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A humanized mouse model for
in vivo evaluation of invariant
Natural Killer T cell responses

Noemi Alejandra Saavedra-Avila1, Paolo Dellabona2,
Giulia Casorati2, Natacha Veerapen3, Gurdyal S. Besra3,
Amy R. Howell4 and Steven A. Porcelli 1,5*

1Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, NY, United States, 2Experimental Immunology Unit, Division of Immunology, Transplantation
and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy, 3School of Biosciences,
University of Birmingham, Birmingham, United Kingdom, 4Department of Chemistry, University of
Connecticut, Storrs, CT, United States, 5Department of Medicine, Albert Einstein College of
Medicine, Bronx, NY, United States
Invariant natural killer T (iNKT) cells mediate immune responses when

stimulated by glycolipid agonists presented by CD1d. In extensive studies of

synthetic analogues of a-galactosyl ceramides, we identified numerous

examples of significant differences in the recognition of specific glycolipids in

wild type mice versus human iNKT cell clones or PBMC samples. To predict

human iNKT cell responses more accurately in a mouse model, we derived a

mouse line in which compound genetic modifications were used to express a

human-like iNKT cell TCR along with human CD1d in place of the endogenous

mouse proteins. Detailed transcriptional and phenotypic profi l ing

demonstrated that these partially humanized mice developed an expanded

population of T cells recognizing CD1d-presented glycolipid antigens, among

which a subset characterized by expression of chemokine receptor CXCR6 had

features characteristic of authentic iNKT cells. Responses to iNKT cell activating

glycolipids in these mice generated cytokine production in vitro and in vivo that

showed a pattern of fine specificity that closely resembled that of cultured

human iNKT cell clones. Anti-tumor responses to variants of a-galactosyl
ceramide in VaKI mice also correlated with their potency for stimulating

human iNKT cells. This genetically modified mouse line provides a practical

model for human presentation and recognition of iNKT cell activators in the

context of a normally functioning immune system, and may furnish valuable

opportunities for preclinical evaluation of iNKT cell-based therapies.

KEYWORDS

CD1d, iNKT cell, Alpha-GalCer, transgenic mice, tumor immunity, humanized

mouse models
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Introduction

Invariant Natural Killer T cells (iNKT cells), also known as

Type I NKT cells, are a conserved subset of specialized T cells

that contribute to many innate and adaptive immune responses

(1, 2). Unlike conventional T cells, iNKT cells express T cell

antigen receptors (TCRs) of limited diversity, and respond

mainly to specific foreign and self-glycolipid antigens

presented by the MHC class I-like CD1d protein (3). The

activities attributable to iNKT cells in a range of well-defined

mouse models include tumor immunosurveillance and

induction of tumor regression (4–6), regulation of

autoimmunity and inflammation (7) and control of a variety

of infections (8). Cumulatively, these findings strongly imply a

potential role for iNKT cell-directed therapies in cancer and a

variety of other clinical applications (9, 10). Substantial efforts

have been directed at the development of synthetic glycolipid

antigens that activate iNKT cells, and their use as potential

therapeutics in strategies to capture the remarkable anti-cancer

and adjuvant activities of iNKT cells (11).

The best-characterized glycolipid antigens recognized by

iNKT cells are synthetic forms of a-galactosylceramides

(aGalCer), which rapidly and potently activate the majority of

iNKT cells in mice and humans to stimulate their proliferation,

cytokine production and cytotoxic functions (12). The

prototypical form of aGalCer, known as KRN7000, has been

extensively studied for its therapeutic effects in mouse models of

cancer, and has progressed into early phase human clinical trials

in subjects with various cancers (13–15). While KRN7000 has

been shown to stimulate immune activation in vivo in humans,

anti-cancer effects have not been consistently observed in clinical

studies to date (13, 14). Ongoing efforts seek to develop more

potent iNKT cell activators for targeting human cancer, and for

other applications in humans such as the design of vaccine

adjuvants and immunotherapies for a variety of diseases (16, 17).

Screening and optimization of numerous synthetic derivatives of

aGalCer have relied mainly on the use of standard laboratory

mice, especially with regard to in vivo testing. While most

general features of the CD1d presentation of glycolipids are

conserved between mice and humans, subtle differences exist

that may result in inaccurate and misleading conclusions when

extrapolating from one species to the other.

To create a more accurate system for in vivo assessment of

iNKT cell directed therapies, several approaches have been used to

generate mouse models with humanized iNKT cell responses. One

approach has been to reconstitute a human immune system by

transplanting hematopoietic stem cells into mice lacking

endogenous lymphocytes (18–20). A second and probably more

practical approach has been to carry out direct modifications of

the mouse genome to humanize key elements in the CD1d-iNKT

cell interaction while preserving an otherwise undisturbed mouse
Frontiers in Immunology 02
immune system. A significant first step toward the latter approach

was taken by Yuan and colleagues with the generation of human

CD1d knock-in mice (hCD1dKI), in which the coding regions of

the mouse CD1D gene are replaced with the homologous human

sequences (21, 22). In a second generation of this model, the

hCD1dKI mice were further modified by a combined transgenic

and gene knockout approach to replace the mouse iNKT cell

invariant TCRa chain with the orthologous human Va24-Ja18
TCRa sequence (TRAV10-TRAJ18) modified to contain a mouse

TCRa constant domain for efficient pairing with endogenous

murine TCRb chains (23, 24). An initial publication in 2015 on

these compound transgenic/knock-in mice showed that they

developed functional iNKT cells and partially characterized their

phenotypes and functions (24), but subsequent follow up studies

have not yet appeared.

In the current study, we have re-constructed this compound

knock-in and transgenic model of the humanized iNKT cell-

CD1d axis, including an improved targeted deletion of the

mouse Ja18 locus (Traj18) to specifically eliminate expression

of endogenous mouse iNKT cell invariant TCRa chains without

distorting the overall conventional T cell repertoire (25). Our

extensive analysis showed that this stable homozygous mouse

line, which we designated “VaKI”, developed functional iNKT

cells while maintaining a complete and normally functioning

mouse immune system, including an undisturbed and highly

diverse conventional T cell repertoire. Similar to what has been

described for hCD1dKI mice, the VaKI animals showed levels of

iNKT cells that were readily detectable in most tissues, although

reduced to levels that were more comparable to normal humans

than to wild type mice. Importantly, the VaKI mice responded

robustly to iNKT cell activators with a pattern of fine specificity

that closely resembled cultured human iNKT cell clones. Our

results support the view that the VaKI mouse model provides a

useful and practical small animal system for assessing iNKT cell

directed strategies for downstream translational work.
Materials and methods

Ethics statement

Animal experiments were conducted in accordance with the

Policy on Humane Care and Use of Laboratory Animals of the

United States Public Health Service. The protocol for vertebrate

animal research in this study was approved by the Institutional

Animal Care and Use Committee at the Albert Einstein College

of Medicine (Animal Welfare Assurance Number D16-00200).

Carbon dioxide inhalation was used for euthanasia, and all

efforts were made to minimize animal distress, pain and

suffering. This study did not involve the recruitment or

participation of human subjects.
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Mice

Wild type mice (C57BL/6J strain) were purchased from

Jackson Laboratory. The human CD1d-KI mice were obtained

from Dr. Weiming Yuan (University of Southern California),

and were bred and maintained in the animal facilities of the

Albert Einstein College of Medicine. Production of transgenic

mice expressing the human Va24-Ja18 TCRa chain on the

C57BL/6 background has been described, and the TCR

transgenic line used for the current study was the Va24low line

reported to express the transgene on ~20% of circulating

lymphocytes (23). The Ja18-/- mice, also on the C57BL/6

background, were obtained from Dr. Mitchell Kronenberg (La

Jolla Institute for Allergy and Immunology) (25). Animals were

maintained under specific pathogen free conditions according to

the guidelines of the Association for Assessment and

Accreditation of Laboratory Animal Care. For experiments,

animals were used at 6-10 weeks of age. Characterization of

cell populations in mouse tissues was done using male mice. The

iNKT activation studies in vitro and in vivo as well as tumor

immunotherapy experiments were performed in female mice.
Genotyping

Tail fragments were removed with a scalpel and digested

overnight at 55°C in a 50 mL volume of 0.5 mg/mL solution of

proteinase K (Qiagen, Germany) with 0.5% Triton-X in Gittschier

buffer (26). Digested samples were diluted 10 fold with ultrapure

water and were heated to 85°C for 5 min to inactivate proteinase

K. Standard PCR reactions were performed with the following

primers: mCD1d (Forward ATA TTT GAG GCA GGC TGT

ACC AGC TGA AAT; Reverse GAA GCC AGA GAC ATG ACA

CAC CAG CTG CCT; amplicon 343 bp), hCD1d (Forward CCT

GGG ACC AAG GCT TCA GAG; Reverse CCT GCT GTT TCT

GCT GCT CTG; amplicon 504 bp), Va24 (Forward CTG GAT

GCA GAC ACA AAG CAA AGC; Reverse GGA TCC TCA ACT

GGA CCA CAG CCT CAG; amplicon 600 bp), Ja18 (Forward

GAG GTT GAA CAA AGG AAG TGG; Reverse CCA CAA ATG

GTA GTC AGT AGG; amplicon for KO 353 bp, amplicon WT

1083 bp). Offspring consistent with homozygosity at all loci

were observed after more than three generations of sibling

matings (i.e., hCD1d was expressed without expression of

mCD1; Ja18 locus was absent and all mice were positive for

Va24 transgene expression).
Generation of BMDCs

Mouse bone marrow-derived DCs were generated using

bone marrow suspensions from 6–8 week old C57BL/6 mice,

hCD1dKI and VaKI according to a published protocol (27).
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Bone marrow cells were harvested from femurs and red blood

cells were depleted. Cells were resuspended in a medium

consisting of RPMI-1640 supplemented with 10% heat-

inactivated fetal bovine serum (FBS), 10 ng/ml mGM-CSF, and

50 mM 2-mercaptoethanol, 100 IU/ml penicillin, and 100 mg/ml

streptomycin and cultured (37°C, 5% CO2) in 10 cm Petri dishes

at 1 × 106 cells. On days 3, 5 and 7 of culture fresh mGM-CSF

was added, and on day 10 the cells were collected.
Synthetic glycolipid antigens

The glycolipid antigens used in this study were synthesized

and characterized as previously described (28–30). The a-C-
GalCer (C-glycoside) was obtained from the NIH Tetramer Core

Facility (31). For in vitro assays, glycolipid stock solutions were

prepared at 100 mM in DMSO (Sigma). Immediately before use,

these stocks were heated to 70°C, sonicated for 5 min and then

diluted to 1 mM in pre-warmed (37°C) culture medium (RPMI-

1640 with 10% FCS). This stock was further diluted with culture

medium immediately before adding to cell cultures to give the

desired final glycolipid concentrations ranging from 0.01 - 1000

nM and a final DMSO concentration of 1%. For in vivo injection

into mice, glycolipids were first dissolved to 20 mM in DMSO

and then further diluted to 200 mM using PBS + 0.5% Tween-20.

This solution was diluted 1:10 with pre-warmed (80°C) PBS

immediately before injection of mice. Injection of 0.2 ml per

mouse via the retro-orbital plexus delivered 4 nmol of glycolipid

intravenously in a vehicle with final composition of PBS + 0.1%

DMSO + 0.05% Tween-20.
Tissue processing

Mouse spleens and livers were aseptically removed and

mechanically disrupted to generate cell suspensions in sterile

PBS. Red blood cells were removed by treatment with RBC

lysing solution (Sigma). Liver suspensions were washed in PBS

to remove fat, and mononuclear cells were separated by 30%

Percoll density gradient with collection of the cell pellet. Venous

blood was collected by facial vein puncture into a solution of PBS

with 3 mg/mL EDTA, followed by lysis of red blood cells. Bone

marrow cells were extracted by flushing femurs with PBS,

followed by passage through 70 mm nylon mesh and red blood

lysis. Mesenteric lymph nodes were pooled from individual mice

and processed similarly to bone marrow samples.
Flow cytometry

Cell suspensions were aliquoted into wells of 96-well

microtiter plates for antibody staining. Extracellular staining

with monoclonal antibodies, CD1d tetramer reagents and live/
frontiersin.org
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dead viability dyes was performed at 4°C. For intracellular

staining, the cells were first fixed and permeabilized, and then

stained with monoclonal antibodies following the protocol of the

FoxP3/Transcription Factor staining buffer kit (Tonbo). Anti-

human monoclonal antibody conjugates used were the

following: phycoerythrin (PE)-conjugated-anti-hCD1d (clone

CD1d42); brilliant violet 421 (BV421)- and FITC-anti-CD3

(UCHT-1); redFluor710-anti-CD3 (OKT3); PE-Cy5-anti-

CD8a (RPA-T8); PECy7-anti-CD11c (3.9); BV510-anti-CD14

(MjP-9); Pacific Blue (PB)-anti-CD15 (MMA); BUV-anti-

CD19 (SJ25C1); BUV737-anti-CD56 (NCAM16.2); PE-

Dazzle594-anti-Va24Ja18 (6B11). Anti-mouse monoclonal

antibody conjugates used were as follow: BUV395- or PE-anti-

B220 (RA3-6B2); FITC-anti-CD1d (1B1); BUV563-anti-CD4

(GK1.5); PECy5-anti-CD8a (53-6.7); PE-CFS594-anti-CD11b

(M1/70); AF700-anti-CD11c (N418); PECy7-anti-CD205

(205yekta); PE-anti- CXCR6 (SA051D1); BV650-anti-F4/80

(BM8); BV510-anti-FcϵR1a (MAR-1); BV750-anti-IFNɣ
(XMG1.2); eFluor450-anti-MHCII (M5/114.15.2); BV605-anti-

NK1.1 (PK136); PECy7-anti-PLZF (R17-809), BV421-, PerCP-

Cy5.5- or PE-CFS594-anti-TCRb (H57-597), FITC-anti-gd TCR
(GL3); PE-anti-Vb2 (B20.6), PE-anti-Vb7 (TR310), PE-anti-

Vb8.1/8.2 (KJ16-133.18), PE-anti-Vb8.3 (1B3.3). The following

mouse and human tetramer reagents were obtained from the

NIH Tetramer Core Facility: BV421-, PE- or APC-conjugated

mCD1d tetramers and APC- or PE-conjugated-hCD1d

tetramers, both loaded with aGalCer glycolipid PBS-57;

BV421-conjugated mouse MR-1 tetramers loaded with 5-(2-

oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU).

Data were acquired using a 4-laser Cytek Aurora spectral flow

cytometer and analyzed using FlowJo software.
In vitro and in vivo
activation of iNKT cells

Mouse iNKT hybridoma lines derived from C57BL/6 mice

(DN3A4-1.2), or from VaKI mice (VaKI-18) were stimulated

using standard conditions with mouse BMDCs as APCs, and

supernatants were harvested after 24 h for determination of

levels of IL-2 by capture ELISA (32). Cloned human iNKT cell

lines HDE3 and HDA7 were derived from healthy blood donors

as previously described (33, 34). These were co-cultured in 96

well plates at a density of 2 x 104 cells/well with 2 x 104 hCD1d-

transfected HeLa cells or human primary monocyte-derived

DCs in 100 mL of RPMI-1640 medium supplemented with

10% FBS in a 5% CO2 incubator at 37°C. Glycolipid antigens

were added at concentrations ranging from 0.1 – 100 nM.

Supernatants were harvested after 24 h of culture, and

concentrations of human IFNg were measured by capture

ELISA as described (33, 35). For stimulation of primary iNKT
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cells in splenocyte cultures, 106 spleen cells from C57BL/6,

hCD1dKI or VaKI mice were cultured with indicated

glycolipid concentrations and incubated for 72 h, and mouse

IFNg was measured by ELISA. For in vivo stimulation of iNKT

cells, C57BL/6, hCD1dKI and VaKI mice were injected i.v. via

the retro-orbital plexus with 4 nmol of glycolipids in vehicle

consisting of PBS plus 0.1% DMSO and 0.05% Tween-20. Mice

were bled 2 h and 24 h later, and serum samples were stored at

-80°C until cytokine measurement by ELISA.
Single cell analysis of transcriptome
and TCR expression

Splenocytes from VaKI andWT C57BL/6 mice were stained

with live/dead viability dye (Zombie NIR), anti-B220, anti-TCRb
and human CD1d tetramers loaded with the aGalCer analogue
PBS57. High speed sorting was carried out using a FACSAria

fluorescence activated cell sorter (BD Biosciences) to collect

tetramer positive and negative populations from live TCRb+
and B220 negative cells. The sorted cells were loaded into the

chips of the Chromium™ Single Cell 5′ Gel Beads Kit, followed
by generation of single cell Gel Bead-In Emulsions (GEMs) using

the Chromium Controller instrument according to the

manufacturer’s instructions (10X Genomics). GEMs were then

subjected to library construction using the Chromium™ Single

Cell 5′ Library Kit v1 (10X Genomics). As a first step, reverse

transcription was performed, resulting in cDNA tagged with a

cell-specific barcode and a unique molecular index (UMI) for

each transcript. Fragments were then size selected using SPRI

select magnetic beads (Beckman Coulter), and Illumina

sequencing adapters were ligated to the size-selected fragments

and re-purified using SPRI select magnetic beads. Finally, sample

indexes were incorporated and amplified, followed by a double-

sided size selection using SPRI select magnetic beads. The quality

of the final library was assessed using an Agilent 2100

Bioanalyzer (Agilent Technologies). The samples were then

sequenced using a NextSeq instrument with 150 cycle paired

end chemistry (Illumina). To process the sequenced libraries,

generation of FASTQ, gene expression and count matrix files

and generation of cloupe files were carried out with Cell Ranger

software (10X Genomics). For the V(D)J libraries and generation

of vloupe files, Cell Ranger V(D)J was used. Through this system,

filtered UMI expression matrices from each sample were

generated. Raw expression data was obtained containing

transcriptomes for a pool of cells sorted from the spleens of

three WT mice (C57BL/6) and three VaKI mice. In accordance

with published pipelines and quality control standards,

abnormal cells in all datasets were filtered out based on their

gene expression distribution, and analysis was carried out with

Seurat software from Satija Lab (36).
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Melanoma lung metastasis model

The B16-F10 melanoma cell line was obtained from ATCC

(passage 3), and the experimental metastasis assay was

performed as previously described (37, 38). C57BL/6 wild type

mice, hCD1dKI, or VaKI mice were injected i.v. by the tail vein

with 5 x 105 B16-F10 cells in 200 µL of PBS. After 3 days, 4 nmol

of glycolipids were administered by single i.v. injection in 0.2 ml

vehicle (PBS + 0.05% Tween-20 + 0.1%DMSO). Two weeks after

challenge, mice were sacrificed, lungs removed, and the area of

melanized nodules on the lung surface was calculated from

digital photographs of the excised lungs using Image J

software from NIH (https://imagej.nih.gov/ij/index.html).

Results were expressed as percentage of total lung surface area

covered by melanized tumor growth.
Statistical analysis

Data are shown as mean values with error bars representing

one standard error (SE). Statistical analyses were done using

GraphPad Prism software. Data involving three or more groups

and multiple comparisons were analyzed for overall significance

using one-way ANOVA, and level of significance for pairwise

comparisons of selected groups was calculated using the Tukey

post-test. Data involving single comparisons of two groups were

analyzed for significance using the Mann-Whitney test. Values

of P < 0.05 were considered significant.
Results

Generation of the VaKI mouse strain

To generate a fully inbred mouse line with human CD1d and

humanized iNKT cell TCR on the C57BL/6 background, we

combined genetic modifications from three existing strains

through multiple breeding and genotyping steps as illustrated

schematically in Figure 1A. The human CD1d knock-in strain

(22) was first crossed with mice carrying a homozygous

transgene encoding a human Va24-Ja18 (TRAV10-TRAJ18

gene) cassette linked to the mouse TCRa chain constant

region (hVa24Ja18Tg+/+) (23). Offspring were intercrossed

and subsequent progeny with desired genotypes were selected

to obtain animals homozygous for the knock-in and transgene

loci. Although the TCR transgenic strain used in the initial cross

also carried a deletion of the Ja18 gene to eliminate endogenous

iNKT cell TCRs, we eliminated this particular allele during

subsequent crosses since it was previously shown to cause a

major distortion of the overall TCR repertoire (39). A second

stage of breeding was used to reintroduce the Ja18 deletion using

a more recently derived founder strain that maintained normal

expression of other TCR genes (25). After selection of animals
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homozygous for all three modified loci, a stable breeding colony

of this line, designated as VaKI mice, was established.

Analysis splenocytes of VaKI mice showed that all major

leukocytes populations were present, with the total number and

proportion of T cells similar to WT mice. Modest changes in

numbers of B cells and all myeloid cell types were noted for

VaKI compared to WT animals (Supplemental Figure 1).

Further phenotypic analysis by flow cytometry confirmed the

expected expression of human CD1d (hCD1d) and the absence

of mouse CD1d (mCD1d) on leukocytes from VaKI mice

(Figure 1; Supplemental Figure 2). Using cultured bone

marrow-derived dendritic cells (BMDCs), known for their

high expression of CD1d in wild type and hCD1dKI mice

(22), we detected levels of hCD1d on the surface of BMDCs

from VaKI mice that overlapped the levels for hCD1d on

BMDC from hCD1dKI mice (Figure 1B). As expected, the

VaKI BMDCs were completely negative for surface staining

with antibodies specific for mCD1d. In addition to expression on

cultured DCs, hCD1d was expressed at low but detectable levels

on resting PBMCs of VaKI mice, with the highest surface levels

on B cells, monocytes and DCs (Supplemental Figure 2). This

pattern of hCD1d expression was similar to that observed for

human circulating leukocyte subsets (Figure 1C; Supplemental

Figure 3). Overall, hCD1d expression on most major

leukocyte subsets in VaKI mice was detectable at a low level,

and most prominently on B cells, monocytes and DCs, similar to

the pattern observed for circulating cells in human

blood (Figure 1C).
Analysis of human Va24 expressing T
cells in VaKI mice

To detect expression of the humanized transgenic TCR on

the surface of T cells in the VaKI mice, we used mAb 6B11

which is specific for an epitope formed by the in-frame

rearrangement of human Va24 to Ja18 (40, 41). Consistent

with the published analysis of transgene expression in the

hVa24-Ja18 Tg mice (23), splenocytes from VaKI mice

showed a major population of T cells expressing the TCR

transgene, comprising greater than 10% of all T cells.

However, staining of splenocytes with either mCD1d or

hCD1d fluorescent tetramers loaded with aGalCer identified

four to five fold smaller populations (Figure 2A). Since binding

of the tetramers indicates expression of a TCR capable of

recognizing the complex of aGalCer bound to CD1d, this

finding suggested that many of the 6B11+ cells in the VaKI
animals were not iNKT cells. These most likely represented

other types of T cells in which the hVa24 Tg was paired with

endogenous TCRb chains to generate conventional MHC-

restricted T cells. We further investigated this possibility by

using FACS to measure expression of the transcription factors T-

bet and PLZF, and the cell surface receptor NK1.1 (CD161),
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which are markers expressed by the majority of canonical iNKT

cells (42–45). This revealed that the majority of 6B11+ cells

lacked expression of these markers (Figure 2B). Strikingly, most

CD1d tetramer+ cells (>90%) in blood, spleen and liver of the

VaKI mice also lacked expression of these markers, in contrast

to the majority of tetramer+ cells in WT mice which expressed

T-bet, PLZF and NK1.1 (Figure 2C).

To more deeply characterize the aGalCer-loaded CD1d

tetramer binding cells in the VaKI mice, we carried out single

cell transcriptome analysis of these cells purified from WT and

VaKI spleens. Deep sequencing of the expressed transcriptomes

revealed marked differences in global gene expression for the

tetramer+ cells from the two mouse lines. When displayed as
Frontiers in Immunology 06
two-dimensional plots using uniform manifold approximation

and projection (UMAP) dimensional reduction, the tetramer+

cells of VaKI mice showed little overlap with the clusters

generated for WT tetramer+ cells (Figure 3A). Since the latter

represent predominantly iNKT cells as defined in normal

animals, these results suggested that most tetramer+ cells in

VaKI mice may not be iNKT cells. In fact, at the transcriptome

level, VaKI tetramer+ cells showed major overlap with several

clusters defined in UMAP analysis carried out in parallel on

unsorted T cells from either WT or VaKI animals., which gave

similar patterns in both WT and VaKI mice (Figure 3A).

Examination of the aggregated data confirmed exclusion of

transcripts for several strongly iNKT cell associated genes
B

C

A

FIGURE 1

Generation of VaKI mice and their expression of human CD1d. (A) Schematic of breeding strategy to generate homozygous VaKI strain. All mice
were C57BL/6 background. (B) Expression of mCD1d or hCD1d on BMDCs. Representative histograms are shown for flow cytometry gating on
DEC205+ DCs (Zombie negative, CD11c+, MHCII+, CD8+, DEC205+) in cultured bone marrow cells from CD1D-/- (KO), C57BL/6 (WT) or VaKI
mouse strains. The bar graphs show mean ± 1SE of MFI values for groups of 10 mice. (C) Expression of CD1d based on surface staining and FACS in
PBMC from WT or VaKI mice (N = 15) or normal human blood donors (N = 10). Bars represent mean ± 1SE for mCD1d or hCD1d MFI values for B
cells (B), dendritic cells (DC) or monocytes (MO) with values normalized to levels on DCs (set at mean of 1). FACS gating strategy for leukocyte
subsets is shown in Supplemental Figures 1-3. ***P < 0.001, ****P < 0.0001, ns, not significant (one-way ANOVA with Tukey post-test).
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from the VaKI tetramer+ cells, including Cxcr6, Kirb1c (NK1.1),

Bhlhe40 and Zbtb16 (PLZF) (Figure 3B). In contrast, transcripts

coding for CD8a and CD8b, which were absent in most clusters

of WT tetramer+ cells, were present in a substantial fraction of

VaKI tetramer+ cells (Figure 3C). Considering a panel of 26
Frontiers in Immunology 07
genes known for their expression in iNKT cells, conventional

MHC-restricted T cells or both, we observed a pattern of gene

expression in the VaKI tetramer+ cells that was distinct from the

tetramer+ cells of WT mice and more similar to unsorted T cells

(Figures 3C, D).
B C

A

FIGURE 2

Va24 transgene expression and CD1d tetramer binding of VaKI T cells. (A) Spleen cells from WT, Ja18-/-, hCD1dKI and VaKI mice were stained
with mouse or human CD1d tetramers loaded with aGalCer glycolipid PBS-57, or with anti-human Va24-Ja18 TCR specific mAb 6B11. Numbers
in plots are percentages of total lymphocytes within the area enclosed by the ovals. (B) Percentages of NK1.1+ cells among gated CD1d
tetramer + or 6B11+ cells in spleens of WT, hCD1dKI or VaKI mice. (C) Histograms of CD1d tetramer+ cells (Zombie negative, B220 negative,
TCRb+, CD1dTet+) showing their NK1.1, PLZF and T-bet expression in blood, liver, and spleen (VaKI mice shaded red and on WT C57BL/6 in
black). Results shown are representative of three separate analyses. ****P < 0.0001 (one-way Anova with Tukey post test).
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FIGURE 3

Gene expression profile of CD1d tetramer binding cells in VaKI mice. (A) UMAP plots showing analysis of single-cell mRNA sequencing data
from spleen cells previously sorted for CD1d tetramer binding (Zombie negative, B220 negative, TCRb+, CD1d Tet+) of C57BL/6 (WT) mice in
black and VaKI in red. T cells not binding CD1d tetramers, representing predominantly conventional MHC-restricted T cells (Zombie negative,
B220 negative, TCRb+, CD1d Tet negative), are in gray). (B) mRNA expression of aggregated samples and their localization on the UMAP plots
showing expression levels of selected genes with documented expression in WT mouse iNKT cells, including genes for CD3 epsilon subunit
(Cd3e), CXCR6, NK1.1 (Kirb1c), CD8a, and transcription factors Bhlhe40 and PLZF (Zbtb16). Intensity of blue shading correlates positively with
transcript expression level. (C) Bubble plots showing expression levels of transcripts for 26 genes selected for differential expression by
Tet+ versus conventional (Tet negative) T cells. Blue shading indicates average expression level per cell, and size of symbols proportional to
percentage of cells expressing detectable transcript levels. (D) Violin plots of mRNA expression of Cd3e, Cxcr6, Klrb1c and Cd8b in CD1d
tetramer binding cells (Zombie and B220 negative, TCRb+ and CD1d-Tet+) from WT (C57BL/6) and VaKI mice. All plots based on data from
4367 CD1d Tet+ cells from WT, 3403 Tet+ cells from VaKI, 6862 T cells from WT and 10998 T cells from VaKI.
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We also examined the TCR V and J gene expression of

tetramer+ cells and tetramer negative T cells in VaKI compared

to WT mice using single cell cDNA library sequencing. For

purified tetramer+ cells, analysis of TCRa chain sequences

showed the expected predominance of TRAV11 (i.e., coding

for mouse Va14) and TRAJ18 (coding for mouse Ja18). In
contrast, the VaKI tetramer+ cells showed an absence of

TRAV11-TRAJ18 and generally lower expression of mouse

TCRa transcripts due to the dominant expression of the

human Va24-Ja18 transgene (Figure 4A). Examining TCRb
chain transcripts, we observed the expected predominance of

TRBV1, TRBV13 and TRBV29 (encoding Vb2, Vb8 family and

Vb7, respectively). A substantially similar pattern of T cell

receptor b chain gene usage was present in the VaKI tetramer

+ cells, with cells from both strains showing similar diverse TRBJ

(Jb segment) gene usage (Figure 4B). Preferential expression of

Vb2, Vb7 and especially Vb8.1/8.2 was confirmed for both WT

and VaKI tetramer+ cells at the surface protein level using

specific mAb staining (Figures 4C, D). Taken together, these

findings indicated that the majority of CD1dTet+ cells in the

VaKI mice expressed a humanized TCR consisting of the

transgenic human Va24-Ja18 paired with endogenous mouse

TCRb chains similar to those generally used by normal mouse

iNKT cells. An analysis carried out in parallel on TCR gene

expression by tetramer negative T cells revealed highly diverse

and substantially similar TCRa and TCRb gene usage for both

WT and VaKI mice (Supplemental Figure 4). This indicated that

the T cell receptor repertoire of conventional MHC-restricted T

cells was not significantly altered or distorted by the expression

of the TCRa transgene in VaKI mice, which may be explained

in part by the incomplete penetrance of expression of this

particular transgene (23). We also used flow cytometry to

assess the presence of TCRgd expressing T cells and MR1-

restricted MAIT cells, these being the two other well

characterized MHC-unrestricted T cell populations of mice

and humans. This showed these populations to be present in

the spleens of VaKI mice at frequencies comparable to WT

mice, whereas livers of VaKI mice showed a significant increase

in TCRgd+ cells and a moderate reduction in MAIT cells

(Supplemental Figure 5).
Identification of a subset analogous to
iNKT cells in VaKI mice

While our analysis indicated that most of the expanded

CD1dTet+ cells in the VaKI mice lacked the gene and protein

expression profiles expected for canonical iNKT cells, a deeper

analysis identified a subpopulation of cells that were

phenotypically and functionally consistent with such a cell

type. Using antibody staining for NK1.1 and chemokine
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receptor CXCR6, which our gene expression analysis showed

to be highly enriched in iNKT cells of WT mice (Figure 3), we

noted expression of one or both of these markers on a subset of

the Tet+ cells in the VaKI animals (Figure 5A, and

Supplemental Figure 6A). In addition to co-expressing NK1.1,

a substantial fraction of the CXCR6+ Tet+ cells also had

detectable levels of PLZF, which is highly associated with an

iNKT cell program of differentiation (43) (Figure 5B). In

thymus, the levels of PLZF in Tet+ cells varied from low to

high, and this feature together with intracellular staining of

transcription factor RORgT demonstrated distinct populations

of Tet+ cells corresponding to previously described iNKT1,

iNKT2 and iNKT17 subsets in VaKI mice (Supplemental

Figure 7) (46). Functional analysis of responses to aGalCer
stimulation also showed that the rapid cytokine production

characteristic of iNKT cell function was observed in CXCR6+

Tet+ cells, but not in the more numerous CXCR6 negative Tet+

cells (Figure 5D). Based on these results, it was apparent that the

CXCR6+ subset of the Tet+ population was most likely the

functional equivalent of true iNKT cells in the VaKI mice. This

conclusion was further supported by the analysis of CD4 and

CD8 coreceptors on the CXCR6+ and CXCR6 negative Tet+

cells (Figure 5E; Supplemental Figures 6B–D). This showed that

CD8a was excluded to a greater extent from CXCR6+ Tet+ cells

compared to the CXCR6 negative population, which is also a

characteristic of canonical iNKT cells (47). We also observed

that a substantial fraction of the Tet+ CD8a+ cells in VaKI mice

coexpressed CD8b, indicating the presence of CD8ab
heterodimers (Supplemental Figure 6D). This expression of

CD8ab was also observed on a small subset of Tet+ cells in

WT mice, predominantly on the CXCR6 negative subset,

although at much lower frequency than in VaKI animals.

We used tetramer and CXCR6 staining to quantitate the

levels of CD1d-aGalCer specific cells in suspensions from

various tissues in VaKI mice, comparing these to levels in

WT or hCD1dKI mice (Figure 6). For total Tet+ populations,

VaKI mice showed uniquely high proportions and numbers of

cells in the circulating peripheral blood, and relatively high

levels similar to WT mice in the spleen. In other tissues

examined (bone marrow, liver, lymph node), the levels of Tet

+ cells were much reduced compared to WT, and resembled

more closely the levels in hCD1dKI animals (Figure 6B). When

focusing on only the CXCR6+ subset of the Tet+ cells, the

levels in most tissues examined also showed a pattern

indistinguishable from hCD1dKI mice, with the exception of

modest elevations in blood and spleen. Overall, the functional

iNKT cell population of VaKI animals, defined as Tet+ and

CXCR6+ cells, showed a frequency that was much lower than

in WT mice, and more typical for levels observed in humans as

reflected in the previously described hCD1dKI mouse

model (22).
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Glycolipid antigen recognition and
antitumor responses in VaKI mice

To assess the fine specificity of glycolipid antigen recognition

in VaKI mice, we used a panel of five well characterized

synthetic forms of aGalCer that have been studied previously

as potent iNKT cell activators in wild type mice (Figure 7A).

These included the prototypical antigen KRN7000 (32) and the
Frontiers in Immunology 10
derivative 7DW8-5 with a modified fluorphenyl containing acyl

chain (48). Both of these are known to stimulate human iNKT

cells in vitro and have also been found to have detectable

activities in vivo in human subjects (14, 49). Another acyl

chain variant, DB03-4, has been described as a potent Th2

cytokine biasing iNKT cell activator in mice (28), and as a

strong stimulator of human iNKT cells in cell culture (35). In

addition, two variant glycolipids were included which are
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FIGURE 4

T cell receptor gene usage in CD1d tetramer binding cells from WT and VaKI mice. Sorted CD1d-Tet+ cells from WT (B6) or VaKI spleens were
processed for single cell cDNA library construction, and paired TCRa and TCRb chain sequences from 4352 WT and 3186 VaKI cells were
obtained. (A) Heat maps for TCRa chain V and J gene segments. (B) Heat maps for TCRb chain V and J gene segments. (C) Representative plots
showing flow cytometry analysis of CD1d tetramer binding cells (B220 negative, TCRb+ and CD1d-Tet+) in WT and VaKI mice using mAbs
specific for the indicated TCR Vb gene products. Number indicate the percentage of tetramer+ cells staining with each anti-Vb specific
antibody. (D) Bar graphs summarize the Vb specific staining on tetramer binding cells in suspensions from spleen, liver and thymus for groups of
WT (C57BL/6) or VaKI mice (N = 5 for each strain). Bars show mean ± 1SE. *P < 0.05, **P < 0.01 (Mann-Whitney test).
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FIGURE 5

Identification of functional iNKT cells in VaKI mice based on CXCR6 expression. (A) NK1.1 and CXCR6 protein expression, and (B) PLZF and
CXCR6 expression on CD1d tetramer+ cells in spleen and liver of WT (C57BL/6) and VaKI mice. Numbers in quadrants show percentage of total
tetramer+ cells. (C) FACS analysis of intracellular T-bet and PLZF and cell surface NK1.1 on total or CXCR6+ CD1d tetramer+ cells from spleens
of VaKI mice. Staining of total CD1d tetramer+ cells from WT mice is shown for comparison. (D) FACS analysis of staining for intracellular IFNɣ
and IL-2 in CD1d-Tet+ cells from spleen or liver harvested 2 hours after i.v. injection of 4 nanomoles of aGalCer (glycolipid 7DW8-5) or inert
vehicle. Staining with mAb to CXCR6 was included to separately analyze the CXCR6+ and CXCR6 negative subsets of tetramer binding cells.
(E) FACS analysis of CD4 and CD8a expression in splenic CD1d-tetramer binding cells, gated on CXCR6 positive and negative subsets.
Representative plots for one individual mouse among five analyzed are shown, and the graph below shows results for all animals with
mean ± 1SE. ns, not significant *P < 0.05, ****P < 0.0001 (Mann-Whitney test).
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reported to stimulate pronounced Th1 cytokine biased iNKT cell

dependent responses in wild type mice, namely the C-glycoside

a-C-GalCer (C-gly) (31) and the 4-deoxy sphingosine derivative
AH03-1 (29). Using previously established human iNKT cell

clones co-cultured with hCD1d expressing APCs (33), we

observed that these compounds varied in their potency based

on levels of IFNg released into culture supernatants (Figure 7A).

Of particular note were the minimal or low responses of human

iNKT cells to C-gly and AH03-1 in this context. The same panel

of glycolipids was assessed for relative potency of iNKT cell

stimulation by measuring IFNg release in cultured spleen cells

from WT, hCD1dKI or VaKI mice (Figure 7B). This revealed

that the responses of VaKI cells showed a pattern that was more

similar to that observed for human iNKT cell clones, with a

particularly striking reduction in responses to C-gly and AH03-1

in comparison to WT mouse cells. This overall pattern was also
Frontiers in Immunology 12
evident with cultures of cells from hCD1dKI mice, except that

the reduced response to AH03-1 was clearly more pronounced

in the VaKI cultures (Figure 7B). In general, these trends were

confirmed at the level of direct iNKT cell recognition using

cloned iNKT cell hybridoma lines derived from WT versus

VaKI mice (Supplemental Figure 8).

We also compared responses in vivo to aGalCer analogues
in VaKI compared to WT or hCD1dKI mice. For this, we

focused on the comparison of glycolipids AH03-1 and 7DW8-5,

since these showed markedly different potencies for iNKT cell

activation for WT mouse versus human iNKT cells in our in

vitro analyses (Figures 7A-C). At 24 h after a single intravenous

injection of either inert vehicle or glycolipids, animals were bled

and serum levels of IFNg were measured (Figure 7D). Wild type

and hCD1dKI mice showed similar responses to both 7DW8-5

and AH03-1, indicating rapid iNKT cell activation in vivo. In
BA

FIGURE 6

Frequency and numbers of iNKT cells in blood and various tissues of VaKI mice. (A) Representative dot plots from FACS analysis for CD1d-Tet
and TCRb staining of B220 negative live lymphocytes from each of the indicated tissues of WT (C57BL/6), hCD1dKI or VaKI mice. Lymph nodes
were mesenteric nodes, and bone marrow was obtained from femurs. Numbers within the plots are the percentages of B220 negative live
lymphocytes in the regions demarcated as ovals. (B) Bar graphs summarizing FACS results as in A for groups of 4 mice for each mouse strain.
Absolute cell numbers were calculated based on total cell yields from each tissue, and bars show means ± 1SE. **P < 0.01, ***P < 0.001,
****P < 0.0001; ns, not significant (one-way ANOVA with Tukey post-test).
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FIGURE 7

Human-like response of VaKI iNKT cells to aGalCer analogues. (A) Structures of glycolipids DB03-4, C-glycoside (C-gly), AH03-1, 7DW8-5 and
KRN7000. (B) Human iNKT cell clones HDE3 and HDA7 were stimulated with different concentrations of glycolipids in cultures with hCD1d
transfected HeLa cells as APCs. After 48 h, IFNg concentrations in supernatants were determined by ELISA and normalized to levels induced by
100 nmol KRN7000. (C) One million spleen cells from WT, hCD1dKI or VaKI mice were stimulated in culture with the indicated concentrations
of glycolipids. After 72 h, IFNg concentration in the media was determined by ELISA and results were normalized to levels obtained with 40
nanomoles of KRN7000. (D) Four nanomoles of glycolipids (AH03-1 or 7DW8-5) or an equal volume of inert vehicle were administered i.v. into
WT, hCD1d or VaKI mice. After 24 h, sera were collected and the concentration of IFNg determined by ELISA. Asterisks in D indicate
comparisons of glycolipids to vehicle, except for those associated with brackets which compare the two glycolipids to each other. **P < 0.01,
***P < 0.001, ****P < 0.0001, ns, no significant (one-way ANOVA with Tukey post-test).
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contrast, VaKI mice responded strongly to 7DW8-5 but showed

no significant response to AH03-1. This pattern was repeated in

a test of anti-tumor activity of these glycolipids in the three

mouse strains (Figure 8). Using the B16-F10 experimental lung

metastasis model, which is well established to be responsive to
Frontiers in Immunology 14
treatment with KRN7000 or other forms of aGalCer (22, 24, 37,
38), we observed marked reductions in lung tumor burdens

based on calculated areas of melanization on the lung surface

following treatment with either 7DW8-5 or AH03-1 in both WT

and hCD1dKI mice. In striking contrast, only 7DW8-5 was
B

A

FIGURE 8

Anti-tumor activity and altered glycolipid responses in VaKI mice. (A) Groups of WT (C57BL/6), hCD1dKI or VaKI mice (N = 3 - 5 per group) received
intravenous injection of 5 x 105 B16-F10 melanoma cells on day 0. Three days later, glycolipids (4 nmol of AH03-1 or 7DW8-5) or inert vehicle were
administered as treatment. Animals were sacrificed and lungs were extracted on day 15 and digital images obtained for analysis with ImageJ
software to determine area of lung surface covered by melanized tumor. Bar graphs show mean percent of involved area ± 1SE. Asterisks indicate
significant differences for glycolipid treated compared to vehicle treated groups. **P < 0.01, ns, not significant (one-way ANOVA and Tukey post-
test for multiple comparisons). (B) Representative images of lungs an individual mouse from each group showing level of gross tumor involvement.
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effective in VaKI mice, whereas AH03-1 showed no detectable

effect on tumor burden. Thus, antitumor effects displayed a

dependence on glycolipid ligand structure similar to that

observed for iNKT cell responses in vitro and in vivo, with

VaKI animals showing fine specificity for variant forms of

aGalCer that mirrored that of fully human responses in

cell culture.
Discussion

The potential development of new approaches to

immunotherapy involving CD1d-restricted iNKT cells will be

greatly accelerated by accurate mouse models of human iNKT

cell responses. Our approach to the generation of a practical

mouse model for this application has used the incorporation of

three stable genetic modifications to create a substantially

humanized iNKT cell-CD1d axis on the background of an

otherwise unmodified C57BL/6 mouse strain. The fully

homozygous VaKI line that we characterized in the current

study used the previously described human CD1d knock-in mice

to introduce human CD1d expression while simultaneously

eliminating the mouse CD1d coding sequence. The hCD1dKI

mice express a fully human CD1d protein under the control of

endogenous mouse regulatory elements, leading to a

physiologically normal pattern of CD1d expression, regulation

and function (22). By combining this with a human Va24
transgene, we have effectively humanized the principle

recognition component of the TCR of iNKT cells, which is the

main determinant of the fine specificity of glycolipid antigen

recognition (3).

Most previous efforts toward humanized mouse models for

the study of iNKT cells have required the introduction of human

hematopoietic stem cells into individual immunodeficient mice

to populate these animals with human T cells and APCs. A

pioneering study using this approach was first reported by

Gumperz and colleagues, who showed that iNKT cells

developed at detectable levels in NOD/Prkdcscid/gcnull (NSG)
mice engrafted with human fetal thymus, liver and CD34+

hematopoietic stem cells, and could mount responses to

aGalCer in vivo (18). Subsequent refinements of this approach

were published by Tsuji and colleagues, who also incorporated

adeno-associated virus delivery of multiple human cytokine

genes and human CD1d to improve immune cel l

reconstitution and further humanize glycolipid antigen

presentation (19, 50). While these models have been useful for

demonstrating some basic principles of iNKT cell function in

vivo, they suffer from many deficiencies with respect to

incomplete development of a fully functional immune system

and abnormal trafficking, growth and regulation of human cells

within the mouse environment. In addition, such models are

extremely costly and cumbersome to construct, and tend to

suffer from poor reproducibility.
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In contrast, the targeted genetic approaches used to generate

the VaKI strain can produce robust and easily propagated

mouse lines that are cost effective and yield highly

reproducible experimental models. Previous applications using

the simple transgenic approach generated mouse models that

humanized either the CD1d protein or the TCRa chain as the

dominant recognition element in the iNKT cell TCR (23, 51).

These were useful first steps, but did not sufficiently humanize

both the presentation and antigen recognition to capture the

subtle interspecies differences and nuanced features of iNKT cell

responses. The work by Yuan, Cresswell and colleagues leading

to the generation of the hCD1dKI mice was an important

incremental improvement, as these animals showed

preservation of the native pattern of CD1d expression and also

developed levels of iNKT cells that closely matched the levels

observed in normal humans (22). These investigators

subsequently carried the approach further by combining the

hCD1dKI with a human Va24 transgene, while also

incorporating a deletion of the mouse Ja18 gene to eliminate

the development of iNKT cells expressing a native mouse TCR,

thus generating a more completely humanized transgenic model

with respect to both antigen presentation and recognition (24).

To extend the important work by Yuan and colleagues, we

have followed a very similar approach and essentially

reconstructed their model to enable our analysis of this stable

genetic system for studying human-like iNKT cell responses.

There is however one major difference between our VaKI strain
and the animals described previously, which is in the particular

Ja18 knock out line used for the construction of the mice. In the

case of the animals reported by Yuan’s group, a Ja18 deletion

was used that contained a transcriptionally active neomycin

resistance cassette, which causes a major reduction of TCR Va
diversity and a distortion of the TCR repertoire in the

conventional MHC-restricted T cells of these mice (39). In

constructing the VaKI strain, we instead used a more recently

derived Ja18 knockout mouse in which the targeted deletion

does not introduce other perturbations of the TCR repertoire

(25). Our single cell sequencing of TCR transcripts confirmed

that VaKI mice maintained a full repertoire of TCR diversity in

both a and b chains of conventional T cells that closely

resembled that of WT mice (Supplemental Figure 4).

Our analysis of the T cells of VaKI mice revealed strong but

incomplete penetrance of the human Va24 transgene

expression, as expected from previous work on the relevant

transgenic founder line (23). In addition, an expanded

population of cells binding CD1d-aGalCer tetramers was

readily detected in many tissues of these mice. Interestingly, a

deeper analysis of these tetramer binding cells revealed that a

majority of them were most likely not functional equivalents of

canonical iNKT cells, as they lacked many of the key features of

these cells at the levels of protein expression and transcriptional

signatures. Nevertheless, a distinct population corresponding to

functional iNKT cells could be identified in all tissues examined
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by staining for surface expression of CXCR6. This population of

CXCR6+ tetramer binding cells was present in most tissues at

levels similar to or slightly elevated compared to hCD1dKI mice

(Figure 6), which has already been proposed to more closely

approximate iNKT cell numbers in humans than what is found

in WT mice (22). This CXCR6+ population in VaKI mice could

be divided into iNKT1, iNKT2 and iNKT17 functionally distinct

subsets (42, 46) (Supplemental Figure 7), and they responded

rapidly to aGalCer stimulation in vivo, as opposed to the CXCR6

negative subset of tetramer binding cells which did

not (Figure 5C).

The mechanism accounting for the reduced numbers of

bona fide iNKT cells in VaKI compared to WT mice remains

unknown, although a very similar phenomenon has been

previously noted in human CD1d knock-in mice that have no

direct manipulation of the TCR repertoire (22). Differences in

intracellular trafficking to endosomal compartments of mouse

versus human CD1d have been documented (52), and subtle

disruptions of endosomal sorting of CD1d have been shown to

influence the rate of positive thymic selection of iNKT cells (53).

Thus, we speculate that alteration of intracellular trafficking of

CD1d could lead to display of different endogenous lipid

antigens, resulting in reduced efficiency of positive selection or

increased rates of negative selection in the thymus of VaKI mice.

Alternatively, the presence of different endogenous ligands for

CD1d presentation in mouse and human cells could have an

impact on positive or negative selection or peripheral expansion

of iNKT cells to yield the observed reductions in iNKT cells in

all tissues of VaKI mice that we examined except for

blood (Figure 6).

With regard to the expanded CXCR6 negative tetramer

binding cells in VaKI mice, it is unclear at present whether

these represent a physiologically relevant population with

distinct functions. These cells did not respond rapidly upon

first exposure to aGalCer in the manner of canonical iNKT cells.

However, the possibility that they may respond to this stimulus

with delayed kinetics or only after repeated antigen exposure

remains to be tested. While the presence of an expanded

population of atypical tetramer binding cells may represent a

limitation of the VaKI model in terms of accurate modeling of

complex human immune responses or diseases, this may also

provide opportunities to gain insight into the process of T cell

development and the potential functions of rare T cell subsets

that are not currently well studied in humans. For example,

while the expansion of these atypical tetramer binding cells is

likely an artifact of the forced expression of the transgenic TCRa
chain, it is possible that they may correspond developmentally

and functionally to the CD1d-aGalCer reactive T cells lacking

canonical iNKT cell features that have been occasionally

identified in cultures derived from normal human blood (54).

Furthermore, a major conclusion proposed previously by Yuan’s

study of their similar humanized mouse model was their

demonstration of a CD8ab+ iNKT cell subset, which in an
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adoptive transfer model showed anti-tumor activity (24). This

phenotypic subset of iNKT cells has been reported in normal

human PBMC at very low frequencies usually comprising less

than 5% of circulating iNKT cells, but its role in immunity has

not been established (41, 55). We also found that CD8ab was

prominently expressed among CD1dTet+ cells in VaKI mice

(Supplemental Figure 6). However, these CD8ab+ cells were

predominantly contained within the CXCR6 negative fraction of

CD1dTet+ cells, and thus their relationship to the canonical

iNKT cells of the VaKI mice, which are mostly CXCR6+,

remains unclear.

In summary, we propose that the VaKI mice described here

have major practical advantages over the most notable previous

efforts to produce humanized mice for the study of iNKT cell

responses in vivo. Importantly, our results showed that subtle

differences in structure of glycolipid ligands were detected by

iNKT cells in VaKI mice in a manner that was distinct fromWT

mice, and highly suggestive of a more human-like pattern based

on predictions from human cell culture studies. It remains to be

determined if the iNKT cells of VaKI mice can mediate all of the

many effector activities seen in normal non-transgenic cells, and

the sensitivity of the VaKI iNKT cells to induction of anergy and

costimulatory signals following TCR stimulation also will

require further study. Nevertheless, our current results indicate

that the VaKI animals should be useful for preclinical screening

of iNKT cell activators, and will provide a valuable platform for

rapid and cost-effective testing of new vaccines or

immunotherapies that involve manipulation of iNKT cell

responses. In addition, since the VaKI mice superimpose a

potentially more human-like iNKT cell response onto a

fundamentally normal mouse immune system, important cell

interactions and other relevant factors should be preserved in

these animals during the evolution of immune responses. This

strongly implies that the use of VaKI mice for evaluating iNKT

cell directed therapies in models of cancer or other diseases will

offer advantages over standard mouse models for predicting

outcomes in humans, thus accelerating progress in this area of

translational science.
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