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Abstract8

Medical image classification is an important and challenging problem, since

images are usually complex, variable and the amount of data is relatively con-

strained. Selecting optimal sets of features and classifiers is a crucial problem in

this area. In this paper it is proposed an image classification method, named

Hybrid CNN Ensemble (HCNNE), based on the combination of image features

extracted by convolutional neural networks (CNN) and local binary patterns

(LBP). The features are subsequently used to build an ensemble of multiple

classifiers. More specifically, the Euclidean distance between LBP feature

vectors of each training class and the confidence of CNN features classified by

support vector machines are employed to compose the input of a multilayer

perceptron classifier. Finally, these features are also used as input to other

classifiers to compose the final voting ensemble. This approach achieved an ac-

curacy similar to those of other state-of-the-art methods in texture classification

and showed an improvement of 10% over the previously reported identification

of a group of odontogenic oral cyst histological images, at a low computational

cost. Three major contributions are presented here: 1) the combination of low

and high level features assigning weights based on the confidence of the features

for texture recognition; 2) the combination of automatically learned deep fea-

tures with LBP by a multilayer perceptron based on the feature confidences;

3) state-of-the-art results are obtained in the odontogenic cyst categorization

problem.
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1. Introduction11

Neural networks are powerful computational tools for performing tasks12

that would otherwise require human discernment and reasoning. Such algo-13

rithmic approaches are presently used in many aspects of modern society, from14

social media content recommendation [1], medical diagnosis [2] and DNA-RNA15

sequences predictions [3] to name a few. A common tasks entrusted to neural16

networks is that of image classification. Various new approaches and variations17

emerge every year, aiming at the design of methods with better accuracy and18

generalization, or less computational cost.19

In this context, deep convolutional networks have shown outstanding per-20

formance in certain problems of image classification. However, dealing with21

complex, heterogeneous and small datasets (common in the medical domain)22

still poses an important challenge. An additional relevant problem is choos-23

ing the optimal set of approaches for a particular application, among the vast24

diversity of existing classification methods.25

There are several possible ways of extracting features from images and those26

have an important impact on the overall performance of the classifier algorithms.27

Some features can be obtained from simple rules, for example the Histograms of28

Oriented Gradients (HOG) [4] (often called ’low-level’ features) while convolu-29

tional neural networks (CNN) can be considered as ’high-level’ feature extraction30

methods because of the computational complexity involved.31

Choosing the optimal features can be decisive in the success rate of a classifi-32

cation method. One promising strategy is to combine different types of features,33

as recently explored by Forcén et al. 2019 [5]. The research question in this34

study is, in this way, whether such combination of low and high level features35
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could be beneficial in texture image recognition, especially when small amount36

of data is available for training, as usual in medicine. It is also investigated how37

different classifiers can be combined by an ensemble to improve the performance38

of the individual classifiers. The Hybrid CNN Ensemble (HCNNE) model pro-39

posed in this paper is a new approach to feature combination that uses deep40

convolutional networks to extract features and simple multi-layer perceptron41

network to find the best feature combination. This work also approaches the42

challenges of classification tasks mentioned earlier, by implementing an ensemble43

of classifiers, which has showed positives results [6].44

The texture datasets UIUC [7] and UMD [8] were used here to test the45

performance of the computational method proposed here. Since those datasets46

are widely used in classification research, the results obtained can be easily47

compared with those found elsewhere in the literature (the method achieved48

a classification performance comparable with other state-of-the-art methods).49

The methodology was also applied to the practical problem of supervised his-50

tological image classification of two types of odontogenic cysts of the jaws, a51

diagnostic task which is routinely done by specialists.52

Contributions and novelties of this work may be summarized as follows:53

1. This is the first time that such ensemble scheme based on a multi-layer54

perceptron is associated with convolutional neural features;55

2. state-of-the-art results were obtained on the cysts database and the results56

were competitive with the state-of-the-art on benchmark databases;57

3. the combination of low and high level features, differing from usual proto-58

cols in deep learning by the use of feature confidence to feed a multilayer59

perceptron classifier as part of the ensemble.60

This work presents in the following section an overview of materials and61

papers related. The following section contains some theoretical foundation and62

more information about the methods applied in this study. The “Experiments”63

section approaches the details of the HCNNE model formulation, implemen-64

tation and performance tests used, including a brief introduction to the cyst65
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classification problem. The last two sections are dedicated to results analysis66

and conclusions.67

2. Related works68

Deep learning techniques have played fundamental role in image recogni-69

tion in recent years. This subject has been thoroughly approached, for example,70

in Goodfellow et al. 2016 [9]. A further advance was the introduction of resid-71

ual networks (ResNet) in Kaiming He et al. 2016 [10], with the use of transfer72

learning for pre-training networks in larger databases, such as ImageNet [11].73

In Kumar et al. 2016 [12] those methods were applied to medical images, with74

a new approach that included fine-tuning. Recent works on this research field75

have also shown outstanding results by combining machine learning methods76

with other approaches, such as in Bacanin et al. 2022 [13] and Malakar et al.77

2020 [14].78

Another related strategy that has attracted interest in image recognition is79

the use of features extracted by convolutional neural networks (CNN) [15] as80

input to multiple classifiers. The use of CNNs and feature combinations have81

been exploited in recent studies, with promising results, such as in Ragab et al.82

2020 [16], Attallah et al. 2020 [17, 18] and Anwar et al. 2020 [19]. Examples of83

classifiers that have been used are the Random Forest (RF) [20], Support Vector84

Machine (SVM) [21], Linear Discriminant Analysis (LDA) [22] and k-Nearest85

Neighbor (KNN) clustering [23].86

Each of those classifiers has its own benefits and this naturally prompts the87

question of which classifier would be best to use. The informally called “No88

Free Lunch Theorem” [24] is an optimization statement often used in machine89

learning. In this context, it hypothesizes that it is not possible to have one90

single classifier that outperforms every other approach, no matter the task.91

The theorem and its implications in machine learning were discussed in Ho et92

al. 2002 [25].93

To address this issue, a promising approach is to combine every classification94
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through an ensemble of classifiers. This strategy has been used in previous works95

by Rokach et al. 2010 [26] and Ye Ren et al. 2016 [6]. Recent studies in medical96

applications also attested the potential of ensembling approaches, as in Ragab97

et al. 2019 [27], Attallah et al. 2022 [28] and Fouad et al. 2017 [29].98

As mentioned earlier, the HCNNE model proposes a combination of image99

features extracted by different approaches. The ’low-level’ feature extraction100

method chosen here was the local binary patterns (LBP) [30]. This has been101

extensively studied in previous texture classification works, such as Ojala et al.102

2002 [30], Zhenhua Guo et al. 2010 [31] and Li Liu et al. 2017 [32].103

The combination of image features was inspired by the work of Forcén et104

al. 2019 [5], applied to classification problems. This work differs from that of105

Forcén in using convolutional neural networks (CNN) as the ’high-level’ feature106

extractor and adds a classifier ensemble to the procedure. This strategy of107

combining ’high’ and ’low-level’ features is also investigated in Attallah et al.108

2020 [33].109

The method presented is applied to a supervised classification problem of110

two types of jaw cysts from histological images. This task poses a significant111

challenge to computational algorithms, and otherwise would require the careful112

analysis of expert histopathologists. The use of deep learning in medical images113

and its challenges has been discussed in Litjens et al. 2017 [2]. The specific114

problem of odontogenic cysts classification was previously investigated by Lan-115

dini 2006 [34] and Florindo et al. 2017 [35]. The results achieved in those papers116

are used here as benchmarks for comparison with the methodology presented.117

3. Materials and methods118

3.1. Feature extraction119

Convolutional neural networks (CNN) are composed of convolutional lay-120

ers, activation layers and pooling layers. The first layer is based on the convo-121

lution operation in the discrete and two dimensional domain [9]:122
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S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n),

where K is the network kernel, I is the input image, S is the obtained feature123

map and ∗ is the convolutional operator.124

A way of visualizing this is sliding a matrix of small size (the kernel) along a125

matrix of larger size (input image) and an operation which computes a weighted126

sum in every possible position of the matrix, resulting in a new matrix (the127

feature map).128

Figure 1: Scheme of convolutional application.

This operation carries important properties, one of those is parameter shar-129

ing, meaning that the same kernel is used along the entire image, significantly130

decreasing the number of parameters that need to be tracked and optimized.131

That does not only reduce computational burden, but also means that every132

learned feature (such as lines or edges) can be found anywhere in the picture.133

After the convolutional layer, an activation function is applied. The most134

common one (and used here) is the Rectified Linear Unit (ReLU) that assumes135

the value zero for negative inputs, and the input value itself for positive ones.136

A pooling layer then reduces the dimension of the resulting matrix by merg-137

ing a pixel with its neighbors according to a given function. One of such func-138

tions is the max pooling operation, which returns the highest value in a pixel139

neighborhood.140

Convolutional neural networks (CNN) have the property of detecting fea-141

tures with increasing complexity along its layers. For example, in a network142

6



Figure 2: Scheme of convolutional neural network.

trained for identification of human faces, the first layers might detect lines and143

edges, while the last ones might be able to detect more complex structures, such144

as eyes. This property is what justifies the extraction of feature vectors from145

the last layers [36], since the aim is to work with features that carry the highest146

level information about the images. Those features were used here as inputs for147

the classifiers. Figure 3 shows examples of feature maps extracted from cysts148

samples by some of ResNet’s convolutional layers.149

Figure 3: Examples of feature maps from some of the convolutional layers.
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3.2. Classification150

Classifiers are used in order to predict the class of given data point. In151

this work, the following methods were used:152

• Fully Connected Layer (FCL): simple artificial neural network with153

one hidden layer of size 4n, where n is the number of classes.154

• Support Vector Machine (SVM): the algorithm tries to find a hyper-155

plane that best separates the given data points [37]. Suppose a binary156

classification problem with dataset (xi, yi), where i = 1, . . . , n. In this157

case, the SVM model consists in solving the following optimization prob-158

lem:159

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjK(xi, xj)αiαj ,

subject to 0 ≤ αi ≤ β, i = 1, . . . , n,

n∑
i=1

yiαi = 0,

where β is a hyperparameter, K is the kernel function and αi are Lagrange160

multipliers.161

• k-Nearest Neighbors (KNN): consists in verifying the class of all data162

points within the neighborhood of a given data point, and then classifying163

this data point according to the most frequent class among its neighbors.164

[23].165

• Random Forest (RF): combination of multiple decision-trees with sub-166

sampling strategies [20].167

• Linear Discriminant Analysis (LDA): based on searching for a lin-168

ear combination of parameters that best separates the classes. This is169

a statistic method that uses the concepts of expectation and covariance,170

given by the following equations:171
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−→w · −→x > c

−→w = Σ−1(−→µ1 −−→µ0)

c =
1

2
(T −−→µ0

TΣ−1−→µ0 +
−→µ1

TΣ−1−→µ1),

where −→x is the vector representing the data point, −→µ is the expectation172

vector, Σ is the covariance matrix and T is a predefined threshold [22].173

3.3. Feature combination174

Forcen et al. 2019 [5] exploited a different strategy, the premise being that175

low level feature vectors combined with high level features can increase the176

classification accuracy. 1
177

Local Binary Patterns (LBP) is a simple yet efficient method for texture178

recognition. It consists of thresholding the image pixels in order to label each179

pixel as a binary value. This method was chosen as the low level feature ex-180

tractor because of its simplicity. The features extracted by LBP are more likely181

to carry simple traits and patterns, which are important in texture recognition182

tasks. On the other hand, CNNs are known to generate highly complex features183

extracted from the last network layers and they were used as the high level184

method.185

After applying LBP, every image is represented as a feature vector and those186

vectors were used to calculate the Euclidean distances between each testing and187

training images. Given a test image, the distance to every class was defined as188

the average distance between the five nearest images from each class, i.e. for189

every test image, there is a distance vector associated190

1Here ’level’ means the complexity of the feature, i.e. how much information about the

image it holds.
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−→
d = [d1, d2, . . . , dm],

where m is the number of classes.191

The feature vectors extracted with the CNN were submitted to a SVM clas-192

sifier, from which a confidence vector was obtained. This vector contains the193

confidence of the classifier that a particular image belongs to each class:194

−→r = [r1, r2, . . . , rm]

This confidence vector −→r is obtained by using Platt scaling [38], optimizing195

parameters A and B such that:196

P (yi|xj) = ri =
1

1 + exp(A ∗ Φ(xj) +B)
,

where Φ(xj) returns the distance of the sample xj to the hyperplane optimized197

by the SVM method [39].198

In order to combine both features into the same classifier, the low level199

features are used to calculate Euclidean distances between a test image and the200

training images from each class in some neighborhood. This procedure is similar201

to the KNN algorithm and it generates a distance vector
−→
d associated to each202

test image.203

On the other hand, the high level features were used as input to an SVM204

classifier, resulting in score vectors −→r associated to each test image. Note that205

the score vector represents how confident the classifier is that each test image206

belongs to some class.207

In summary, a vector
−→
d obtained from low level features and a vector −→r as-208

sociated with high level features are used. To combine those two vectors,
−→
d and209

−→r , three different approaches were employed, resulting in three new classifiers,210

that were named “Feature Combination” (FC):211

• SVM + LBP (FC1): this combination was accomplished using the212

distances to calculate weights (wi) for the score vectors (−→r ):213
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wi =

 1

m

∑
j=1...m

j ̸=i

dj

 /di

−→rw = [w1r1, w2r2, . . . , wmrm]

• SVM + LBP + FCL (FC2): the score vector (−→r ) is concatenated with214

the distance vector (
−→
d ) and used as input for training a fully connected215

neural network with one hidden layer. This network is responsible for216

determining the best combination of scores and distances. The output is217

the classification of the image class. The class i in this case is assigned218

by solving the optimization problem219

argminiC(Wiσ(
∑

Vjkrdk)),

where C is the cross-entropy loss, Wi are weights connecting the i
th output220

to the hidden layer, σ is the sigmoid function, V is th matrix of weights221

connecting the input and hidden layer, and rd is the vector resulting from222

the concatenation of r and d.223

Figure 4: Visualization of SVM + LBP + FCL (FC2) method.

• SVM + LDA + LBP + FCL (FC3): similar to the previous224

classifier, but concatenating the SVM score vector with the LDA score225

vector and the distance vector.226
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4. Proposed Method227

The Hybrid CNN Ensemble proposes classifying texture images using com-228

binations of features extracted from convolutional neural networks (CNN) and229

local binary patterns (LBP), then applying those features to multiple classifiers230

and using an ensemble strategy to make the final classifications. The ratio-231

nale behind the choice of LBP to provide the low level features here is twofold.232

First it is a straightforward and easy to interpret descriptor successfully used233

in texture recognition for several decades. Second it is well known for its high234

computational efficiency, being the faster algorithm among the most popular235

texture local descriptors. This model can be summarized into three steps:236

• Feature extraction: the CNN extracts feature vectors from the image237

samples;238

• Classification: each individual classifier is trained to predict the test239

samples classes (the classifiers are divided into standard ones and those240

that use the feature combination strategy);241

• Ensembling: combines the decision of every individual classifier through242

simple voting.243

These steps are represented in Figure 5.244

4.1. Ensemble245

Ensemble learning is a strategy widely used in machine learning. It con-246

sists of combining multiple classification methods in order to achieve better247

performance. The generalization and averaging obtained by ensembles can also248

be a workaround to problems like choosing the best classifier or getting stuck in249

local optimal minima. Using multiple different strategies simultaneously might250

also compensate for weaknesses and individual anomalies of each classifier.251

In this study, each of the eight classifiers implemented (FCL, SVM, KNN,252

RF, LDA, FC1, FC2 and FC3) results in predictions for the classes of the test253
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Figure 5: Scheme representing the entirety of the model.

images. To decide the final classification, an ensemble [26, 6] was implemented,254

where each classifier prediction represents a vote.255

To increase accuracy, the worst two classifiers were removed from the en-256

semble. This is done by using a validation set to compare the accuracy hi257

of each individual classifier i = 1, . . . ,m after training is over, where m is the258

total number of classifiers. The remaining trained classifiers are then applied to259

the test dataset, returning a predicted class yji ∈ {1, . . . , n} for each test image260

sample j, where n is the number of classes.261

The ensembling strategy proposed here consists in choosing the most fre-262

quent class among the predictions from the individual classifiers, yji for i =263

1, . . . , (m− 2). In other words, the class with the most “votes” corresponds to264

the final classification. When it comes to a draw, the classifiers with the next265

worst performance is removed, one by one, until there is no longer a tie.266

This approach has many attractive features, such as not requiring a large267

database for training, nor high performance computing. Also, combining classi-268

fiers to improve accuracy is convenient because avoids the need of inserting new269

training data to the network.270
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4.2. Parameters settings271

The databases used in this work were divided equally and randomly be-272

tween test and train subsets. Regarding the architecture of the network, the273

chosen approaches were the pre-trained models ResNet [10] and AlexNet. The274

strategies used for computing the network parameters were as follows:275

• Fine-tuning: after the network is pre-trained on ImageNet [11], all the276

parameters are optimized in the current database.277

• Fixed feature extraction: the network is also pre-trained on ImageNet278

[11], but only parameters of the final layer are optimized in the current279

database.280

Regarding the other parameters of the network, such as kernel size and281

strides, were used the standard values for ResNet and AlexNet, pre-trained on282

ImageNet. The results shown in this section were obtained by using 15 epochs,283

step size 7 and learning rate 0.0001.284

5. Experiments285

The accuracy is defined as the percentage of images classified correctly. Ev-286

ery configuration of the network was ran ten times, then the average accuracy287

and the standard deviation were calculated.288

In medical applications, it is also important to measure the performance per289

case, or case-wise accuracy. This means that after the images have been labeled290

by the HCNNE, a simple ensemble by voting was used to decide the classifica-291

tion for each case. Therefore, case-wise accuracy is defined as the percentage of292

cases classified correctly.293

The precision-recall curve was also used in order to calculate the average294

precision-recall score. This method gives a more reliable way of measuring the295

network performance. Precision, recall and F1-score values were also computed296

for the same purpose, according to the respective formulations.297
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Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1-score =
2(Precision× Recall)

Precision + Recall
,

where TP , FP and FN represent, respectively, the total amount of samples298

classified as true positives, false positives and false negatives.299

Other parameters observed were the average computing time for each run of300

the code and the average confusion matrix. The algorithm was implemented in301

Python 3.7 with the libraries Pytorch and Scikitlearn, the code is available on302

GitHub 2.303

5.1. Cysts dataset304

The dataset consisted of histological images of oral cysts, stained with305

haematoxylin and eosin). Cysts are pathological fluid-filled (sac-like) lesions,306

lined by epithelium. There are several types of cyst; here the interest was to307

investigate the potential for supervised classification of odontogenic keratocysts308

(OKC) versus the more common radicular cysts. OKCs can occur on their309

own (called ’sporadic OKCs’) or as part of the Gorlin-Golz or Basal Cell Nae-310

vus syndrome (here referred to as ’syndromic’ OKCs) [34]. The morphological311

differences between the two sub-types of OKC have been questioned, mostly312

because they are difficult to assess visually, and therefore pose an interesting313

diagnostic problem. While radicular cysts are inflammatory in origin (asso-314

ciated with the roots of non-vital teeth, mostly as consequences of untreated315

dental caries), OKCs show active growth and higher recurrence rates and this316

has raised long-standing arguments of whether OKCs should be considered be-317

nign cystic neoplasms rather than cysts. The database contained 65 images of318

2https://github.com/MarinaRocha29/Hybrid-CNN-Ensemble

15



sporadic OKCs (denoted by k) from 13 cases, 40 images of syndromic from 8319

cases (denoted by s) and 45 images of radicular cysts (denoted by r) from 9320

cases (i.e. five images from each case, originally captured with a ×40 objective321

and resized to 227 × 227 pixels).322

Given the medical application of the problem, there are some classifications323

that can be of diagnostic relevance [40], [35]:324

• k × s × r: distinguishing between all of the classes.325

• ks × r: distinguishing between OKCs and radicular cysts.326

• k × s: classifying the sub-types of OKCs, sporadic and syndromic.327

Figure 6: A case of sporadic odontogenic keratocyst (left) and a radicular cyst (right).

5.2. UMD and UIUC datasets328

Given the popularity of benchmark databases of texture images, the per-329

formance of HCNNE on UIUC [7] and UMD [8] were obtained for comparison330

purposes. Those are datasets widely used in multiple state-of-the-art works on331

texture classification.332

The UIUC and UMD datasets both contain 25 classes with 40 images each,333

resulting in 1000 images for each dataset. Every class has photographs of tex-334

tures such as bark, marble and fur (for the UIUC dataset), wood floor, tile floor335

and flowers (for the UMD dataset) as shown in Fig. 7 and 8. The images are336

sized 1280 × 960 (UMD) and 640 × 480 (UIUC) pixels, with scale, rotation and337

viewpoint changes within each class.338

6. Results and discussion339

Figure 9 shows the average accuracy and standard deviation for each network340

configuration. The bars represent the accuracy for each individual classifier and341

16



Figure 7: Examples of images from the UIUC texture dataset.

Figure 8: Examples of images from the UMD texture dataset.

for the ensemble approach. The best accuracy was achieved, in both cases, by342

the fine-tuned ResNet with the ensemble approach.343

Figure 9: Average accuracy on UIUC and UMD texture databases.

Tables 1 and 2 show the elapsed time of the feature extraction and each indi-344

vidual classifier training procedures, followed by the total amount of time spent345

running the model. These results were obtained with an Intel(R) Core(TM)346
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i7-8550U CPU 1.80GHz, 1992 Mhz, 4 Cores, 8 Logical Processors, 16GB RAM,347

GPU NVIDIA GeForce MX150 on Windows 10 version 1909, with Python 3.7.348

Table 1: Average computing time in UIUC database.

hh:mm:ss ResNet AlexNet

Structure Fine-tuning Fixed Fine-tuning Fixed

CNN (feature extraction) 00:28:55 00:21:34 00:27:37 00:19:10

FCL 00:01:08 00:00:51 00:01:21 00:00:47

LDA 00:00:01 00:00:01 00:00:01 00:00:01

SVM 00:00:12 00:00:09 00:00:14 00:00:07

RF 00:00:01 00:00:01 00:00:01 00:00:01

KNN 00:00:01 00:00:01 00:00:01 00:00:01

FC1 00:01:58 00:01:33 00:01:26 00:00:58

FC2 00:01:09 00:01:05 00:01:01 00:00:36

FC3 00:01:10 00:00:51 00:00:59 00:00:33

Total 00:34:52 00:26:09 00:32:42 00:23:04

Table 2: Average computing time in UMD database.

hh:mm:ss ResNet AlexNet

Structure Fine-tuning Fixed Fine-tuning Fixed

CNN (feature extraction) 00:56:42 00:47:39 00:49:19 00:39:56

FCL 00:03:08 00:02:47 00:03:00 00:02:36

LDA 00:00:01 00:00:01 00:00:01 00:00:01

SVM 00:00:28 00:00:22 00:00:28 00:00:18

RF 00:00:01 00:00:01 00:00:01 00:00:01

KNN 00:00:01 00:00:01 00:00:01 00:00:01

FC1 00:03:42 00:03:09 00:03:12 00:02:50

FC2 00:02:50 00:02:32 00:02:09 00:02:02

FC3 00:02:39 00:01:55 00:01:46 00:01:27

Total 01:08:16 00:58:10 01:01:23 00:50:13
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Another way of measuring the performance of the network is using reliability349

measures such as precision-recall curves and confusion matrices. To illustrate350

the HCNNE performance, Figure 10 shows examples of confusion matrices using351

AlexNet with fine-tuning. In Tables 3 and 4 is shown the average precision,352

recall and F1-score values for each network architecture. The values obtained353

also attest the efficiency of the strategy proposed in this work.354

Figure 10: UIUC (left) and UMD (right) confusion matrices.

Table 3: UIUC dataset HCNNE performance scores.

ResNet AlexNet

Structure Fine-tuning Fixed Fine-tuning Fixed

Precision 0.99 0.96 0.85 0.76

Recall 0.98 0.98 0.84 0.77

F1-score 0.99 0.98 0.84 0.76

Table 4: UMD dataset HCNNE performance metrics.

ResNet AlexNet

Structure Fine-tuning Fixed Fine-tuning Fixed

Precision 1.00 1.00 0.92 0.86

Recall 1.00 1.00 0.91 0.84

F1-score 1.00 1.00 0.91 0.83

When it comes to classification problems, it is important to compare results355
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Figure 11: Confidence intervals for different methods on UIUC and UMD databases.

with those of previous works applied to the same databases. Table 5 shows such356

comparisons. The ensemble accuracy is similar to the best results obtained by357

several state-of-the-art methods. Figure 11 shows the confidence interval for358

some illustrative approaches presented in Table 5. The approach of confidence359

interval for a proportion is used, where the event “correct classification” is360

modeled as a binomial distribution. That figure confirms the competitiveness361

of the proposed method in such benchmark applications.362

Figure 12 shows the average accuracy and standard deviation for each con-363

figuration of the network in the classification of the oral cysts investigated.364

Clearly, the problem of identifying OKCs from radicular cysts (ks × r) is the365

easiest one, while distinguishing between the two OKCs sub-types (k × s) is the366

most difficult one.367

Similar results were found in the case-wise approach, as shown in Figure368

13. The ensemble has outperformed every individual classifier in all the ex-369

periments. Classifiers using feature combination consistently reached higher370

accuracy values.371

Tables 6 and 7 report the time spent on one run of the code. Considering the372

challenge of the task and the relatively modest hardware used in this experiment,373

these times are competitive and suggest the suitability of using the proposed374

algorithm in real world situations. Tables 8 to 11 list the average precision, recall375
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Table 5: Comparison with state of the art methods.

Method UIUC (%) UMD (%)

MFS [41] 92.7 93.9

LBP [30] 88.4 96.2

BSIF [42] 73.4 96.1

CLBP [31] 95.8 98.6

PLS [43] 96.6 99.0

SIFT + LLC [44] 96.3 98.4

SIFT + VLAD [44] 96.5 99.3

ScatNet [45] 88.6 93.4

SIFT + IFV [44] 97.0 99.2

FV-CNN AlexNet [46] 99.2 99.7

FC-CNN VGGM [46] 94.5 97.2

OTF [47] 98.1 98.8

WMFS [41] 98.6 98.7

BIFs SRC [48] 99.0 99.5

FC-CNN + FV-CNN AlexNet [46] 99.3 99.7

FV-CNN VGGM [46] 99.6 99.9

FC-CNN + FV-CNN VGGM [46] 99.6 99.8

FV-CNN VGGVD [46] 99.9 99.9

Ensemble 98.3 99.5
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Figure 12: Average accuracy on the cysts database.
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Figure 13: Average case-wise accuracy on the cysts database.
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and F1-score values. The values obtained were compatible with the respective376

accuracy seen in Figures 12 and 13.377

Table 6: Average computing time.

hh:mm:ss k × s k × s × r ks × r

Structure Fine-tuning Fixed Fine-tuning Fixed Fine-tuning Fixed

ResNet 00:03:17 00:03:12 00:07:41 00:05:36 00:07:02 00:04:15

AlexNet 00:03:42 00:02:42 00:06:20 00:05:06 00:06:11 00:04:37

Table 7: Case-wise average computing time.

hh:mm:ss k × s k × s × r ks × r

Structure Fine-tuning Fixed Fine-tuning Fixed Fine-tuning Fixed

ResNet 00:04:53 00:02:31 00:07:54 00:03:56 00:06:35 00:03:14

AlexNet 00:03:43 00:01:53 00:05:45 00:02:42 00:05:50 00:02:39

Table 8: Cysts dataset HCNNE performance metrics with ResNet.

k × s k × s × r ks × r

Structure Fine-tuning Fixed Fine-tuning Fixed Fine-tuning Fixed

Precision 0.81 0.83 0.86 0.88 0.97 0.99

Recall 0.78 0.77 0.86 0.83 0.97 0.98

F1-score 0.79 0.78 0.86 0.84 0.97 0.98

Table 9: Cysts dataset HCNNE performance metrics with AlexNet.

k × s k × s × r ks × r

Structure Fine-tuning Fixed Fine-tuning Fixed Fine-tuning Fixed

Precision 0.74 0.78 0.74 0.73 0.93 0.87

Recall 0.72 0.73 0.73 0.69 0.88 0.81

F1-score 0.73 0.74 0.73 0.70 0.90 0.83

Tables 12 to 17 are the average confusion matrices. The columns contain378

the predictions and the rows, the expected classifications. The values represent379
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Table 10: Cysts case-wise dataset HCNNE performance metrics with ResNet.

k × s k × s × r ks × r

Structure Fine-tuning Fixed Fine-tuning Fixed Fine-tuning Fixed

Precision 0.60 0.62 0.65 0.72 0.94 0.92

Recall 0.60 0.62 0.61 0.65 0.90 0.86

F1-score 0.60 0.62 0.62 0.65 0.92 0.88

Table 11: Cysts case-wise dataset HCNNE performance metrics with AlexNet.

k × s k × s × r ks × r

Structure Fine-tuning Fixed Fine-tuning Fixed Fine-tuning Fixed

Precision 0.61 0.58 0.69 0.56 0.77 0.87

Recall 0.60 0.58 0.69 0.55 0.78 0.87

F1-score 0.61 0.58 0.69 0.55 0.77 0.86

the percentage of samples classified over the total of samples in the expected380

class. Note that since the values are averaged, some values do not result in an381

integer number of samples.382

Table 12: Average confusion matrix for k × s case.

Structure Fine-tuning Fixed

k s k s

ResNet k 0.92 0.08 0.88 0.12

s 0.33 0.68 0.41 0.60

AlexNet k 0.92 0.08 0.84 0.16

s 0.64 0.36 0.35 0.65

Figure 14 shows two examples of precision-recall graphs, the measure of the383

network performance is associated with the area under the curve. Figure 15384

contains two examples of graphs representing the average cost function along385

the epochs. In both figures, the examples are from the case of identifying OKCs386

and radicular cysts (ks × r) using ResNet and AlexNet, respectively.387

The best accuracy achieved in the case where the three classes of cysts388
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Table 13: Average confusion matrix for ks × r case.

Structure Fine-tuning Fixed

ks r ks r

ResNet ks 0.99 0.01 0.97 0.03

r 0.03 0.97 0.17 0.83

AlexNet ks 0.97 0.03 0.96 0.04

r 0.33 0.67 0.09 0.91

Table 14: Average confusion matrix for k × s × r case.

Structure Fine-tuning Fixed

k s r k s r

ResNet k 0.88 0.03 0.08 0.79 0.03 0.18

s 0.02 0.96 0.02 0.10 0.86 0.04

r 0.29 0.01 0.70 0.41 0.02 0.58

AlexNet k 0.92 0.02 0.06 0.86 0.02 0.12

s 0.04 0.87 0.09 0.06 0.90 0.04

r 0.49 0.09 0.43 0.39 0.07 0.54

Table 15: Case-wise average confusion matrix for k × s case.

Structure Fine-tuning Fixed

k s k s

ResNet k 0.85 0.09 0.86 0.08

s 0.67 0.34 0.75 0.25

AlexNet k 0.83 0.11 0.73 0.22

s 0.66 0.35 0.48 0.52
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Table 16: Case-wise average confusion matrix for ks × r case.

Structure Fine-tuning Fixed

ks r ks r

ResNet ks 0.93 0.03 0.95 0.01

r 0.34 0.58 0.60 0.32

AlexNet ks 0.93 0.03 0.94 0.02

r 0.10 0.82 0.18 0.74

Table 17: Case-wise average confusion matrix for k × s × r case.

Structure Fine-tuning Fixed

k s r k s r

ResNet k 0.85 0.03 0.12 0.85 0.06 0.08

s 0.16 0.78 0.06 0.28 0.63 0.09

r 0.63 0.08 0.29 0.67 0.13 0.21

AlexNet k 0.87 0.03 0.11 0.79 0.04 0.17

s 0.05 0.87 0.08 0.06 0.88 0.05

r 0.57 0.07 0.37 0.53 0.08 0.40

Figure 14: Precision-recall graphs for the ks × r case using ResNet and AlexNet, respectively.
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Figure 15: Graphs of the average cost function for the ks × r case using ResNet and AlexNet,

respectively.
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Figure 16: Confidence intervals for different methods on cyst database.

are compared (k × s × r) was 86%. When distinguishing between OKCs and389

radicular cysts (ks × r) the best accuracy was 99%. And finally, the most390

difficult case, where the two types of OKCs are analysed, the best accuracy was391

83%. All of those were achieved by the ensemble, using ResNet with fine-tuning.392

Table 18 presents a comparison of these results with the ones found in393

Florindo et al. 2017 [35]. The ks × r problem is easily solved by all the394

methods, so it is not possible to make any comparison. Nonetheless, in the395

other two configurations it is possible to see that the proposed method has396

achieved higher accuracy, by a margin of 10% or more, and by 5% in the case-397

wise approach. Figure 16 shows the confidence interval for some illustrative398

approaches presented in Table 18. The presented proposal outperforms previous399

results published in the literature with significant margin both in k × s and k400

× s k × r problems.401
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Table 18: Comparison of results with the literature.

Source k × s k × s × r ks × r

Landini [40] 60% 66% 95%

Florindo et. al [35] 68% 72% 98%

Case-wise [35] 71% 76% 100%

Ensemble 83% 86% 99%

Case-wise 77% 81% 97%

6.1. Discussion402

The presented results confirm the expectations on the proposed method as403

being a competitive approach both in general texture recognition problems used404

for benchmark and especially on the medical task investigated here, namely, the405

identification of odontogenic oral cysts. An interesting observation in the med-406

ical task is provided by the confusion matrices and precision/recall metrics. In407

the k × s problem, a significant ratio of sporadic cysts are recognized as syn-408

dromic (corresponding to lower recall). This is motivated by the intra-group409

variability associated to the syndromic group, which in many situations behave410

like sporadic samples. Similar discrepancy is noticed when the algorithm at-411

tempts to categorize all three groups at once. In this case, radicular cysts are412

misclassified as syndromic. Again, the high variability of pixel patterns in the413

syndromic nuclei is a huge challenge for a precise recognition. Nevertheless,414

despite the existence of room for improvement in these tasks, the improvement415

over results previously reported is substantial. This is even more encouraging416

if one takes into account that the proposed methodology is relatively straight-417

forward and achieves such promising results at low computational cost.418

In practical terms, the achieved results represent an important improvement419

over the results previously published in the literature for the cyst problem, in420

particular, on the k × s and k × s × r tasks. These are, in fact, challeng-421

ing problems, as the differences in pixel patterns discriminating sporadic and422

syndromic keratocysts are quite subtle, as previously reported in the literature423
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[40, 35]. In a more general viewpoint, the presented results suggest that the424

combination of low level features with features learned by a CNN and ensemble425

algorithms can be a powerful strategy in computer aided diagnostic when the426

amount of data for training and image resolution is limited. This is the case of427

the medical problem tackled here and also a common situation in many medical428

areas.429

7. Conclusions430

This work tackled a difficult medical image classification problem, using431

CNN and local binary patterns to extract features from odontogenic cysts images432

an then combining those features together to form multiple classifiers that would433

be finally combined through an ensemble.434

This strategy applied to benchmark texture classification problems led to435

an accuracy of 98.3% and 99.5%, in UIUC [7] and UMD [8] databases, respec-436

tively. This is a competitive result, when compared with recent state-of-the-art437

approaches.438

In the jaw cysts problem, HCNNE achieved 83.4% (k × s) and 85.9% (k ×439

s × r) average accuracy, which represents an improvement of around 10% or440

more, compared to previous works.441

The method developed in this paper aimed at solving difficult image classi-442

fication problems, when the database is small. The strategy presented does not443

require new training data or high computational power, making it attractive for444

certain types of applications.445

A limitation of the current study is its focus on the particular problem of446

oral cyst recognition. In this regard, future work plans include investigating the447

performance of the proposed methodology in other medical image problems and448

general image recognition. There is also room for further improvement in terms449

of the computational model, e.g. experimenting with more complex ensemble450

methods such as boosting and bagging, exploring different feature combinations451

and testing other network architectures and classifiers. Finally, there are plans452
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to introduce modern strategies for feature pooling like those presented in [46],453

for example, into the ensemble pipeline.454
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