scaling with α is a clear feature.420

Our specific goal is to compute the following quantity of interest (QoI)421

E [φI(u)] =

∫

[− 1

4
, 1
4 ]

2

∫

I

u2(x,y) dx dπ(y), (21)422

423

where φI(u) =
∫
I
u2(x, ·) dx. The choice β = 50 is then helpful for two reasons:424

• The Dirichlet boundary condition (u satisfying (19) on ∂I) may be replaced with-425

out significant loss of accuracy by the numerical approximation u•z = 0 on ∂I.426

• A reference value (accurate to more than 10 digits)427

E [φI(u)] ≈ Q :=
1

9
· (
√
10− 1) · π

β
= 0.015095545 . . . (22)428

429

may be readily computed; see [17, Appendix] for details.430

We compute estimates of the QoI by solving the problem (1b) using the coordinate trans-431

formations xj ← 4xj and yj ← 4yj (j = 1, 2). In this case, the pathwise solution on432

the scaled domain D × Γ is given by (19) with β = 50/16 and α(y1) = (9y1 + 11)/2.433

Moreover, the QoI in (21) (and its reference value given in (22)) can be estimated within434

Algorithm 1 by computing the following quantity:435

1

16
E
[
φD(u

SC
ℓ )

]
=

1

16

∫

Γ

∫

D

(
uSC
ℓ (x,y)

)2
dx dπ(y).436

437

Statistics of a solution to the scaled problem are illustrated in Fig. 5.438

A comparison of the single-level and multilevel SC-FEM algorithms with default mark-439

ing parameters, when applied to the one-peak test problem, is given by the evolution of440

error estimates and errors in the QoI shown in Fig. 6. The single-level algorithm reached441

the tolerance in 37 steps with 169 active collocation points and the final approximation442

had 42,961,659 degrees of freedom. The multilevel algorithm proved to be much more443

efficient. The same tolerance was reached in 34 steps with 153 collocation points in the444

final approximation space. Crucially, each collocation point is associated with a mesh445

that is locally refined in the vicinity of the respective point in D (as illustrated in Fig. 7).446

In contrast, the final mesh generated by the adaptive single-level SC-FEM has refinement447

everywhere in a larger region corresponding to the union of supports of all sampled solu-448

tions. When the error tolerance was reached, both algorithms gave estimates of the QoI449
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Figure 5. The expectation and the variance of the solution for test case III.
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Figure 6. Evolution of the single-level and multilevel error estimates (left) and the correspond-
ing errors in the QoI (right) for the one-peak test problem with error tolerance set to 1e-1.

that agreed with the reference value to five decimal places (0.015092 for the single-level450

case vs 0.015087 for the multilevel case).451

The upshot of the effective use of tailored refinement is an order of magnitude decrease452

in the overall computation time. The total number of degrees of freedom in the multilevel453

case was 2,620,343—a factor of 16 reduction overall. Looking at the associated rates of454
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Figure 7. Single-level mesh (left) and meshes associated with the central collocation point
(middle) and top right corner point (right) when the tolerance is reached for test case III.

convergence we see that the optimal rate O(dof−1/2) is recovered in the multilevel case.455

We anticipate that similar performance gains will be realized whenever a problem has456

local features that can be effectively resolved using sample-dependent meshes.457

We have also solved the one-peak test problem using an efficient adaptive stochastic458

Galerkin approximation strategy. While the linear algebra associated with the Galerkin459

formulation is decoupled in this case, the computational overhead of evaluating the right-460

hand side vector is a significant limiting factor in terms of the relative efficiency. The461

overall CPU time taken to compute 4 digits in the QoI using adaptive stochastic Galerkin462

FEM is comparable to the CPU time taken to compute 5 digits using the multilevel463

SC-FEM strategy.464

5. Conclusions465

Adaptive methods hold the key to efficient approximation of solutions to linear elliptic466

partial differential equations with random data. The numerical results presented in this467

series of two papers demonstrate the effectiveness and the robustness of our novel SC-468

FEM error estimation strategy, as well as the utility of the error indicators guiding the469

adaptive refinement process. Furthermore, the proposed error estimation strategy, error470

indicators, and adaptive algorithms can be easily extended to other parametric PDE471

problems with either affine or nonaffine parametric dependence of inputs. Our results472

also suggest that optimal rates of convergence are more difficult to achieve in a sparse473

grid collocation framework than in a multilevel stochastic Galerkin framework. It is474

demonstrated herein that the overhead of generating specially tailored sample-dependent475

meshes can be worthwhile and optimal convergence rates can be recovered when the476

solutions to the sampled problems have local features in space. The single-level strategy477

discussed in part I of this work is, however, likely to be more efficient (certainly in terms478

of overall CPU time and memory requirements) when a single adaptively refined grid can479

adequately resolve spatial features associated with solutions to a range of individually480

sampled problems.481

An efficient implementation of the multilevel SC-FEM would benefit from dedicated482

memory optimization algorithms for storing computational meshes as well as from accel-483

eration methods for computing sampled Galerkin solutions (e.g., by an iterative process484

initialized at the previously computed Galerkin approximation on a coarser mesh). These485

implementation aspects require further investigation.486
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