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At the level of the gene, mutation is the raw material for natural

selection. However, at the level of the gene regulatory network

(GRN), variation is revealed to selection via promiscuous

regulator activity (‘crosstalk’), which creates opportunities for

genetic innovation that can facilitate adaptation. Many genetic

and environmental featurescancontribute to increasing potential

for crosstalk by facilitating non-cognate interactions between

regulatory elements. If a novel interaction provides a fitness

benefit, rewired GRNs with strengthened affinity for newly forged

connections can be selected. Here, we identify factors that

facilitate opportunities for crosstalk and rewiring between GRNs,

consider whether features of some GRNs make them more

‘rewireable’ than others and if these features might constrain

evolution towards convergent outcomes. We explore patterns

from laboratory and natural microbial populations that show

changes within GRNs during adaptation. Finally, we discuss the

prospects and open questions in the field.
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Features that facilitate adaptation of gene
regulatory networks
Gene regulatory networks (GRNs) evolve through

changes to regulatory connections [1]. ‘Wiring’ (i.e. the

specific connections between regulatory elements) within
www.sciencedirect.com 
a cell’s regulatory network is as susceptible to adaptation

as genome organisation [2,3]. However, factors that create

and determine the evolutionary potential for GRN rewir-
ing (for this and other terms used in the review please

refer to the Glossary in Box 1) are poorly understood.

Extensive sequence and structural similarity within pro-

tein families exist in prokaryotes between components of

different pathways due to past cycles of gene duplication,

divergence, and horizontal gene transfer [4]. This process

of GRN expansion can also result in many regulators

controlling overlapping regulons [5–8]. Together this

confers ‘built-in’ promiscuity and modularity of GRNs

that facilitates rapid evolution (Figure 1d(3)).

Promiscuous binding between regulators and non-cog-

nate binding sites leading to transcriptional activation of

non-target genes is termed crosstalk. In general, crosstalk

between GRNs is low, because misregulation of genes is

likely to reduce fitness in an environment where an

organism is well adapted, and consequently there are

mechanisms in place that aid their insulation [9–11].

However, crosstalk can make new interactions available

to selection that (if beneficial) can facilitate the evolution

of GRNs [12]. Therefore, there exists a balance between

maintaining specificity between TFs and their cognate
binding sites to ensure network efficiency, and relaxing

specificity to enable adaptation of networks. Where this

balance lies remains an open question.

The role of TF binding affinity and range in
facilitating crosstalk
One required change for evolutionary rewiring of a GRN

is for a TF to gain new regulatory function that selection

can act upon. As with neofunctionalisation in enzymes

and other proteins [13], this is commonly thought to occur

through the gain of low-level promiscuous side-activity (i.

e. crosstalk) [14–16]. If new connections are beneficial,

selection can act on mutations in the TF binding domain

or on mutations that change the promiscuously regulated

promoter sequence, to strengthen the binding potential

between the TF and consensus binding sequence —

increasing affinity between the pair [17�]. Promoter

sequences can evolve through very few mutational

changes [18], and shared structural homology between

TFs means binding domains can be modified towards

new targets readily [19] demonstrating the ease with
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Box 1 Glossary:

Autoregulatory loops: where a transcription factor regulates its own

expression.

Crosstalk: a change in transcription of non-target genes that results

from promiscuous binding. Although there are other mechanisms

that can confer crosstalk, they are not relevant to the perspective of

this review.

Cognate binding-sites: an established, co-evolved interaction site

between transcription factor and DNA-sequence that optimises gene

expression in a given environment.

De novo: translating to ‘a new’, in evolution it describes when a

genetic variant or a mutation arises in a population.

DNA-binding domain: a folded protein domain that matches and

binds to a region of DNA, allowing protein–DNA interactions.

Global transcriptional regulators: transcription factors that control

many essential genes in response to environmental changes.

GRN architecture: the interaction profile of regulatory elements

within a GRN.

Neofunctionalisation: when a paralog gene takes on a novel func-

tion after duplication.

Orthologous: homologous genes in different species as a product of

shared common ancestry. These genes often retain original function.

Paralogous: homologous genes in the same genome as a product of

gene duplication and specialisation. These genes often have differ-

ent functions.

Promiscuous binding: when a transcription factor binds to a non-

cognate site

Regulons: a group of genes that are regulated as a single unit.

Rewiring: the emergence of new regulatory interactions between

different GRNs.

Two-component regulatory systems: a subset of GRN that

enables a cell to sense and respond to changing environmental

conditions. Typically, it consists of a sensor histidine-kinase (HK) that

will sense an environmental cue, and upon activation phosphorylate

an associated response regulator (RR) that will initiate transcriptional

changes in response to stimulus.
which beneficial connections can be strengthened under

selection [20,21].

TFs engage with DNA sequences via a DNA-binding
domain [22]. However, these binding sites are not uni-

form in sequence, instead being variations of consensus

sequences [23] with differing binding affinities for the TF

involved [24,25]. In particular, A/T-rich consensus

sequences show lower binding specificity and therefore

promiscuous binding by multiple TFs is more likely

[26��] (Figure 1d(4)). This could explain the high inci-

dence of A/T rich promoter regions in horizontally

acquired genes that may facilitate expression through

crosstalk via non-native TFs [27]. In addition, TFs can

also vary in their potential to bind to multiple sequences.

Detailed analysis of 182 TF-DNA interactions in Pseudo-
monas aeruginosa showed that the number of binding sites

varied substantially, with most TFs binding fewer than
Current Opinion in Microbiology 2022, 67:102140 
100 targets; however, a considerable proportion (�36%)

bound to more, with 8 exceeding 1000 binding sites in the

genome [28]. In a similar study from Fan et al. looking at

TF binding affinity in Pseudomonas syringae, out of

100 TFs with identified binding motifs most bound fewer

than 200 binding sites with 5 showing more than 500 bind-

ing sites [29�]. The consequence of this variation, how-

ever, is unknown in terms of whether TF binding affinity

and range might afford greater opportunity for GRN

adaptation and optimisation in variable environments

through the facilitation of crosstalk.

The role of environment in revealing pre-
existing crosstalk to selection
The interaction of GRN architecture (i.e. abundance and

nature of network connections) and transduced environ-

mental signals determines the concentration of active TF

for controlling the activity of a particular gene [30–32,33�].
Commonly found in prokaryotes, two-component regu-
latory systems (TCSs) are a subsystem of GRNs that

specifically link environmental change to gene expression

as they enable organisms to sense and respond to chang-

ing environmental conditions.

TCSs comprise a sensor histidine kinase (HK) and their

cognate response regulator (RR) (Figure 1a). As with TFs,

more complex environments select for systems with more

precise control and thus more TCSs [1,34], and they are

frequent sites of adaptive mutations during ecological

niche shifts [35,36]. These simple GRNs offer a good

model system to empirically explore the role of the

environment in selecting for novel or rewired GRNs in

terms of the mutational targets and architectures that

readily facilitate adaptation.

Several elegant experimental studies highlight the role of

environmental conditions in determining GRN adaptive

routes, by utilising pre-existing indirect links (which may

be considered crosstalk). For example, the evolutionary

recovery of pili-mediated motility in a Myxococcus xanthus
DpilR strain [37]. In wildtype, NmpR (a RR in the

multicomponent system NmpRSTU) indirectly modu-

lates pilA expression under low oxygen. In normal oxygen,

HK NmpU is active and phosphorylates a hybrid RR-HK

NmpS, but in low oxygen NmpS adopts its role as a HK to

phosphorylate its RR (NmpR) – phosphorylated NmpR

then interacts with pilR binding sites to express pili

associated genes. In a DpilR mutant under selection for

pili-mediated motility, suppressor mutations in HK

NmpU were recovered in seven of eight motile mutants

and in six of these were the only mutation reported. In

addition, activation of NmpR in evolved strains and

deletion of nmpU in the parental DpilR strain is sufficient

to restore motility, which strongly suggests the de novo
mutations as the causative agent of motility phenotype

[36].
www.sciencedirect.com
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Figure 1

(a)

(c) (d)

(b)

Current Opinion in Microbiology

(a)–(d) Environmental and genetic features that create opportunity for crosstalk using a two-component system as an example GRN.

(a) Under normal regulation, the sensor histidine kinase (HK) will receive an extra-cellular signal, leading to phosphorylation of the response

regulator (RR), which in its activate state can bind to its cognate DNA promoter region to initiate transcription of target genes. In some cases, HK

can also act as a phosphatase to de-activate RR. (b) (1) suppressor mutations to phosphatase activity of HK, or (c) (2) loss-of-function mutations

to HK repressor genes lead to an elevated concentration of active TF in the cell that increases the chance of non-cognate interactions. In both

these cases, sufficient environmental signal is necessary to initiate HK activity (represented by extracellular blue spheres); (d) (3) Sequence/

structural homology between TFs confers ‘built-in’ promiscuity and modularity of GRNs that can facilitate promiscuous binding; (d) (4) Similar

www.sciencedirect.com Current Opinion in Microbiology 2022, 67:102140
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(Figure 1 Legend Continued) promoter sequences, or those with low binding affinities for example, those with high A/T content, show higher

propensity to be bound promiscuously by multiple TFs. The strength of transcription is indicated by the thickness of line (with dotted lines

representing weak transcription due to non-cognate binding). Created with BioRender.com.
Similarly, in a non-flagellate DfleQ strain of Pseudomonas
fluorescens, promiscuity and rewiring of nitrogen RR

NtrC was able to rescue flagellar gene expression after

a hyper-activating mutation of its cognate HK NtrB or loss

of the NtrB-repressor GlnK [20], which led to increased

ntrBC expression due to autoregulation. Transcriptome

analysis shows nitrogen compound transport genes are

downregulated in the DfleQ mutant compared to wildtype,

suggesting pre-existing indirect links between the flagel-

lar and nitrogen regulatory networks. Without any muta-

tions to the RR NtrC, DfleQ mutants were able to recover

some activity of the flagellar pathway via mutations that

increased intracellular levels of active NtrC. Once

revealed to selection, second step mutations increased

the affinity of NtrC towards FleQ and away from NtrC

binding sites, which had the dual benefit of improving

flagellar-mediated motility and compensating for an over-

active ntr system. These studies suggest that pre-existing

links between GRNs, regulated by environmental sig-

nals, provided an opportunity for rewiring. It may also

suggest that some ecological settings are more likely to

result in selection of rewired GRNs than others through

activation of promiscuous pathways that, to some extent,

are already present.

It is possible that some TFs may be ‘primed’/more

accessible for rewiring within a GRN, due to a combina-

tion of abundant activating signals and local network

architecture that enables a high concentration of a TF

in its active state. TCSs are simultaneously promiscuous

and stringent [38]. Crosstalk is prevented by HK positive

feedback loops, but mutations that remove repression or

provide a source of constant activating signal are likely to

permit promiscuity through runaway feedback leading to

high regulator expression and activity [2,39–42]

(Figure 1c(2)). These types of mutation are frequently

seen in TCS rewiring events [20,37,43��,44]. Should

promiscuous activity be advantageous, by increasing

the flexibility and adaptability of GRNs, preexisting

activating signals and architectures would likely constrain

which regulators are available for evolutionary innovation

in response to an environmental change, as these rewiring

routes will be revealed to selection first without requiring

time to acquire mutations that alter TF binding specific-

ity. An important step towards unlocking promiscuity

potential of a RR is increasing its concentration of active

form in the cell; this can be achieved through mutation

(Figure 1b(1) and c(2)) or through an increase in activat-

ing signal (Figure 1c(2)).

Flexible GRNs facilitate adaptation
Recent studies have highlighted rewiring of regulatory

networks as an essential adaptive feature for some
Current Opinion in Microbiology 2022, 67:102140 
examples of host colonisation and establishment. For

example, Gopalan-Nair et al. found that adaptation of

Ralstonia solanacearum to a resistant tomato cultivar led

to convergent GRN evolution between independently

evolved lines [45�]. Although each line acquired differ-

ent mutations, they resulted in similar rewiring patterns

of the virulence regulatory network and associated gene

expression profiles. Similarly, Cottalorda et al. followed

the evolution of 108 clinical P. aeruginosa isolates (start-

ing from a single clone type) within the urinary tract

between 48 and 488 days and found that adaptive

mutations were preferentially located in genes encoding

transcriptional regulators, TCSs, and carbon metabolism

[46]. Host adaptation is a barrier not only faced by

pathogens, but also symbionts. Pankey et al. followed

the adaptations in Vibrio fischerii that enhanced colonisa-

tion and establishment in a squid host (Euprymna sco-
lopes). They found multiple independent lines had point

mutations in HK BinK that promoted traits known to

support colonisation and immune evasion, but also

altered quorum sensing that resulted in increased lumi-

nescence at lower cell densities [47��]. The fact that

multiple traits were altered through mutations in one

HK suggests that BinK might participate across more

than one regulatory pathway that assist a symbiotic

lifestyle.

These studies followed the adaptation of bacteria to a

host, but what do we know about how a new pathogen

emerges from an environmental ancestor? Bryant et al.
followed the evolution of a recently emerging patho-

genic species of nontuberculous mycobacterium, Myco-
bacterium abscessus, from a free-living origin [48�]. Rather

than acquiring mutations in regulatory genes de novo,
they found that horizonal gene transfer of global tran-
scriptional regulators was an important mechanism for

generating large scale phenotypic variation that created

opportunities for adaptive change. Looking at the pro-

cess in reverse, Yebra et al. [49�] discovered that genome

remodelling in the bacterium Staphylococcus aureus subsp.

anaerobius (which evolved from an S. aureus ancestor)

accompanied its transition from a versatile multi-host

bacterium to a fastidious niche-restricted pathogen of

ruminants. In particular, acquisition of insertion

sequence elements interfered with expression of down-

stream genes; reduced expression was predicted via

altered promoter or DNA binding sequences of an

inducer, and increased expression by elimination of

repressor binding sites. These mechanisms effectively

uncoupled target genes from their regulatory elements

which enabled substantial rewiring of the genome

through disruption of promoter regions and operon struc-

ture [49�].
www.sciencedirect.com

http://https://biorender.com/


Crosstalk between gene regulatory networks facilitates bacterial adaptation Taylor et al. 5
GRNs also play an important role in antimicrobial resis-

tance [50,51] and are a potential target for new antimi-

crobials. Patel et al. [43��] showed that in Escherichia coli,
mutations in the feedback regulator protein MgrB pre-

ceded and facilitated the evolution of drug resistance to

the antibiotic trimethoprim. Normally, MgrB attenuates

PhoPQ through negative-feedback, however inactivation

mutations in MgrB resulted in PhoPQ-mediated trimeth-

oprim tolerance. Of particular interest is the role of the

selective environment in the outcome of GRN adaptation

under further exposure to trimethoprim. Under strong

selection, MgrB mutants acquire resistance via additional

mutations in dihydrofolate reductase; however, under

weak selection, compensatory mutations in response to

an overactive PhoPQ system inactivate its target RpoS

[43��]. The role of the selective environment in deter-

mining the evolutionary trajectory of GRN rewiring

events remains understudied and is of likely crucial

importance to understanding bacterial adaptation to eco-

logical shifts more generally.

Conclusions
GRNs are dynamical such that connections are forged and

lost frequently across an evolutionary timescale. Recent

research shows that GRN restructuring is an essential part

of ecological niche switching and highlights the impor-

tance of rewiring in newly emerging pathogens and host

adaptation. However, we know very little about the

evolutionary drivers behind these rewiring events and

the role of the environment in shaping GRN

arrangement.

Crosstalk is necessary to reveal new TF-DNA binding

interactions to selection, an essential process in GRN

rewiring. A TF’s binding affinity and position within a

GRN are emerging as important factors for creating

opportunity for crosstalk, but how these factors interplay

to drive GRN evolution are far from clear. In particular,

there is a lack of data that openly links the ecological

setting with opportunity for GRN rewiring via ‘tinkering’

[52] of pre-existing non-cognate interactions. We have

discussed the enormous range of binding potential

between different TFs within a bacterium; as an exam-

ple, P. aeruginosa shows the number of binding sites per

TF range between 1 and 2407 [28]. We have also men-

tioned that features of GRN architecture, such as auto-
regulatory loops, can make some GRNs easier targets for

selection [40], especially when pre-existing links exist.

But this leads to a number of unanswered questions that

suggests exciting opportunities for research in this field:

Why does such variation in the average number of TF

binding sites exist, is this variation a legacy or a product of

selection and what does it mean in combination with

architecture and ecological conditions in terms of rewiring

potential between GRNs? Combining insights from lab-

oratory studies with natural datasets is an opportunity to

uncover both the mechanisms and consequences of
www.sciencedirect.com 
genetic and ecological factors driving opportunity for

crosstalk that may ultimately facilitate GRN rewiring

and ecological niche-shifts.
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