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� Lagrangian coherent structures are computed from 3D particle tracking measurements.
� LCSs characterise the hidden complex topology of turbulent flow in a stirred vessel.
� Results show that LCSs are related to mixer configuration and macroscale mixing.
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a b s t r a c t

In mechanically agitated vessels, bulk flow circulation which plays a leading role in macroscale mixing is
controlled by hidden Lagrangian coherent structures (LCSs). We use a numerical finite-time Lyapunov
exponent (FTLE) approach, for the first time, to resolve such LCSs. Experimental 3D Lagrangian trajecto-
ries obtained from a unique positron emission particle tracking (PEPT) technique are used to drive the
FTLE model. By computing forward and backward FTLE fields and extracting repelling and attracting
FTLE ridges in various azimuthal planes of the flow, a highly complex flow topology is unravelled which
varies significantly with azimuthal position. We demonstrate how LCSs organise and quantify the chaotic
behaviour of fluid particle paths that underpin mixing through the exchange of fluid between zones of
different kinematics. This new Lagrangian approach driven by unique PEPT data is able to unfold some
of the complexities of turbulent flow that are beyond the capability of traditional methods.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Mechanically agitated vessels are widely used in numerous
mixing operations. Their prime role includes reduction of fluid
inhomogeneity by reducing gradients of concentration or temper-
ature to achieve good heat/mass transfer rates, or ensuring good
physical mixing of basic product ingredients. The fluid mechanics
of mechanically agitated vessels has been studied and reviewed
in numerous papers and books (Paul et al., 2003; Harnby et al.,
1997). Their applications range widely from food and pharmaceu-
tical processing through chemicals and consumer goods, to mining,
construction, and power generation industries. Despite these large
markets, industrial practices and processes are seldom efficient or
optimal because of a severe lack of fundamental understanding of
such mixing flows. From a fluid mechanics perspective, the flow
fields in question have an extremely complex nature and are highly
dependent on local flow behaviour. They are influenced by many
factors, including the internal vessel geometry (baffles, bottom
shapes, etc.), operation of agitators (pumping direction, clearance),
phase properties (density, rheology, number of phases), and flow
regime (laminar, turbulent, transient), thus, making our under-
standing of such flows limited. Behind this complexity lies a world
of yet unexploited opportunities as many industrial processes are
run under certain conditions, not because they are efficient or opti-
mal but only because they are better understood. Therefore, under-
standing these complexities and the local details of fluid transport
will undoubtedly benefit the design of optimal mixing and segre-
gation protocols, representing a big step towards improving cur-
rent engineering practice.

Effective mixing relies on the combination of three physical
processes: bulk fluid circulation, turbulence eddy diffusion and
molecular diffusion. Bulk circulation plays a primary role in overall
mixing by conveying materials to all regions of the vessel and cou-
pling with the local diffusion processes. It is governed by flow
structures generally referred to as stable and unstable manifolds,
also called Lagrangian coherent structures (LCSs), which are special
material surfaces that have a flow repelling or attracting nature
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Nomenclature

Symbols
C the right Cauchy-Green strain tensor (-)
Cimp impeller off-bottom clearance (m)
D impeller diameter (m)
F flow map (-)
H height of liquid in vessel (m)
N impeller rotational speed (s�1)
Reimp impeller Reynolds number (-)
t time coordinate (s)
T vessel diameter (m)
Trev impeller revolution time (s)
vx, vy, vz velocity (m s�1)
X particle locations (m)
x, y, z Cartesian coordinates (m)

Greek Symbols
Dt integration time for FTLE calculation (s)
k eigenvalue of the right Cauchy-Green strain tensor (-)
m liquid dynamic viscosity (Pa s)
q liquid density (kg m�3)
r finite-time Lyapunov exponent (s�1)

Abbreviations
aLCS attracting Lagrangian coherent strcuture
FTLE finite-time Lyapunov exponent
FTLE- backward finite-time Lyapunov exponent
FTLE+ forwardd finite-time Lyapunov exponent
LCS Lagrangian coherent structure
PEPT positron emission particle tracking
rLCS repelling Lagrangian coherent strcuture
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(Shadden, 2011; Haller, 2015). These structures are material sur-
faces advected under the flow, and are termed Lagrangian because
they are determined by observing fluid trajectories over time
rather than from an instantaneous Eulerian field. They are also ter-
med coherent because they have a distinctive stability over neigh-
bouring material surfaces.

Conventional Eulerian methods used for flow structure identifi-
cation are typically concerned with the spatial structure of quanti-
ties derived from the velocity field, pressure field or their gradients
(Green et al., 2007). For example, the Q-criterion (Hunt et al.,
1988), k2 criterion (Jeong et al., 1995), and swirling strength crite-
rion (Zhou et al., 1999) have been widely used to investigate coher-
ent structures in fluid flows, although none has emerged as a
definitive tool of choice. However, they are not invariant to time-
dependent rotations, i.e., they are not objective (frame-
independent) for existing structures (Green et al., 2007). Lagran-
gian methods, on the other hand, detect flow structures based on
the properties of fluid particle trajectories. Their advantage is their
objectivity (frame-independent) and insensitivity to any short-
term perturbation in the Eulerian velocity field (Olacy et al.,
2010). LCS theory was first established by computing finite-time
Lyapunov exponent (FTLE) fields and identifying FTLE ridges as
LCSs by Haller and Yuan (2000), and was further elaborated and
refined by Shadden et al. (2005, 2009). Olacy et al. (2010) demon-
strated the calculation of FTLE fields from the discrete imperfect
data and showed that LCSs are robust and insensitive to both ran-
dom noise and spatial–temporal resolution. Having a strong math-
ematical basis, the LCS approach has helped providing new
fundamental insights and precise descriptions of fluid flows in
many areas, which has attracted a lot of interest in the last two
decades.

In geophysical flows, the concept of LCS was used to charac-
terise the mesoscale mixing capability of the Mediterranean Sea
(D’Ovidio et al., 2004), to predict the spread-out of pollution
release for reducing the environmental effects of the Florida coast-
line (Lekien et al., 2005), to investigate particle dynamics in a hur-
ricane (Sapsis et al., 2009), and to understand the atmospheric
transport of invasive Fusarium for pest management and disease
control (Tallapragada et al., 2011). In biological fluid flows, LCS
applications include studying the transport mechanics of blood
flow in a carotid bifurcation or downstream through an aortic valve
(Shadden et al., 2010; Shadden and Taylor, 2008), understanding
cilium generated fluid flow within the airway surface liquid of
the lung (Lukens et al., 2010), and identification of a jellyfish feed-
ing capture region and predator–prey interaction (Peng and Dabiri,
2

2009). However, LCS theory has received much less attention in the
analysis of engineering flows, with applications having been lim-
ited to understanding the behaviour of gaseous jets and turbulent
cavitating flows (Tang et al., 2012), and the characterisation of vor-
tex interaction within arrays of randomly placed cylinders (Ricardo
et al., 2016). LCS theory has a great potential in unravelling hidden
transport phenomena in engineering flows, and establishing a clear
connection between LCS forms and the dynamic state of fluids
should enable a more detailed description of such flows.

The basis of FTLE and LCS computation is the driver data (veloc-
ity field) generally obtained from analytic solution, simulation or
experimental measurements. Ideal analytic flows have been the
principal tools for developing LCS theory and demonstrating its
potential (Haller, 2001; Shadden, 2005). CFD (Finn et al., 2013) or
SPH simulation (Sun et al., 2016) data have also been exploited
to detect LCS in simplified flows which can be reliably solved.
Velocity fields have been measured via 2D PIV (Ruppert-Felsot J.
E. et al., 2005; Raben et al., 2014) and used to drive 2D FTLE calcu-
lations in some real flows. In a stirred vessel, however, flow is
highly complex and 3D FTLE and LCS computation necessitates
3D velocity driver data. The technique of positron emission particle
tracking (PEPT) (Barigou, 2004) which provides 3D flow data with a
high accuracy (Pianko-Oprych et al., 2009) offers a real opportunity
to apply FTLE theory to such complex flows.

In this study, we use the LCS theory driven by Lagrangian data
afforded by the PEPT technique to study, for the first time, the
large-scale coherent fluid motion underlying a turbulent flow
inside a mechanically agitated vessel. A suite of Lagrangian analy-
sis tools based on FTLE calculations is developed to identify the
hidden coherent structures that govern fluid transport within a
specific observation time window. The visualised Lagrangian
coherent structures are used to outline the topology of the flow,
delineating the boundaries of different kinetic regions and flow
directions to reveal local fluid transport details that affect mixing
and which cannot be discerned by conventional flowmeasurement
or simulation techniques.
2. Experimental

A fully-baffled mixing vessel of standard configuration, having
diameter T = 190 mm was filled with water to a height H = T, as
illustrated in Fig. 1. Mechanical agitation was achieved by a
down-pumping 6-blade 45� pitched-turbine of diameter D = 0.5 T
set at an off-bottom clearance Cimp = 0.33 T. The impeller speed



Fig. 1. Setup for PEPT experiment in a mechanically agitated vessel: a tiny neutrally-buoyant particle tracer is tracked in 3D space and time to provide the long-term (6.4 hr)
Lagrangian trajectory of water inside the mixing vessel.
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was 220 rpm giving an impeller Reynolds number (Reimp = qND2/l)
of 40,000 which is well within the turbulent regime.

Lagrangian stirred vessel flow measurements were acquired
using the PEPT technique in a 6.4 hr experiment. In PEPT, a
neutrally-buoyant radio-labelled particle tracer (�100 lm) is
injected in the flow and tracked in 3D space and time to determine
the long-term trajectory of the fluid (Fig. 1). The technique has an
accuracy which is comparable to that of leading optical techniques
such as PIV, but with the unique added advantage that it can visu-
alise flow in opaque fluids and inside opaque equipment (Pianko-
Oprych et al., 2009). The hardware and software of the technique
as well as the associated experimental protocols and raw data
analysis procedures have been described in ample detail in our
previous work (Barigou, 2004; 2009; Guida et al., 2010a,b; 2012;
Eesa et al., 2008; Fangary et al., 2002).
3. Theory

3.1. Eulerian velocity field

The hidden LCSs were extracted from the FTLE fields. The FTLE
fields were computed from the Eulerian velocity field available
from the PEPT experiment described above. The Lagrangian veloc-
ity v was calculated from the time derivative of the trajectory
expressed in Cartesian coordinates [x, y, z], thus:

v ¼ vxex þ vyey þ vzez ¼ dx
dt

ex þ dy
dt

ey þ dz
dt

ez ð1Þ

where, t is time and ex, ey and ez are unit vectors. The time
derivative was calculated using the differencing method, for
example, dx

dt could be obtained using the ratio of xkþ1 � xk to
tkþ1 � tk. Therefore, a new Lagrangian data set [t, x, y, z, vx, vy, vz]
was generated. The Eulerian velocity field was constructed from
the Lagrangian velocity in each cell using a 3D mesh, as illustrated
in Fig. 2. The local velocity in each cell was obtained by
calculating the time-average velocity at every detection point
within the cell and then averaging by the number of detection
points.
3

3.2. FTLE computation

In chaos theory, the Lyapunov exponent was originally used to
measure the growth rate of generic perturbations in a dynamic sys-
tem, determining the system stability or the sensitivity to its initial
conditions. In fluid flow, if two infinitesimally close trajectories
separate from an initial small distance kdXðt0Þk to a further separa-
tion kdXðtÞk at some later time, then the separation rate can be
expressed by (Shadden et al., 2011):

rðX0; t0;DtÞ ¼ 1
Dtj j � ln

kdXðtÞk
kdXðt0Þk

� �
ð2Þ

where, r denotes the finite-time Lyapunov exponent which
is a function of time t0, space X0 = (x0, y0, z0) and integration
time Dt. The ratio kdXðtÞk

kdXðt0Þk is the expansion coefficient of

infinitesimally close trajectories initially starting at two ran-
dom points. It is worth pointing out that the integration time
Dt is generally selected to correspond to the time scale which
is appropriate for the description of the flow phenomenon
under study.

Let us consider a 3D turbulent flow system whose velocity field
is expressed as:

dX
dt

¼ v X; tð Þ ð3Þ

where, X(t; X0, t0), is the trajectory of a fluid particle moving
with velocity v from initial position X0 at time t0 to position X at
time t within the flow system. Then the flow map required for
the FTLE calculation is defined by: F t

t0
ðX0Þ � Xðt;X0; t0Þ, consisting

of the whole system of trajectories emanating from different initial
positions over a given time interval.

Given two arbitrary fluid particles located at positions X0 and
X0 þ kdXðt0Þk at time t0, their separation distance kdXðtÞk at time
t is ideally given by:

kdXðtÞk ¼ Ft
t0

X0 þ kdX t0ð Þkð Þ � F t
t0

X0ð Þ ð4Þ

By expanding the term F t
t0

X0 þ kdX t0ð Þkð Þ in terms of kdX t0ð Þk,
the separation distance between the two fluid particles can be
expressed as:



Fig. 2. Illustration of Cartesian grid of equal-volume cubic cells used for analysis of PEPT Lagrangian data - dashed lines show cells outside flow domain: 50 � 50 � 50 cells
used for calculation of Eulerian velocity field; 500 � 500 � 500 cells used for computation of FTLE field.
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kdX tð Þk ¼ krF t
t0

X0ð Þ � X0k þ O kdX t0ð Þk2
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT � rF t

t0
ðX0Þ

h iT rF t
t0
ðX0Þ

h i
� e

r
� kdX t0ð Þk þ O kdX t0ð Þk2

� �

ð5Þ
where, e is the unit vector in the same direction of the initial

separation vector dX t0ð Þ, i.e., e ¼ dX t0ð Þ
kdX t0ð Þk. Then the expansion coeffi-

cient between the two fluid particles over time is:

lim
kdX t0ð Þk!0

kdX tð Þk
kdX t0ð Þk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT � rFt

t0
ðX0Þ

h iT rF t
t0
ðX0Þ

h i
� e

r
ð6Þ

Letting ki be the i-th eigenvalue of the right Cauchy-Green strain
tensor:

Ct
t0
ðX0Þ ¼ rFt

t0
ðX0Þ

h iT rF t
t0
ðX0Þ

h i
ð7Þ

With ei being the i-th eigenvector, the expansion coefficients in
the directions of the eigenvectors, i.e., dX t0ð Þ ¼ kdX t0ð Þkei, are:
Fig. 3. Illustration of Cartesian grid used to compute the flow map derivative rF t
t0
ðX0Þ s

circle points and empty-circle points are initial conditions of all trajectories at initial time
derivative at position Xi;j;k t0ð Þ.

4

lim
kdX t0ð Þk!0

kdX tð Þk
kdX t0ð Þk ¼

ffiffiffiffi
ki

p
ð8Þ

The FTLEs are defined by the ratio of the logarithm of expansion
coefficients and the time length Dt ¼ t � t0, i.e., the average loga-
rithmic expansion rate:
ri X0; t0;Dtð Þ ¼ 1
Dtj j � ln

ffiffiffiffi
ki

p� �
ð9Þ

FTLE usually corresponds to the largest value in Equation (9)
which measures the expansion rate in the primary expansion
direction, and can be expressed as:
r X0; t0;Dtð Þ ¼ 1
Dtj j � ln

ffiffiffiffiffiffiffiffiffi
kmax

p� �
ð10Þ

where, kmax is the largest eigenvalue of the right Cauchy-Green
strain tensor. It should be noted that all initial separation distances
dX t0ð Þ have a component in the direction of the ei vector associated
howing example (filled-circle points) for computation at position Xi;j;k t0ð Þ: (a) filled-
t0; (b) filled-circle points are final positions of trajectories at time t for the flowmap



Fig. 4. The role of attracting (aLCS) and repelling (rLCS) LCSs in fluid deformation.
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with kmax since the eigenvectors ei form an orthonormal basis. This
means that the growth of the primary component will ultimately
dominate the expansion of dX t0ð Þ.

To calculate the FTLE in practice, a grid is used which is signif-
icantly finer than the grid used to calculate the velocity field, and a
passive particle is initialised at each node Xi,j,k(t0) at initial time t0,
as shown in Fig. 3. Such particles are numerically advected to
obtain their trajectories by integrating the velocity field, thus:

Xi;j;k tð Þ ¼ Xi;j;k t0ð Þ þ
Z t

t0

v Xi;j;k sð Þ; s� �
ds ð11Þ

using the Runge-Kutta integration and velocity spline interpola-
tion schemes for efficient accurate integration. Although a fine grid
can sometimes improve the resolution of the FTLE field, too fine a
grid may be computationally too expensive; for instance, doubling
the FTLE grid density may cause an order of magnitude increase in
computation cost. Once the trajectroies are obtained, the flow map
derivative rF t

t0
ðX0Þ at each position Xi;j;k t0ð Þ can be calculated by

the centre differencing method:

rF t
t0

Xi;j;k t0ð Þ� � ¼ rFt
t0
jðxi;j;k t0ð Þ;yi;j;k t0ð Þ;zi;j;k t0ð ÞÞ

�

xiþ1;j;k tð Þ�xi�1;j;k tð Þ
xiþ1;j;k t0ð Þ�xi�1;j;k t0ð Þ

xi;jþ1;k tð Þ�xi;j�1;k tð Þ
yi;jþ1;k t0ð Þ�yi;j�1;k t0ð Þ

xi;j;kþ1 tð Þ�xi;j;k�1 tð Þ
zi;j;kþ1 t0ð Þ�zi;j;k�1 t0ð Þ

yiþ1;j;k tð Þ�yi�1;j;k tð Þ
xiþ1;j;k t0ð Þ�xi�1;j;k t0ð Þ

yi;jþ1;k tð Þ�yi;j�1;k tð Þ
yi;jþ1;k t0ð Þ�yi;j�1;k t0ð Þ

yi;j;kþ1 tð Þ�yi;j;k�1 tð Þ
zi;j;kþ1 t0ð Þ�zi;j;k�1 t0ð Þ

ziþ1;j;k tð Þ�zi�1;j;k tð Þ
xiþ1;j;k t0ð Þ�xi�1;j;k t0ð Þ

zi;jþ1;k tð Þ�zi;j�1;k tð Þ
yi;jþ1;k t0ð Þ�yi;j�1;k t0ð Þ

zi;j;kþ1 tð Þ�zi;j;k�1 tð Þ
zi;j;kþ1 t0ð Þ�zi;j;k�1 t0ð Þ

2
66664

3
77775

ð12Þ
Fig. 5. 2D illustration of possible LCS entanglements and the formation

5

Then the right Cauchy-Green strain tensor given by Equation (7)
is computed at each position as a 3� 3 matrix, and the correspond-
ing FTLE values are obtained using Equation (10). The FTLE is called
forward FTLE (FTLE+) if Dt > 0 or backward FTLE (FTLE-) if Dt < 0.
FTLE+ and FTLE- measure, respectively, the rate of separation and
attraction between two initially close fluid particles over the time
interval Dt = t – t0.
3.3. LCS extraction

Once the FTLE+ and FTLE- fields are computed, it is necessary to
locate the LCSs for a clear visualisation of the flow topology. As
demonstrated in previous theoretical treatments, FTLE provides
an efficient and robust approach to determine the location of flow
repelling and flow attracting LCSs which are well-defined by the
ridges in FTLE+ and FTLE- fields, respectively. The direct visualisa-
tion of 3D FTLE fields and LCSs is usually impossible. Therefore,
visualisation is reduced either to 2D plots or surface triangulation.
The former approach is simple and allows depiction of local details
on individual 2D sections, while the latter requires a specific ridge
extraction algorithm to extract the LCSs (2D materials surfaces) to
reveal the hidden flow structures.

A ridge usually refers to a lower-dimensional line or surface
that represents the spatial distribution of local maxima, and math-
ematically it is defined as a curve where the first derivative in its
of a fluid exchange zone: (a) aLCS below rLCS; (b) aLCS above rLCS.
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normal direction n is zero and its second derivative is negative
(Schindler et al., 2011), i.e.,
rr � n ¼ 0 ð13Þ
hn;r2r � ni < 0 ð14Þ
Therefore, the extraction of LCS surfaces requires essentially

detecting ridges from the FTLE fields, i.e. finding the local maxima
of FTLE values through the entire domain and connecting
them together to produce a surface. In this study, we extend a
2D grid-based ridge tracking algorithm proposed by Lipinski
Fig. 6. Identification of (repelling) rLCS in 45� plane and their physical interpretation:
(repelling) rLCSs superimposed on velocity vector map; (d) numerically computed future
t = 0, as shown in (c) and (d); (e) numerically computed future motion during time perio
and (e). Subscripts 0, 1/2, 1 correspond, respectively, to time t = 0, +0.5Trev and + Trev.

6

et al. (2012) to the extraction of 3D ridges. Firstly, the ridge points
on the FTLE grid are detected by searching for local FLTE maxima,
thus:

r Xð Þ 	 r X 
 eið Þ; ei 2 ex; ey; ez
	 
 ð15Þ

where, ei denotes a vector with a length of grid resolution in
coordinate directions. It should be pointed out that the accuracy
of the local maxima points, i.e. FTLE ridge points, and, hence, the
definition of the ridges is influenced by the resolution of the mesh
used. Secondly, a pre-set threshold is applied to filter out the
detected ridge points with lower FTLE values so that only the
high-value FTLE ridges are delineated. The most useful range for
(a) 45� plane; (b) FTLE+ map showing local FTLE+ maxima as ridges; (c) extracted
motion during time period Trev of fluid parcels A0, B0, C0 released close to the rLCSs at
d Trev of fluid parcels D0, E0 released far away from the rLCSs at t = 0, as shown in (c)
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this threshold is usually 0.75� 0.9 of the maximum FTLE value, but
this may be influenced by the particular application (Shadden
et al., 2011). Finally, surface triangulation, which is similar to the
marching cube algorithm, is employed to connect the detected
ridge points and form LCS surfaces to enable the 3D visualisation
of hidden flow structures (Lipinski et al., 2012).

A repelling LCS (rLCS) is associated with FTLE+ ridges so that
fluid particle trajectories on either side of the ridge diverge away
Fig. 7. Identification of (attracting) aLCS in 45� plane and their physical interpretation: (
superimposed on velocity vector map; (c) numerically computed past motion during time
in (b) and (c); (d) numerically computed past motion during time period Trev of fluid parce
0, �1/2, �1 correspond, respectively, to past time t = 0, �0.5Trev and -Trev.

7

from each other exponentially in forward time, showing the
boundaries between different kinetic flow regions. In contrast, an
attracting LCS (aLCS) is associated with FTLE- ridges so that fluid
particle trajectories on either side of the ridge converge in forward
time, delineating the primary flow directions. The repelling and
attracting LCSs reveal the hidden flow structures governing fluid
transport which are hard to visualise by conventional flow mea-
surement or simulation techniques.
a) FTLE- map showing local FTLE- maxima as ridges; (b) extracted (attracting) aLCSs
period Trev of fluid parcels A0, B0, C0, D0 released close to the aLCSs at t = 0, as shown
ls E0, F0 released far away from the aLCSs at t = 0, as shown in (b) and (d). Subscripts
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3.4. LCS and fluid transport mechanics

LCSs are special moving flow boundaries which can be used to
reveal hidden aspects of fluid transport mechanics. A single repel-
ling or attracting LCS ideally acts as a perfect flow barrier with no
fluid transport across it. The local deformation of fluid parcels
around an aLCS and rLCS are different, however (Haller and Yuan,
2000). As illustrated in Fig. 4, fluid approaching an rLCS on either
side is stretched in the normal direction, so that nearby fluid par-
cels on either side of the rLCS are repelled in opposite directions
resulting in two separated fluid regions with different kinetic
behaviour. In other words, rLCS lines (or surfaces/manifolds in
3D) are responsible for local instabilities and flow dispersion. On
the other hand, fluid approaching the aLCS on either side under-
goes thinning and folding around the line. Thus, the fluid flows
alongside the aLCS and adopts its shape, so that the aLCS becomes
a primary Lagrangian flow path. An attracting LCS is therefore a
cause for local flow stability.

Attracting and repelling LCSs in a given flow tend to occur
together which causes their intersection and entanglement. When
a pair of aLCS and rLCS are entangled, for example, an enclosed
zone is created and the flow is separated into two regions, denoted
upper and lower regions in Fig. 5. Inside the enclosed zone, flow is
simultaneously repelled by the rLCS and attracted by the aLCS, so
that when the rLCS is above the aLCS, it causes the entire zone to
gradually flip downwards to reach a stable position, as illustrated
in Fig. 5a. In contrast, when the aLCS is above the rLCS the entire
zone gradually flips upwards, as illustrated in Fig. 5b. LCS entangle-
ment is a dynamic process and, hence, the fluid inside the enclosed
zone will leak out when local disentanglement occurs (Rom-Kedar
and Wiggins, 1990), and mixes with other surrounding fluid. The
enclosed zone can therefore be considered a fluid exchange zone
Fig. 8. Interaction of co-existing rLCSs and aLCSs and its effects on flow in the 45� plan
during time period -Trev to +Trev of fluid parcels A0, B0, C0 released at t = 0, as shown in (a
fluid parcels D0, E0 released at t = 0, as shown in (a).
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between the separated regions. The fluid exchange rate and, hence,
mixing is proportional to the size of the fluid exchange zone. As an
extreme case, two completely overlapped aLCS and rLCS offer a
strong barrier to fluid exchange which isolates flow regions and
prevents local fluid mixing. Identifying these special dynamic
boundaries and their intersection areas can provide valuable infor-
mation on the mixing performance of a flow system. It is worth
noting that based on FTLE calculations, the unravelled coherent
structures are computed over a finite time interval,Dt, and because
of their dynamic nature they are only valid over such a time
interval.
4. Results and discussion

Using the methodology described above driven by long-term
PEPT flow trajectory data, a suite of Lagrangian analysis tools based
on FTLE calculations were developed to visualise the hidden flow
structures in the turbulent flow inside stirred vessels. As pointed
out above, the PEPT technique has an accuracy comparable to that
of leading optical techniques such as PIV (Pianko-Oprych et al.,
2009). The Eulerian velocity field was extracted from the PEPT
Lagrangian flow data, as described above, using a Cartesian grid
of 50 � 50 � 50 equal-volume cubic cells, as illustrated in Fig. 2.
A similar but much finer grid of 500 � 500 � 500 equal-volume
cells was used to compute the FTLE field, where the conventional
linear interpolation scheme was applied to solve the velocity data
at each grid node. One of the important parameters in FTLE calcu-
lations is the integration time which is usually selected to be a
characteristic time of the flow system at hand (Dauch et al.,
2019; Robinso and Cleary, 2011). Here, the integration time used
for the main FTLE+ and FTLE- calculations, Trev = 0.27 s, was
equivalent to one impeller revolution which is a characteristic time
e: (a) co-existing rLCS and aLCS; (b) numerically computed past and future motion
); numerically computed past and future motion during time period -Trev to +Trev of
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of the mixing system being studied. The effects of varying the inte-
gration time are subsequently explored.

4.1. FTLE maps, LCSs and fluid motion in the 45� plane

Results are presented and discussed in the form of 2D contour
plots on different azimuthal planes, giving a detailed description
of the flow topology. In this section, we shall first consider the flow
in the 45� plane, halfway between two adjacent baffles, as shown
in Fig. 6a. The FTLE+ map is presented in Fig. 6b where the local
maxima delineate two ridges representing the extracted rLCSs.
These rLCSs are made more clearly apparent in Fig. 6c where they
are superimposed on the velocity vector map. The pumping action
of the impeller creates two flow loops, an anticlockwise loop in the
upper part of the vessel and a clockwise loop in the lower part of
the vessel below the impeller plane.

4.1.1. Forward FTLE and rLCS
The forward FTLE or FTLE+ measures the rate of separation

between two initially close fluid particles over the integration time
period (Dt > 0) and represents the future dynamics of the flow. An
illustration of the future motion of fluid parcels released in the 45�
plane is depicted to unravel the physical influence of rLCSs on the
fluid motion (Fig. 6d, e). Thus, a group of fluid parcels (A, B, C) were
numerically introduced on either side of and close to the rLCSs, as
shown in Fig. 6c. Each fluid parcel consisted of 104 uniformly-
distributed fluid particles within the given volume of the parcel.
Fig. 9. Effects of azimuthal position on the extra
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The future 3D individual motion of these particles was numerically
tracked by integrating the 3D velocity field over one impeller revo-
lution period (Trev). Thus, as well as the position of the fluid parcels
their shape is also obtained. At time t = 0, the fluid parcels are at their
initial position and are denotedby (A0, B0, C0). Their future shape and
position are shown in Fig. 6d at t = +0.5Trev and + Trev, corresponding
to half a revolution and one full revolution of impeller rotation and
denoted, respectively, by (A1/2, B1/2, C1/2) and (A1, B1, C1).

Repelling LCSs are hidden virtual flow barriers produced by the
mixing system, which govern future fluid motion. Fluid parcel A0

which is situated to the left of rLCS-1 moves azimuthally to the lee-
ward side of baffle-1, while being subjected to considerable
stretching in the direction of impeller rotation (A1/2, A1). Fluid par-
cles B0 and C0 which are to the right of rLCS-1, however, move to
the windward side of baffle-1 while incurring similar but less pro-
nounced deformation (B1/2, C1) than A. On impact with baffle-1, B1

contracts significantly. It appears that rLCS-1 results from the flow
separation effects of baffle-1 between windward and leeward
flows. Fluid parcels A0 and B0 which are above rLCS-2 do not cross
this boundary and remain in the upper flow region. Fluid parcel C0

which is below rLCS-2 also does not cross this boundary and
remains in the lower flow loop. It appears, therefore, that rLCS-2
delineates the boundary between the two main flow loops gener-
ated by the impeller.

Whilst fluid parcels (A, B, C) were initially close to the rLCSs,
fluid parcels D and E were selected far away from the rLCSs, as
shown in Fig. 6c. The rLCSs are loci of maximum FTLE+ values
cted co-existing LCSs and their interaction.



Fig. 10. Interaction of co-existing rLCSs and aLCSs and its effects on zonal fluid
exchange in (a) the leeward (5�) plane and (b) the windward (85�) plane.
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which separate flow regions of markedly different dynamical beha-
viours. Their repelling effect is manifested in the deflection of
oncoming flow, as demonstrated in the strong deformation and
dispersion of fluid parcels (A, B, C). On the other hand, as depicted
in Fig. 6e, fluid parcels D0 and E0, after a full impeller revolution,
move in the same direction incurring a much smaller displace-
ment, smaller deformation and their separation distance is more
or less unchanged. Therefore, for example, for mixing processes
requiring feeding of materials, the feeding points can be selected
near a rLCS to achieve fast distribution of the fed materials in the
vessel.

4.1.2. Backward FTLE and aLCS
Having examined the (forward) FTLE+ field inside the mixing

vessel, we now discuss the (backward) FTLE- field which measures
the rate of attraction between two initially close fluid particles
over the integration time period (Dt < 0) and represents the past
dynamics of the flow. An illustration of the past motion of fluid
parcels released in the 45� plane is depicted to unravel the physical
influence of aLCSs on the fluid motion (Fig. 7c, d). Thus, a group of
fluid parcels (A, B, C, D) were numerically introduced on either side
of and close to the aLCSs, as shown in Fig. 7a, b. The computed his-
torical shape and position of these fluid parcels are shown in Fig. 7c
at t = 0, �0.5Trev and -Trev, with positions denoted, respectively, by
0, �1/2 and �1.

Similar to repelling LCSs, aLCSs are also hidden virtual flow bar-
riers produced by the mixing system, which influence past fluid
motion. Fluid parcels (A, B, C, D) were selected initially close to
the aLCSs, whilst fluid parcels E, F were selected far away from
the aLCSs, as shown in Fig. 7a, b. The aLCSs are loci of maximum
FTLE- values which separate flow regions of markedly different
past dynamical behaviours. Fluid parcel couples (A, B) and (C, D)
which are initially close to but on either side of an aLCS are shown
to deform differently and originate from very disparate locations,
indicating that the flow around an aLCS is diverse. The attracting
effect of aLCSs is, thus, manifested in their diverse oncoming flow.
Fluid parcels (E, F) which are initially remote from any aLCS but
close to each other, are shown to incur similar deformation and
have been close to each other all along, indicating that away from
the aLCS flow is much less diverse.

4.1.3. Interaction of co-existing rLCSs and aLCSs
In the above, repelling and attracting LCSs were considered in

isolation in order to describe their individual effects on the dynam-
ics of the flow. In reality, however, they occur simultaneously and
their interaction leads to entanglement, i.e. rLCS and aLCS have
intersected points. These LCSs delineate boundaries between
regions of different flow dynamics which undergo a certain
amount of fluid exchange between them. The interaction and
entanglement of co-exiting rLCSs and aLCSs and their effects on
flow behaviour are illustrated in Fig. 8. In Fig. 8a the intersection
of the rLCSs with the aLCSs creates a common zone of fluid
exchange between the different confined regions delineated by
the different LCSs. For example, in the past fluid parcel B was
located in the flow region above the aLCS, whereas in the future,
B is located in the flow region below the rLCS. Thus, over time, B
has moved from the upper flow loop down to the lower flow loop,
following the pathline depicted in Fig. 8b. This movement applies
to all fluid contained in the zone of fluid exchange. In facilitating
fluid exchange between the upper and lower flow loops, such a
zone promotes fluid mixing. The size of the fluid exchange zone
will determine the extent of its contribution to mixing.

Now, considering fluid parcels A and D, because they are located
above the rLCS as well as the aLCS, their pathlines remain confined
in the upper flow loop and cannot enter the lower flow loop (see
Fig. 8b, c). Similarly, fluid parcels C and E being located below
10
the rLCS as well as the aLCS, they are trapped in the lower flow loop
and cannot move to the upper flow loop (see Fig. 8b, c).

4.2. Effects of azimuthal position on LCSs and their interaction

The extracted LCSs are depicted in different azimuthal planes
over a whole quadrant from 5� to 85�, as shown in Fig. 9. These
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plots represent in effect the changes in the topology of the LCS sur-
faces/manifolds. As discussed above, as the impeller rotates anti-
clockwise, rLCS-1 is a consequence of the separation effects
between the windward and leeward flows around baffle-1, whilst
rLCS-2 delineates the boundary between the two main flow loops
generated by the impeller. Moving from the 5� plane which is
the leeward side of a baffle towards the 85� plane, i.e. the wind-
ward side of the next baffle, the rLCSs move closer to each other.
Beyond the 45� plane, they become gradually shorter while moving
towards the wall. The consequence of such topological changes is
that, as the azimuthal position increases from 5� onwards, more
and more of the fluid to the left of rLCS-1, represented by A in
Fig. 9, is driven to the leeward side of baffle-1, whilst less and less
fluid from the inner region to the right of rLCS-1, denoted by B,
remains confined within the windward side of baffle-1. Hence,
the baffling effect reduces with increasing azimuthal position, such
that at 85�, baffle-1 has little effect on the swirling fluid motion
and most of it passes to the leeward side.

The observed aLCSs separate flow regions of markedly different
past dynamical behaviours, in this case the upper and lower flow
loops, as depicted in Fig. 8. With increasing azimuthal position
from 5� to 85�, the lower aLCS delimiting the bottom flow loop
undergoes little change in its topology, whilst the higher aLCSs
grow upwards to keep up with the upper flow loop expanding
owing to the flow becoming increasingly more axial near the wall
on approach to the windward side of baffle-1.

The interaction of the rLCSs and aLCSs creates a zone of fluid
exchange, as shown in Fig. 8. Such a zone is relatively large in
Fig. 11. The effects of doubling the integration time (2Trev) on the number and topology
(b) FTLE- map, aLCSs and past fluid motion.
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the 5� plane and seems to surround most of the upper flow loop.
Away from this plane, the fluid exchange zone shrinks gradually
to reach a minimum at the halfway (45�) plane due to the gradual
overlap of the rLCSs and aLCSs and their switch of position relative
to each other, before expanding slightly again.

It thus appears that the leeward side of a baffle, i.e. 5� plane,
contains the most fluid exchange between the two main flow
loops. Such fluid exchange is illustrated in more detail in
Fig. 10a. Fluid parcel A which is located below a rLCS originates
from the upper part of the vessel and moves towards the bottom.
In contrast, B which is located below a aLCS originates from the
lower part of the vessel and moves to the upper part of the flow.
As pointed out above, with increasing azimuthal position, the order
of the rLCS and aLCS lines is gradually reversed and so is the flow
exchange, as exemplified by the plots in Fig. 10b corresponding to
the windward (85�) plane.
4.3. Effects of integration time on number and topology of LCSs

In the above sections, the LCSs were calculated using an integra-
tion time equivalent to one impeller revolution (Trev). As the inte-
gration time increases, we may expect more LCSs to emerge
revealing further fluid transport phenomena. However, a higher
number of LCSs can be hard to analyse as it leads to highly complex
structures. To illustrate this situation, we computed the FTLE maps
using an integration time equal to 2Trev, i.e. two impeller revolu-
tions, and sample results are presented in Fig. 11 for the 45� plane.
of the LCSs observed in the 45� plane: (a) FTLE+ map, rLCSs and future fluid motion;



Fig. 12. The effects of integration time on the number and topology of the co-existing rLCSs and aLCSs observed in the 45� plane.
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As depicted in Fig. 11a, rLCS-1 and rLCS-2 extracted from the
FTLE+ field computed in the first impeller revolution are observed
again, with rLCS-1 having grown considerably. A new rLCS-10 anal-
ogous to rLCS-1, i.e. resulting from the flow separation effects of
baffle-2 between windward and leeward flows, as illustrated by
the motion of fluid parcels A and B. Similarly, the additional
rLCS-20 and rLCS-20 0 which are newly visualised represent new sur-
faces/manifolds that also lie at the boundary between the upper
and lower flow loops, as demonstrated by the motion of fluid par-
cels B and C. The FTLE- results plotted in Fig. 11b show an ensemble
of new aLCSs, revealing more details of the complexities character-
ising the history of the fluid motion.

If the integration time is increased further, new rLCSs of type 1
and 2 unravel, as depicted in Fig. 12 where results are displayed for
integration times equivalent to Trev, 2Trev and 4Trev. Note that 4Trev
corresponds to the circulation time in the vessel, i.e. the time mea-
sured from when a fluid particle leaves the impeller horizontal
mid-plane until it returns to it (Davidson et al., 2003; Guida
et al., 2012), which can be considered as another characteristic
time of the mixing system. Clearly, a longer integration time
uncovers more LCSs and a highly complex flow topology. The large
number of LCSs leads to more LCS intersections and more
uniformly-distributed LCSs entanglements, thus, enhancing fluid
exchange throughout the vessel and achieving better mixing. It
becomes clear, therefore, that the level of complexity of the uncov-
ered hidden flow structures is an indication of the quality of fluid
mixing. Detailed analysis of such complex flow topologies, how-
ever, poses an immense challenge because of the entanglement
of the LCSs.

5. Conclusions

A suite of Lagrangian analysis tools has been developed to com-
pute the forward and backward FTLE fields which characterize tur-
bulent fluid mixing in a mechanically agitated vessel. The
computations have been driven by experimental long-term
Lagrangian trajectory data obtained from a unique positron emis-
sion particle tracking technique. Whilst FTLE computations in the
literature have generally dealt with simple idealized flows with a
smooth velocity field that is known accurately, the FTLE model
12
developed here has contended with the challenges of a 3D discrete
experimental velocity field to successfully unveil hidden Lagran-
gian coherent structures.

The extraction and identification of repelling and attracting
FTLE ridges has enabled the unravelling of a highly complex flow
topology. Repelling LCSs are responsible for local instabilities and
flow dispersion, whereas attracting LCSs lead to local fluid thinning
and folding and cause local flow stability. LCSs computed in vari-
ous vertical planes of the flow have shown that the conventional
concept of azimuthally-invariance cannot be assumed in a baffled
vessel since flow transport features vary significantly with azi-
muthal position. The interaction and entanglement of LCSs have
been shown to underpin fluid mixing by the creation of zones of
fluid exchange between flow regions of different kinematics. A
large number of LCSs leads to more LCS intersections and more
uniformly-distributed LCSs entanglements, thus, enhancing fluid
exchange throughout the vessel and achieving better mixing. It
becomes clear, therefore, that the level of complexity of the uncov-
ered hidden flow structures is directly linked to mixedness. The
new Lagrangian approach proposed here, driven by unique PEPT
data, has been able to unveil some of the complexities of turbulent
flow in a stirred vessel that are beyond the capability of traditional
methods and could potentially be exploited for the design of opti-
mal mixing protocols. In addition, by combining the forward and
backward FTLE values, a mixing index could be obtained to quan-
tify mixedness in stirred vessels.
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