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A B S T R A C T   

Background: Brain-computer interfaces (BCI) based on steady-state visual evoked potentials (SSVEPs/SSVEFs) are 
among the most commonly used BCI systems. They require participants to covertly attend to visual objects 
flickering at specified frequencies. The attended location is decoded online by analysing the power of neuronal 
responses at the flicker frequency. 
New method: We implemented a novel rapid invisible frequency-tagging technique, utilizing a state-of-the-art 
projector with refresh rates of up to 1440 Hz. We flickered the luminance of visual objects at 56 and 60 Hz, 
which was invisible to participants but produced strong neuronal responses measurable with magnetoenceph-
alography (MEG). The direction of covert attention, decoded from frequency-tagging responses, was used to 
control an online BCI PONG game. 
Results: Our results show that seven out of eight participants were able to play the pong game controlled by the 
frequency-tagging signal, with average accuracies exceeding 60 %. Importantly, participants were able to 
modulate the power of the frequency-tagging response within a 1-second interval, while only seven occipital 
sensors were required to reliably decode the neuronal response. 
Comparison with existing methods: In contrast to existing SSVEP-based BCI systems, rapid frequency-tagging does 
not produce a visible flicker. This extends the time-period participants can use it without fatigue, by avoiding 
distracting visual input. Furthermore, higher frequencies increase the temporal resolution of decoding, resulting 
in higher communication rates. 
Conclusion: Using rapid invisible frequency-tagging opens new avenues for fundamental research and practical 
applications. In combination with novel optically pumped magnetometers (OPMs), it could facilitate the 
development of high-speed and mobile next-generation BCI systems.   

1. Introduction 

In recent years, brain-computer interfaces (BCIs) have developed 
from niche applications to wide implementations in clinical and reha-
bilitation settings as well as fundamental research paradigms (Bagher-
zadeh et al., 2020; Bergmann et al., 2019; Biasiucci et al., 2018; 
Brickwedde et al., 2019; Peles et al., 2020; Zrenner et al., 2018). One of 
the most common types of BCIs is based on steady-state visual evoked 
potentials or fields (SSVEPs/SSVEFs, e.g., Cheng et al., 2002; Kelly et al., 
2005; Ma et al., 2022). These are characterised by rhythmic neuronal 

activity at the frequency of sensory stimulation. Specifically, flicker or 
frequency-tagging at a specific frequency will evoke neuronal responses 
echoing the pattern of stimulation (Brickwedde et al., 2020; Colon et al., 
2012; Müller and Hillyard, 2000; Regan, 1982; Snyder, 1992; Stapells 
et al., 1984; Zhigalov et al., 2019). The magnitude of SSVEPs/SSVEFs is 
known to be attention-dependent (Müller et al., 1998; Müller and Hill-
yard, 2000; Toffanin et al., 2009; Zhigalov et al., 2019), which can be 
utilized to provide human participants with control over BCI systems. 

However, most of the SSVEP/SSVEF BCI systems utilise stimulation 
at relatively low frequencies, usually within a range of 5–40 Hz, making 
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the flickering clearly visible to participants (Landis, 1954; Seitz et al., 
2005). The resulting visual flicker can be very distracting, straining to 
the eye and cause fatigue (Lin et al., 2012). Another important consid-
eration pertains to epileptic seizures, which are most strongly provoked 
by lower frequency flicker in the range of 15 – 25 Hz (Fisher et al., 
2005). 

While the magnitude of SSVEPs/SSVEFs responses decreases with an 
increase in visual stimulation frequency (Regan, 1977), the temporal 
resolution increases greatly by increasing the number of queries and 
therefore neuronal responses in a given temporal interval. Thus, the use 
of higher frequencies for visual stimulation could greatly enhance the 
communication rate compared to existing BCI systems. 

Intrinsic oscillatory activity in lower frequency ranges is dominant 
across all sensory cortices and it is believed to fulfil crucial functional 
roles for sensory processing and memory (Haegens and Zion Golumbic, 
2018; Jensen and Mazaheri, 2010). As such, scalp-level measurements 
during low-frequency sensory stimulation can produce a signal mix of 
cortical oscillatory activity and SSVEPs/SSVEFs, which can become 
difficult to disentangle. At the same time, low-frequency SSVEP/SSVEF 
activity can affect and entrain intrinsic oscillatory activity (Keitel et al., 
2014; Spaak et al., 2014), which can influence task performance and 
question the interpretability of fundamental research analyses con-
cerning oscillatory activity. 

State-of-the-art projectors are now able to produce refresh rates of up 
to 1440 Hz. This technological advancement has introduced the possi-
bility to implement rapid invisible frequency tagging (RIFT), which is 
attention-dependent comparable to its low-frequency counterparts, but 
invisible to participants (Drijvers et al., 2021; Seijdel et al., 2022; Zhi-
galov et al., 2019; Zhigalov and Jensen, 2020). Typically, RIFT is applied 
at frequencies above 60 Hz. It does not entrain intrinsic oscillatory ac-
tivity (Duecker et al., 2021) and elicits very localized responses (Zhi-
galov et al., 2019; Zhigalov and Jensen, 2020), diminishing potential 
confounds of task performance and interpretability of low-frequency 
activity, as well as introducing the possibility to work with a limited 
number of sensors. 

Therefore, we implemented rapid-invisible frequency tagging into an 
online BCI system to provide proof-of-principle for the validity of this 
technique. Participants used covert attention while fixating a cross at the 
centre of the screen, to control a quickly paced pong game. We were 
interested in the overall performance of participants and the efficacy of 
our system to track visuo-spatial attention. 

2. Materials and methods 

2.1. Participants 

Eight healthy participants with previous experience in MEG studies 
were recruited at the University of Birmingham (5 women, mean age: 32 
± 3). Participants had normal or corrected-to-normal vision and no 
history of neurological disorders. The study protocol was approved by 
the Ethics Committee of the School of Psychology at Birmingham Uni-
versity and in accordance with the Declaration of Helsinki. All partici-
pants provided written informed consent. 

2.2. Setup 

Participants were seated comfortably in the gantry of a 306-sensor 
TRIUX Elekta system with 204 orthogonal planar gradiometers and 
102 magnetometers (Elekta, Finland), in a dimly lit magnetically 
shielded room. We used a PROPixx DLP LED projector (VPixx Tech-
nologies Inc., Canada) mounted outside of the shielded room. Impor-
tantly, the projector supported a refresh rate of 1440 Hz, which allowed 
the application of high-frequency flicker or tagging, which was invisible 
to participants. Entering through an aperture in the shielded room and 
being routed by a reflecting mirror, the video output was projected onto 
a 71 * 40 cm screen placed 1.5 m away from the participant. During the 

experiment, horizontal and vertical eye movements were tracked with 
EyeLink 1000 Plus, SR Research Ltd, Canada. MEG signals passed 
through an embedded analogue filter, 0.1–330 Hz, and sampled at 1000 
Hz. Different types of data, including MEG, eye-tracking, and triggers, 
were combined into a single data-stream in the acquisition computer. 
The combined data were then split into 100 ms blocks and sent to the 
stimulus computer using the Fieldtrip buffer (Oostenveld et al., 2011). 
Finally, these data were used to train a classifier to decode the direction 
of covert attention based on the power of the frequency-tagging 
response. 

2.3. BCI-pong training 

Before the training session, the eye-tracker was calibrated by asking 
participants to sequentially fixate on different spatial locations across 
the screen. This information was then used to automatically discard 
trials with eye-blinks during the frequency-tagging phase of each trial. 
During training, participants were asked to fixate on the cross at the 
centre of the screen. Each trial started with 1 s baseline period. After-
wards, a grey ball was displayed for 2 s at a random location on either 
the right or the left side of the screen. At the same time, the left and the 
right sides of the screen (see, Fig. 1, dashed line) were frequency-tagged 
at 56 and 60 Hz, respectively. These frequencies were chosen based the 
trade-off between strength of SSVEP/SSVEF response and visibility of 
the stimulus, as higher frequencies are invisible to participants but also 
elicit smaller SSVEP/SSVEF responses (Herrmann, 2001; Herbst et al., 
2013). In the experiment, we presented the tagging patches on a grainy 
texture which allowed us to make the visual stimulation at the lower 
range of the spectrum (i.e. 56 and 60 Hz) practically invisible. The edges 
of the tagged patches were 100 % transparent, slowly fading in to 100 % 
visibility over 10 % of the length/height of the patch. A static vertical 
bar of ~2 degrees of visual angle was displayed in the lower part of the 
screen (Fig. 1), to make the training session as close to the subsequent 
gaming session as possible. 

Participants were asked to keep fixating on the cross, while covertly 
attending to the side of the screen indicated by the location of the pong 
ball (see Fig. 1). Additionally, participants were asked to reduce blinking 
as much as possible and to limit blinking to the end of the trial. All 
participants performed 80 valid trials (40 to the left and right, randomly 
sequenced). The training was performed once at the beginning of the 
experiment. 

MEG data acquired in the training session were used to train a 
classifier (see, Classification algorithm section). 

2.4. BCI-pong game 

In the game, participants controlled the position of the horizontal bar 
by changing the direction of their covert attention (Fig. 1). The goal of 
the game was to keep the pong ball afloat, by moving the bar to the right 
or the left side of the screen. During the game, online MEG data were 
stored in a 1-s buffer, which was updated every 100 ms. This way, we 
assessed the power spectral density of the frequency-tagging response 
using Fourier transform (1), as implemented in MATLAB 

P(f ) =
⃒
⃒
⃒
∑n

j=1
X(j)W (j− 1)(f − 1)

n

⃒
⃒
⃒

2
(1)  

where 

Wn = e(− 2πi)/n 

P is the power spectral density, X denotes single-sensor MEG signal, 
Wn is one of n roots of unity, n is the signal length. 

The power of the tagged response at 56 and 60 Hz was used in the 
classifier, to infer the direction of covert attention. The processing time 
was negligibly small (less than 10 ms on average) compared to the data 
acquisition delay (100 ms) which ensured uninterrupted feedback for 
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the user. 
The game started with the pong ball appearing at a random position 

in the top quarter of the screen, moving towards the bottom. If the bar 
and the ball were at the same side of the screen and colliding, the ball 
was reflected back in a 90 degree angle and moved towards the wall. 
There, it bounced off until it was moving towards the bottom again. If 
the bar was on the opposite side when the ball reached collision height, 
the ball fell through the bottom and was reset to a random starting 
position at the top (see Fig. 1). The first second after a reset, the ball 
always moved with reduced speed to accommodate for an orientation 
period necessary to predict where the ball was moving towards. To make 
sure that blinks did not introduce systematic bias between conditions, 
we automatically discarded trials in which participants blinked in the 
last second before the collision in the game. Each participant played the 

5-minute BCI-pong game four times. At the end of each game, a score 
indicating the number of hits and misses was presented on the screen. 

2.5. Classification algorithm 

The data acquired through the training session were used to train a 
support vector machine (SVM) classifier with a 4-fold cross-validation 
(Cawley and Talbot, 2002; Hastie et al., 2008) to decode the direction 
of covert attention. Considering that the frequency-tagging response is 
well localised within the primary visual cortex (Zhigalov and Jensen, 
2020), we used only seven occipital gradiometers (Fig. 3A) to quantify 
the modulation of power by covert attention. The power of the 
frequency-tagging response was computed at 56 and 60 Hz for each 
gradiometer, resulting in fourteen features. These features along with 

Fig. 1. Experimental setup of the BCI-pong 
training and game. (A) In the training session, 
participants were asked to covertly attend 
either left or right side of the screen for 2 s. At 
the same time, invisible flickering patches were 
presented at the right and left bottom of the 
screen. Dashed areas indicate the location of 
flickering patches and corresponding tagging 
frequencies. (B) During the game, participants 
covertly attended the right or left side of the 
screen, to move a bar from one side of the 
screen to another. The goal was to always po-
sition the bar at the side of the screen the pong 
ball was falling towards. Inside of the bar, a 
dark line displayed the continuous classifier 
output as a quantitative measure of covert 
attention. Additionally, a small black bar in the 
middle was always present.   

Fig. 2. Time-frequency representations and topography of the frequency-tagging response during the training (A, C) and game sessions (B, D). A,B, At the group- 
level, the gradiometers with the strongest frequency-tagging response showed a clear increase in power at 56 Hz during covert attention-left trials and at 60 Hz 
during covert attention-right trials. In the training session, time 0 and 2 s denote the on and offset of the frequency-tagging, respectively. In the gaming session, time 
0 s denotes the moment of any hit or miss events, while frequency-tagging was uninterrupted. C,D, Topographies of 56 Hz power during attention-left trials and 
60 Hz power during attention-right trials revealed spatially distinct and well-localised responses. 

M. Brickwedde et al.                                                                                                                                                                                                                           



Journal of Neuroscience Methods 382 (2022) 109726

4

labels indicating the direction of attention were used to train a linear 
SVM classifier, as implemented in MATLAB. 

2.6. Data processing 

Offline processing was performed in MATLAB R2020b using custom- 
made scripts as well as the Fieldtrip toolbox version 20210106 (Oos-
tenveld et al., 2011). Recordings were kept as raw as possible to reflect 
the BCI purpose, which included not performing common artifact 
removal techniques or baseline corrections. Accordingly, the MEG data 
was divided into epochs and filtered between 1 and 80 Hz. Additionally, 
a 50 Hz notch filter was applied. Epochs constituted of a range from 1 s 
before and after frequency-tagging for the training session and 3 s pre to 
1 s post pong ball collision events during gaming. 

Time-frequency decomposition was performed between 40 and 
70 Hz using a Hanning tapered dynamic sliding window covering 20 
cycles per frequency in steps of 25 ms. Relevant sensors were identified 
using an occipital-to-parietal region of interest and subtracting left-trial 
from right-trial data. For the game data, only successful trials were 
considered. Perceptually uniform and universally readable colormaps 
were applied to all visualisations (Crameri et al., 2020). 

To calculate the signal-to-noise ratio, we calculated the power during 
the last second before collision in the game at the tagged frequencies. As 
such, we averaged over the seven sensors applied in the BCI using for 
each participant, using the following formula: 

SNR =
p(f 1)

0.5 ∗ [p(f 2) + p(f 3)]
(2)  

Where p(f1) refers to the power at the tagged frequency and while p(f2) 
and p(f3) refer to p(f1 ± 2 Hz). 

The information transfer rate was calculated with the following 
formula (Wolpaw et al., 2002): 

ITR =

(

log2(N)+P ∗ log2(P)+ (1 − P) ∗ log2

(
1 − P

N

))

∗

(
S
T

)

(3) 

Where N is the number of targets, P denotes the classification accu-
racy, S is the number of trials and T is the time in minutes. 

To exploratively estimate any trends between frequency-tagging 
responses and training as well as gaming accuracy, we performed cor-
relation analyses using Spearman correlation. However, the outcome of 
the between-subject analysis was not assessed statistically as this would 
require larger sample sizes. 

Lastly, power at 56 and 60 Hz as well as eye-movement data were 
averaged over a 1 s sliding window in steps of 1 ms to reflect the BCI 
setup used in the study. The data was then downsampled to 100 Hz and 
split into right and left trials. Again, for the game session, only successful 

trials were considered. For both training and game sessions, attention- 
left and attention-right trials were tested against each other using 
cluster permutation on dependent sample t-tests for each time point. 
Right- and left side conditions were shuffled for 1000 iterations to 
calculate the 5 % highest t-sums of randomly formed clusters. Only 
clusters whose t-sum exceeded 5 % of the previously found clusters with 
the highest t-sum were considered significant. 

3. Results 

In this study, we utilised a novel rapid, invisible frequency-tagging 
technique in a brain-computer interface paradigm. In a training ses-
sion, participants were required to covertly attend either the right or the 
left side of the screen. Their SSVEF responses over seven occipital sen-
sors were used to train a support vector machine (SVM) to distinguish 
between left and right trials. Afterwards, participants used convert 
attention to control the position of the bar in the BCI-pong game, testing 
the efficacy of the trained classifier. 

3.1. Time-frequency analysis of the frequency-tagging response 

We first performed a time-frequency analysis of power of MEG sig-
nals, investigating whether the short 1-second timeframe was sufficient 
to wilfully produce changes in neuronal activity. 

During training, participants were instructed to focus their attention 
to the left or right side of the screen for 2 s while rapid-frequency 
tagging was applied. At the group level, the power at the gradiometer 
sensor with the strongest frequency-tagging response clearly increased 
during the tagging interval at both 56 and 60 Hz and dropped to a 
baseline after cessation of the tagging (see Fig. 2A). A similar increase in 
power was observed during the game, where continuous frequency- 
tagging was applied (see Fig. 2B). 

Signal-to-noise ratios for each participant were above one at both 
tagged frequencies (mean 56 Hz: 3.1; std 56 Hz 1.8; mean 60 Hz: 2,0; std 
60 Hz: 0.8). This indicates sufficient signal-induced power in relation to 
noise. 

3.2. Topography of the frequency tagging response 

To assess the spatial distribution of the frequency-tagging response, 
we computed the spectral power at 56 Hz during covert attention-left 
trials and at 60 Hz during covert attention-right trials for each gradi-
ometer. It should be noted that the spectral power was assessed during a 
2 s tagging interval in the training session, and during a 1 s interval 
during the game (1 s before the ball collided with the bar or not). At the 
group level, the response was mainly localised over occipital areas, and 
the topographies were strikingly similar in training and game sessions 

Fig. 3. Selected gradiometers and classifier weights at the group level. (A) Seven occipital sensors were used to train the classifier. The patches flickering at 56 and 
60 Hz were presented in the left and right hemifields, respectively. (B, C) Classifier weights at the group-level. Bars indicate the standard error of the mean. The three 
coloured open and filled circles represent left-side and right-side sensors, respectively. 
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(Fig. 2). This suggests that covert attention modulates the neuronal 
response in the visual cortex locally. 

Together, the results indicated that the covert attention robustly 
modulates the power of frequency-tagging responses within a 1-s in-
terval, meeting the requirements for the BCI-pong game. 3.3. Classifi-
cation and performance. 

We implemented a linear SVM classifier to decode the direction of 
covert attention based on the spectral power of the frequency-tagging 
response. In line with the topography of the strongest responses (see, 
Fig. 2), only seven occipital gradiometers (Fig. 3A) were selected to train 
the classifier. The weights of the classifier for 56 and 60 Hz (Fig. 3B,C) 
showed a roughly inverse pattern (or inverse contribution) as expected 
for bilateral visual stimulation. Interestingly, the largest weights asso-
ciated with two bilateral sensors (Fig. 3, blue circles) were highly 
consistent across participants, suggesting that only two sensors might be 
sufficient to provide a reasonable classification accuracy at the group 
level. 

The cross-validation accuracy during the training session was above 
chance level (50 %) for seven out of eight participants, and on average it 

was slightly above 60 % (Fig. 4A). The spatially distinct and well- 
localised responses were again visible when looking at individual par-
ticipants. Interestingly, the difference in spectral power at 56 Hz (as well 
as at 60 Hz) between attention-left and attention-right trials at the 
sensor with the strongest tagging response during training, did not show 
a clear linear relationship with classification accuracy (Fig. 4B), sug-
gesting that the single gradiometer does not provide sufficient accuracy. 

In the online game session, 7 out of 8 participants performed above 
chance level (Fig. 4 C). Notably, most participants showed higher ac-
curacy during the game compared to the accuracy estimated based on 
the training data. As such, the average accuracy exceeded 60 %. And 4 
out of 8 participants reached accuracies clearly over 70 %. Again, to-
pographies showed the same distinct and local pattern as before for 
individual participants, with stronger power compared to the training 
session. On average, the information transfer rate of 3.9 bpm was ach-
ieved during the game, with a maximum value of 9.8 bpm. 

Offline analysis of the MEG data showed that the topography of the 
frequency-tagging response did not change during the game, suggesting 
that covert attention modulated neuronal activity mainly in occipital- 

Fig. 4. BCI-pong performance. (A) Cross-validation accuracy of the classifier for individual participants and the group average. Topographies of spectral power at 
56 Hz are displayed for three representative participants and for the group average. (B) Relationship between power at 56 Hz in general as well as attention left 
versus right power differences at 56 Hz and classifier accuracy. Each dot represents one participant. No clear connection is apparent. (C) Accuracy during the game 
for individual participants and the group average. Topographies of spectral power at 56 Hz are displayed for three representative participants and for the group 
average. (D) Performance in the game seems to be related to attention left versus right power differences at 56 Hz rather than to 56 Hz power in general during 
training. Each dot represents one participant. 
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parietal areas. Interestingly, rather than power in general, the difference 
in spectral power at 56 Hz between attention-left and attention-right 
training trials at the sensor with strongest tagging response during 
training, seemed to be highly predictive for the success in the PONG 
game (r = 0.55, Pearson correlation; Fig. 4D). This might suggest that 
attentional modulation of spectral power becomes more spatially local 
during the game. 

Overall, our results showed that most participants were able to 
control covert attention and hence, successfully play the BCI-pong game. 

3.3. The influence of saccades on BCI performance and frequency-tagging 
response 

To confirm that our BCI in fact relied on covert attention and did not 
simply reflect amplified frequency-tagging responses due to eye move-
ments towards the flickering targets, we analysed the eye tracker data. 
During training, there was no apparent difference in saccadic behaviour 
between left and right trials (Fig. 5A). Yet the spectral power at 56 Hz 
was higher during attention-left compared to attention-right trials, and 
as expected, the power at 60 Hz was higher during attention-right trials 
compared to attention-left trials (see Fig. 5 A). We conclude that this 
difference in the frequency tagging response is explained by covert 
attention rather than eye movements. The same was true for game ses-
sions. Again, differences in eye movements between right and left trials 
were not observable (Fig. 5B). The differences in spectral power were 
significantly enhanced in the gaming session compared to the training 
session. As such, significant condition differences (p < 0.01, permuta-
tion test) between attention-left and attention-right trials were observ-
able in both frequencies spanning from − 700 ms prior to and 100 ms 
after hit or miss events. 

Furthermore, the eye positions of all participants were relatively 
stable (Fig. 6 A) during the critical period (i.e., the last second before hit 
or miss) for each trial of the game. The majority of horizontal eye 
movements remained within 1 degree of visual angle from the fixation 
cross (on average 97 % of eye positions over participants). Furthermore, 
barely any eye positions were recorded outside of 2 degrees left and 
right to the fixation cross (on average 1 % per participant). Within these 
2 degrees, there is no clear pattern of an increase in spectral power to 
either direction. Aggregating eye positions into 40 bins and averaging 
the power of the frequency-tagging response does not show a clear 
pattern nor a difference between 56 Hz and 60 Hz (Fig. 6B). 

Our data shows that when eye-movement is restricted, it does not 
affect frequency-tagging responses. 

4. Discussion 

In this study, we have shown that rapid invisible frequency-tagging 
(RIFT) can be used to decode the direction of covert attention through 
power estimation of neuronal responses. Our results demonstrate that 
after a brief training, most participants were able to play the BCI-pong 
game successfully. 

The novel RIFT technique provides several advantages compared to 
conventional SSVEP/SSVEF based BCI systems (Wolpaw et al., 2002). 
Here, we highlight three key advantages: invisibility of the flicker, faster 
detection of neuronal changes, and high signal-to-noise ratio. 

Particularly, RIFT produces high-frequency visual flicker that is not 
perceived by the participant. Accordingly, there is less distraction and 
strain compared to low-frequency flicker techniques. This is important 
for both practical applications and fundamental research (Kaplan et al., 
2013), as it allows for longer BCI-use by avoiding fatigue related to vi-
sual flicker. Additionally, RIFT evokes a robust neuronal response that 
can be decoded within a short period of time. In line with previous re-
ports, the slower flicker frequency (56 Hz versus 60 Hz) elicited stronger 
neuronal responses (Regan et al., 1977; Herrmann, 2001). Our study 
shows that the high-frequency tagging response modulated by covert 
attention can be reliably detected within a less-than-one-second win-
dow. This property alone can significantly increase the information 
transfer rate (ITR) in the existing BCI systems. With an average and 
maximum ITR of 3.9 bpm and 9.8 bpm, respectively, our system pro-
duced higher information transfer rates compared to other 
state-of-the-art covert-attention BCI systems based on alpha activity and 
SSVEPs. For example, Horschig et al. (2015) reported an average and 
maximum ITR of 2 bpm and 8.9 bpm, while Kelly et al. (2005) reported a 
maximum ITR of 7.6 bpm. Although, in this study the analysis window 
was limited by one second, there is a potential to further reduce the 
window, while preserving the decodability of responses. Finally, 
high-frequency flicker evokes a neuronal response with high 
signal-to-noise ratio since the response is not affected by the pronounced 
endogenous rhythms at low frequencies. In contrast, when using 
low-frequency visual stimulation, there is a chance that the stimulation 
frequency may be in a close proximity to endogenous rhythms (Haegens 
and Zion Golumbic, 2018; Jensen and Mazaheri, 2010), which could 
lead to attenuation of and interference with the neuronal response 
(Keitel et al., 2014; Spaak et al., 2014). 

Inter- and intraindividual variability in the ability to control BCIs are 
commonly observed. In fact, BCI illiteracy is often estimated to affect at 
around 20 % of all users (Benaroch et al., 2021; Lotte and Jeunet, 2015). 
As the individual response strength to frequency-tagging stimuli differs 
between participants, it could be assumed the explanation for interin-
dividual differences. Interestingly, our data implies that more than the 

Fig. 5. Influence of saccades on BCI -performance during fixation. (A) Changes in eye position and spectral power at 56 and 60 Hz during training. No difference 
between attention-left and attention-right trials is apparent for eye positions, contrary to the spectral power. Red solid lines indicate attention-right trials, while black 
dashed lines indicate attention-left trials. Grey areas mark the time interval where frequency-tagging was applied (B) The game session shows no differences in eye 
positions for attention-left and attention-right trials; however, it reveals larger differences in spectral power for these trials. Significant condition effects are marked in 
bold. Grey areas mark the time-window used to estimate direction of covert attention. 
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SSVEF amplitude, the average difference in SSVEF responses between 
right- and left covert attention trials was related to game performance. 
Both the neuronal responsiveness to covert attention shifts as well as the 
skill of the participant to allocate covert attention could be crucial fac-
tors for successful BCI control. Provided that the average difference 
between covert attention right- and left trials was distinct, participants 
were able to adapt their strategy and improve allocation of covert 
attention during the game, which was highly motivating. Consequently, 
gaming performance does not need be strongly related to training ac-
curacy, where no feedback was provided, and outliers and bad trials 
could affect cross-validation. 

Eye-movements during BCI control might raise concern as to 
whether saccades towards the frequency-tagging stimuli rather than 
covert attention modulated the neural responses. We showed that while 
attention left- and right-trials significantly differed in power, the 
saccadic eye movements were indistinguishable in these trails. This is 
important as it emphasises that covert attention could not simply be 
reduced to eye-movements towards the frequency tagged objects. On a 
smaller scale, directional biases in microsaccades are correlated with 
neural signatures of covert spatial attention (Lowet, 2018). However, a 
recent study revealed that this link was not causal in monkeys (Yu et al., 
2022). 

Considering a future application of RIFT BCI for highly mobile BCI 
applications, we specifically designed our BCI system using only a small 
number of MEG sensors and with minimal processing requirements. As 
we could show that the RIFT response is strongly localised, it can be 
captured by only few sensors. Although, in this study we used seven 
sensors to control the BCI, the group level analysis of classification 
weights suggested that already two bilateral sensors in the occipital 
region provide a reasonable classification accuracy. This shows that our 
BCI can be easily implemented in mobile and flexible systems for 
example with novel optically pumped magnetometers (OPMs), which 
eases application for children and clinical populations, while being less 
restrictive on movement compared to conventional measuring systems. 

4.1. Limitations of the study 

First, for this proof of principle, we recruited a limited number of 
participants (N = 8) and implemented short training sessions. This can 
be easily expanded to a larger cohort of participants enabling more 
rigorous statistical analysis. 

Second, we used a simple decoding technique, linear SVM. More 

sophisticated machine learning approaches may provide a better clas-
sification accuracy and hence, improve the performance in the game. 
Additionally, a self-adapting classifier could be implemented online, to 
skip the training procedure, thereby enhancing the ease of continued 
application. 

Third, we used a traditional MEG system to record the brain activity, 
which due to the rigid position of the sensors, may provide slightly 
inconsistent results related to the participant’s head movement during 
the experiment. Moreover, such MEG systems have poor mobility, and 
hence, the practical application may be limited. Recent development in 
OPM shows that magnetic fields of the brain can be recorded using 
highly flexible OPM sensors (Boto et al., 2018; Brooks et al., 2021), and 
thus, the problem of rigid sensors position, and poor mobility can easily 
be overcome. 

Finally, our BCI was limited to two targets. Taking into account the 
limited range of possible frequencies between ~50 and 70 Hz that are 
invisible but still elicit strong SSVEP/SSVEF signals (Lin et al., 2012; 
Herbst et al., 2013), only very few targets could be added. This limita-
tion can be easily overcome by application of broadband 
frequency-tagging, which creates varying signals between 50 and 70 Hz 
and can be decoded using coherence or phase-locking methods (e.g. 
Zhigalov et al., 2020). 

4.2. Future work 

The use of rapid invisible frequency-tagging has strong advantages 
compared to existing BCI systems. However, future work can further 
improve the application of this technique. 

Our study shows that covert attention modulates frequency-tagging 
responses locally, and thus, a very limited number of sensors is neces-
sary to detect the neuronal responses of RIFT. In this case, OPM sensors 
provide an excellent solution, since they do not constraint the partici-
pant movement, and importantly, such sensors can be placed flexibly 
and have a much lower cost compared to conventional MEG systems. 

While the invisibility of the stimulation is a great advantage, it would 
still be interesting to systematically compare slower and faster stimu-
lation frequencies with regards to BCI-performance and user fatigue. 
Additionally, it would be interesting to apply the same approach using 
EEG, which is more readily available than MEG, to test whether similar 
performances would be achieved. 

Fig. 6. (A) Illustration of the eye positions of all participants across trials during the last second before hit or miss during the game. The black squares indicate 3, 2, 
and 1 degree of visual angle around the fixation cross, respectively. Especially for horizontal eye movements, most data points stay within 1 degree of visual angle. 
(B) Histograms illustrating the mean power at 56 Hz and 60 Hz covering 40 binned positions over horizontal eye movements within 2 degrees of visual angle around 
the fixation cross. No clear association between power of the response and eye-position is observable. 
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5. Conclusion 

This study provides novel insights into brain-computer interfaces 
based on covert attention. We applied a new rapid-frequency tagging 
technique that has two key advantages compared to the traditional 
methods. First, it does not produce visible flicker and hence less 
distractive to participants. Second, it allows decoding attentional mod-
ulation of the neuronal response within a short period of time and hence, 
enables high-speed communication through increased information 
transfer rates. Combining the RIFT technique with novel wearable OPM 
sensors will allow making this BCI system more mobile and move 
development of BCIs to the next level. 
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