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a b s t r a c t 

Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative 
but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivari- 
ate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and 
network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a 
parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be 
rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in 
the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory 
signals to be isolated and analysed in terms of their spectral content, spatial distribution and network struc- 
ture. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in 
eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between par- 
ticipant variability in peak frequency and network structure of alpha oscillations and show a distinction between 
occipital ’high-frequency alpha’ and parietal ’low-frequency alpha’. The frequency difference between occipital 
and parietal alpha components is present within individual participants but is partially masked by larger between 
subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant 
and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes 
has the potential to enhance analyses into the relationship between neural dynamics and a person’s behavioural, 
cognitive or clinical state. 
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. Introduction 

The wide variety of oscillatory phenomena in electrophysiological
ecordings of brain function reflect the synchronised activity of under-
ying neuronal networks ( Bressler, 1995; Fries, 2005 ). These oscilla-
ory signatures have a rich frequency spectrum that shows meaning-
ul between subject variability across cortex and between participants.
n practice, this variability is often simplified in either the spatial or
pectral domain by the choice of a priori frequency bands or regions
f interest. There is a need for analytic approaches that simultaneously
haracterise both the spectral and spatial features of oscillatory signals
ithin a single framework. Here, we present a data driven modal decom-
osition analysis approach which identifies oscillations in multivariate
ime-series and characterises their peak frequency, damping time, spa-
ial topography and network structure. We apply this method to explore
∗ Corresponding author. 
E-mail address: andrew.quinn@psych.ox.ac.uk (A.J. Quinn). 
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he macro-structure of alpha oscillations in Human neocortex and how
his varies between subjects. 

The alpha oscillation is often characterised as a 7–13Hz signal origi-
ating from occipital cortex ( Berger, 1929; Lopes da Silva, 1991 ) whose
unction has been associated with a wide range of cognitive and clini-
al states ( Jensen and Mazaheri, 2010; Klimesch et al., 2007 ). Yet there
s strong and growing evidence that alpha oscillations are not homo-
eneous across different frequencies, brain regions or individual par-
icipants. The lower and higher edges of the 7–13Hz alpha band have
istinct task responses indicating that they relate to different aspects
f cognition ( Klimesch, 1999; Klimesch et al., 2007 ). Individual Alpha
requency (IAF) is variable across populations ( Klimesch, 1999 ) and
odulated by task demands within individuals ( Haegens et al., 2014 ).
oreover, IAF may be a valuable clinical marker; the slowing of alpha

eak frequency is a robust characteristic of both Alzheimer’s Disease
nd Mild Cognitive Impairment ( Engels et al., 2016; Garcés et al., 2013;
ughes et al., 2019; López-Sanz et al., 2016; Osipova et al., 2005; Peraza
y 2021 
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t al., 2018; Poza et al., 2007 ). Alpha power tends to peak in the midline
ccipito-parietal and occipital cortex in source reconstructions of resting
tate EEG and MEG recordings ( Ciulla et al., 1999; Hari, 1997 ). Yet, vari-
nts of the alpha rhythm are observed throughout the human brain in a
ange of contexts, likely arising from a combination of thalamo-cortical
nd cortico-cortical interactions ( Foxe and Snyder, 2011; Hughes and
runelli, 2005 ). Alpha band network connectivity can be widely vari-
ble between individual subjects ( Wens et al., 2014 ); a part of this net-
ork variability is heritable ( Colclough et al., 2017 ) and likely to reflect
iologically relevant between subject heterogeneity. There is increasing
vidence supporting functionally distinct alpha generators in different
rain regions ( Klimesch et al., 2007; Sokoliuk et al., 2019 ) within indi-
idual participants. For instance, distinctions have been shown between
ccipito-parietal and occipito-temporal alpha ( Barzegaran et al., 2017 ),
s well as alpha arising from visual and parietal sources ( Sokoliuk et al.,
019 ). 

These lines of evidence emphasise the functional relevance of spa-
ial and spectral variability in neuronal oscillations whilst illustrating
he difficulty of untangling the many sources of within and between
ubject variability. It remains a substantial analytic challenge to char-
cterise variability in both the peak frequency, spatial distribution and
etwork structure of neuronal rhythms. We present a novel, data-driven
pproach which characterises both the spatial and spectral structure
f an oscillatory network. We use the modal decomposition ( Neumaier
nd Schneider, 2001; von Storch et al., 1995 ) of a multivariate autore-
ressive (MVAR) model to define a set of Spatio-Spectral Eigenmodes
SSEs). Each mode contains a unimodal (single peak) frequency response
hose dynamical importance is represented by a damping time; rapidly
amped modes will be quickly extinguished and contribute less to the
bserved dynamics in the data. Both the peak oscillatory frequency and
patial representation are simultaneously estimated within each SSE,
ithout needing to impose arbitrary a priori frequency bands or spatial

egions of interest. Each SSE is a property of the whole system with a
ontribution to the whole network and whole power spectrum. Here, we
how the system transfer function can be computed from a linear super-
osition of these SSEs. The standard autoregressive transfer function is
xactly equivalent to the modal transfer function when all modes are in-
luded. Crucially, the SSE approach allows individual oscillatory signals
o be isolated from the superposition. This property allow us to objec-
ively detect oscillations using a non-parametric permutation scheme to
dentify SSEs from within the superposition. Once identified, the spa-
ial and spectral parameters of the SSEs can be analysed at the group or
ndividual subject level. 

In this paper, we apply the Spatio-Spectral Eigenmodes to detect
nd characterise oscillations in Human MEG data, exploring macro-scale
patial and spectral variability in oscillatory resting state networks both
ithin and between subjects. The method is first validated with simu-

ations before being applied to resting state MEG data from the Human
onnectome Project ( Larson-Prior et al., 2013; Van Essen et al., 2013 ).
ource time-courses are estimated from the pre-processed sensor data
sing a LCMV-beamformer ( Van Veen et al., 1997 ) before voxels are
ombined within regions of the Automated Anatomical Labelling (AAL)
tlas ( Rolls et al., 2015 ). This source-parcellated data is described with
n MVAR before the modal decomposition is used to describe the oscilla-
ory features in the data. We estimate the source power distribution from
he MVAR parameters and identify dynamically important modes based
n an objective non-parametric permutation scheme. We describe the
rincipal components of spatial variability across the dynamically im-
ortant SSEs revealing large-scale patterns in network structure across
he whole brain. Importantly, though the individual variability in peak
requency is of a similar magnitude to the spatial variability, this method
s able to show that the frequency difference within different gradients
re largely consistent within individuals, even though the overall IAF is
ighly variable between individuals. 
2 
. Methods 

.1. Spatio-spectral eigenmodes from multivariate autoregressive models 

Here, we give an overview of a standard approach to Multivariate
utoregressive (MVAR) modelling and spectrum estimation before out-

ining the modal decomposition and definition of Spatio-Spectral Eigen-
odes. An illustrative summary of the analysis pipeline used is given in

ig. 3 

.1.1. Spectrum estimation from multivariate autoregressive models 

We start with a vector time series, x (t) with 𝑚 channels
 1 ( 𝑡 ) , 𝑥 2 ( 𝑡 ) , … , 𝑥 𝑚 ( 𝑡 ) , 𝑡 ∈ 1 , 2 , … , 𝑇 . Time-lagged linear dependencies
ithin and between the channels can be characterised with an MVAR
odel of order 𝑝 . 

( 𝑡 ) = 

𝑝 ∑
𝑘 =1 

𝐴 𝑘 𝐱( 𝑡 − 𝑘 ) + 𝜖( 𝑡 ) (1) 

here 𝐴 𝑘 is an 𝑚 × 𝑚 array of regression parameters at lag 𝑘 and 𝜖 is
n 𝑚 -variate white noise process. This is a form of linear time-invariant
LTI) system in which future values of 𝐱( 𝑡 ) are predicted from a linearly
eighed combination of its past values. The parameter matrix 𝐴 𝑘 con-

ains these linear dependencies between the past and future values of the
ime-series at a given lag, 𝑘 . The off-diagonal elements of 𝐴 𝑘 describe the
egree to which the different channels within the system contain lagged
nteractions. 𝐴 (without subscript) denotes the 3-dimensional parameter
atrix containing 𝐴 𝑘 for all fitted values of 𝑘 (from 1 to 𝑝 ). 

The interactions described by 𝐴 may be expressed in the frequency
omain by computing the system transfer function 𝐻 as a function of
requency 𝑓 . The transfer function describes the ratio of the input to a
ystem to the output of the system and is computed from the 𝑧 -transform
f the 𝐴 matrix. 

 ( 𝑓 ) = 

𝑝 ∑
𝑘 =1 

𝐴 𝑘 𝑧 
− 𝑘 (2) 

here 

 = 𝑒 𝚤𝜔 ≡ cos 𝜔 + 𝑖 sin 𝜔 (3) 

nd 

 = 2 𝜋𝑓Δ𝑡 (4) 

𝑡 denotes the sampling interval, 𝜔 the normalised frequency in radians
nd 𝑓 the frequency in Hertz. Eq. (2) can be evaluated for any value
f 𝑧 in the complex plane. Here, we only evaluate 𝑧 on the unit circle
where |𝑧 | = 1 ) as the output of these points can be directly related to
n oscillatory frequency 𝑓 and Eq. (2) is equivalent to the discrete time
ourier transform. 

The power spectrum of 𝐱( 𝑡 ) can be computed from the frequency
ransform of the autoregressive parameters 𝐴 via the transfer function
( 𝑓 ) and the residual covariance matrix Σ. 

( 𝑓 ) = ( 𝐼 − 𝐴 ( 𝑓 )) −1 (5) 

( 𝑓 ) = 𝐻 ( 𝑓 )Σ𝐻 

∗ ( 𝑓 ) (6) 

Where 𝐻 

∗ ( 𝑓 ) denotes the complex conjugate transform of 𝐻( 𝑓 ) .
( 𝑓 ) contains the power spectrum of each of the 𝑚 regions in the diag-
nal and the cross-spectrum between regions in the off-diagonal terms.
he properties of 𝐴 ( 𝑓 ) , 𝐻( 𝑓 ) and 𝑆( 𝑓 ) form the basis of a range of
pectral connectivity metrics including Magnitude Squared Coherence,
eweke-Granger causality, Directed Transfer Function and Partial Di-

ected Coherence ( Baccalá and Sameshima, 2001; Blinowska, 2011 ). In
ractise, analyses will typically compute these metrics across a range
f frequencies before integrating between specified frequency bands to
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solate frequency specific structure. 

.1.2. MVAR Modal decomposition 

An autoregressive model is a form of Infinite Impulse Response (IIR)
lter whose spectral characteristics are completely described by the
olynomial roots of its parameters. These roots directly relate to res-
nances in 𝐻 and describe how the filter extracts an input at frequency
to obtain the filter output. This is well characterised for univariate

ystems and can be generalised to multivariate systems to provide an in-
uitive description of the frequency information contained in an MVAR
odel. This modal representation of the transfer function can then be
sed to simultaneously explore the peak frequency and spatial structure
f brain networks ( Neumaier and Schneider, 2001 ). The modal decom-
osition of MVAR coefficients is closely related to linear filter theory. 

To perform the modal decomposition, we first rewrite the order- 𝑝 𝐴
atrix as an order 1 system in a square block form. The autoregressive
odel in Eq. (1) can be restructured into a blocked form using a delay

mbedding of 𝑋( 𝑡 ) = { 𝐱 ( 𝑡 ) , 𝐱 ( 𝑡 − 1) , … , 𝐱( 𝑡 − 𝑝 )} and the companion form
of the MVAR parameter matrix ( Neumaier and Schneider, 2001 ). 

 

 

 

 

 

 

 

𝐱( 𝑡 ) 
𝐱( 𝑡 − 1) 
𝐱( 𝑡 − 2) 

⋮ 
𝐱( 𝑡 − 𝑝 ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐴 1 𝐴 2 … 𝐴 𝑝 −1 𝐴 𝑝 

𝐼 0 … 0 0 
0 𝐼 … 0 0 
⋮ ⋮ ⋱ ⋮ ⋮ 
0 0 … 𝐼 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐱( 𝑡 − 1) 
𝐱( 𝑡 − 2) 
𝐱( 𝑡 − 3) 

⋮ 
𝐱( 𝑡 − ( 𝑝 + 1)) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
+ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜖( 𝑡 ) 
0 
0 
⋮ 
0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(7) 

𝐶 is a blocked 𝑚𝑝 × 𝑚𝑝 matrix with the sparse 𝑝 − 1 rows at the bot-
om shifting the corresponding rows in 𝑋( 𝑡 − 1) down to create space for
he 𝑥 ( 𝑡 ) in the prediction. The simplified matrix form of this equation 

( 𝑡 ) = 𝐶𝑋( 𝑡 − 1) + 𝜖( 𝑡 ) (8) 

s of almost identical form to an order 1 autoregressive model in the
tandard formulation in Eq. (1) . The eigendecomposition of the square
arameter matrix 𝐶 then yields 𝜆, 𝑉 and 𝑊 as the eigenvalues, right
igenvectors and left eigenvectors, respectively. The eigenvalues 𝜆 are
he roots of the characteristic equation of the matrix 𝐶 and as such di-
ectly define the frequency response of the pole. The characteristic fre-
uency of each pole can be calculated as: 

= 

2 𝜋|𝑎𝑟𝑔( 𝜆) | (9) 

Oscillations are represented by complex conjugate pairs of poles
ithin 𝜆 whilst single poles lying on the real line represent non-
scillatory parts of the signal. The damping time of a mode is also com-
uted from its eigenvalue: 

= 

−1 
𝑙𝑜𝑔|𝜆| (10) 

This describes the rate at which the amplitude of an oscillation would
rop to zero if the system were energised with an impulse response.
onger damping times indicate less damped modes which will oscillate
or longer durations following a single input. Short damping times in-
icate that the behaviour of the mode is quickly extinguished once the
ystem is energised. 

The complex valued eigenvector matrices 𝑊 and 𝑉 are the same
𝑝 × 𝑚𝑝 size as 𝐶. They have a specific Vandermonde structure in which
 row contains 𝑝 blocks of 𝑚 values raised to successive powers of their
orresponding eigenvalue 𝜆𝑗 . 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑤 1 𝑤 

𝜆1 
1 𝑤 

2 𝜆1 
1 … 𝑤 

𝑝𝜆1 
1 

𝑤 2 𝑤 

𝜆2 
2 𝑤 

2 𝜆2 
2 … 𝑤 

𝑝𝜆2 
2 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑤 𝑗 𝑤 

𝜆𝑗 

𝑗 𝑤 

2 𝜆𝑗 

𝑗 … 𝑤 

𝑝𝜆𝑗 

𝑗 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
∈ ℂ 

𝑚𝑝 ×𝑚𝑝 (11) 

Due to the repeating structure in rows of 𝑊 , we reduce analysis of
he eigenvector of a mode to a vector of the first 𝑚 values in each row
 𝑤 𝑗 (1 ∶ 𝑚 ) or 𝑣 𝑗 (1 ∶ 𝑚 ) ). This reduced vector (also called mode shape)
escribes the structure of the resonance across the 𝑚 dimensions of the
nput. 
3 
.1.3. The modal form of the transfer function 

When using autoregressive models for spectrum analysis, the transfer
unction is typically estimated from the Fourier transform of the time-
omain parameters 𝐴 ( Eq. (2) ). Here, we show that it may equivalently
e computed from the modes from the eigenvalue decomposition. The
igenvalues and eigenvectors defined above form the parameters of a
artial fraction expansion of the transfer function. This converts the
ransfer function from a ratio of two long polynomials to the sum across
 set of fractions with simple denominators. A modal form of the transfer
unction can then be defined as a summation of a ratio of the properties
f the 𝑚𝑝 modes. 

( 𝑓 ) = 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞( 

𝐼 − 

𝑝 ∑
𝑘 =1 

𝐴 𝑘 𝑧 
− 𝑘 
) 

−1 ≡

𝑀𝑜𝑑𝑎𝑙 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑚𝑝 ∑
𝑗=1 

𝑅 𝑗 𝑧 

𝑧 − 𝜆𝑗 

||||𝑧 = 𝑒 𝚤 2 𝜋𝑓 
(12) 

here 𝜆 is the modal eigenvalue and 𝑅 𝑗 is the mode residue matrix. The
ourier form comes from substituting Eq. (2) into Eq. (5) . A full deriva-
ion of the modal form is included in appendix Appendix B and details on
stimating the modal parameters is presented in appendix Appendix C .
n the modal form, the mode residue 𝑅 is the coefficient of each term
n the expansion (and distinct from the residuals of the autoregressive
odel fit) computed from the outer product of the first 𝑚 terms in the

eft and right eigenvectors 𝑅 𝑗 = 𝑣 𝑗 ⊗𝑜𝑢𝑡𝑒𝑟 𝑤 

∗ 
𝑗 where ∗ denotes the com-

lex conjugate. 𝑅 𝑗 is then an 𝑚 × 𝑚 matrix whose elements are coeffi-
ients denoting the strength of the mode at each node and connection
n the system. In other words, it acts to project the oscillation defined
y 𝜆𝑗 in the signal within each node and the connections between them.
hen all 𝑚𝑝 modes are included in the summation, the Fourier and
odal forms of 𝐻 are exactly equivalent. The modal form is related to
ilbert’s Realisation ( Gilbert, 1963; Kailath, 1980 ) which expresses a

ational transfer function as a partial fraction expansion. 
This modal form of 𝐻 has several benefits. Firstly, the relation to the

ther modal parameters provides important context to 𝐻 . Though we
an evaluate 𝐻 at any frequency up to the Nyquist limit, the resolution
f the power spectrum is limited by the number of modes. A decompo-
ition with a higher model order will have more modes in its decompo-
ition and therefore a richer spectral structure. Secondly, as the modal
orm is a linear superposition (or summation) across modes, the con-
ribution of a single resonance can be easily isolated or removed from

altogether. The computation of reduced transfer functions provides
 convenient way to summarise network state from a subset of modes.
election of modes by peak frequency can be useful as an alternative
o integrating across the spectrum within specified frequency bands. In
ases where a spectral peak lies close to the edge of a specified band,
ode selection will allow the full contribution of that mode to enter

he average without cropping its width to fit the band. The mode selec-
ion scheme can be tuned to fit the priorities of the research question at
and. 

.1.4. Spatio-Spectral Eigenmodes 

We define a Spatio-Spectral Eigenmode by the resonant frequency,
amping time and transfer function of a single component in the modal
ecomposition of an MVAR model. 

 𝑆 𝐸 𝑗 ∶= { 𝜌𝑗 , 𝛿𝑗 , 𝐻 𝑗 ( 𝜌𝑗 )} (13) 

erived from a given eigenmode 𝑗 in the eigendecomposition above. The
ransfer function of an SSE is evaluated only at the peak frequency of
he mode in question. We will often split the total set of SSEs to explore
he properties of a subset defined by permutation, frequency range or
oth. 

.2. Software 

All simulation, MVAR modelling and model decomposition steps
re computed in Python 3.7.3 the Spectral Analysis In Linear Sys-
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ems toolbox ( Quinn and Hymers, 2020 ), https://vcs.ynic.york.ac.uk/
nalysis/sails and https://sails.readthedocs.io ). Underlying python de-
endencies are numpy ( Harris et al., 2020 ) and scipy ( SciPy 1.0 Con-
ributors et al., 2020 ) for computation and matplotlib ( Hunter, 2007 )
or visualisation. MEG data pre-processing and beamforming was per-
ormed using Fieldtrip and the OHBA Software Library ( https://github.
om/OHBA- analysis/osl- core ) in Matlab version R2019a on a cluster
f x86-64 systems. The Bayesian statistical analysis was carried out
n R version 3.5.2 using the BRMS (version 2.11.1; Bürkner (2018) ;
olclough et al. (2015) ) and loo (version 2.2.0; Vehtari et al. (2017) )
ackages. Full scripts for the preprocessing, data analysis and statis-
ical assessment in simulated and HCP MEG data are available on-
ine ( https://vcs.ynic.york.ac.uk/analysis/rs-mvar ). The scripts include
 tool for checking out the correct versions of the external toolboxes
hich are used. 

.3. Simulations 

The MVAR Modal Decomposition is first explored with simulations.
0 realisations (representative of 20 participants) of 300 s of data from
 10 node network are generated with a sampling frequency of 128 Hz.
ach dataset is built from two subnetworks with different spatial and
pectral profiles, the first is defined by a real-valued pole at 0 Hz and
he second by a complex-conjugate pair of poles between 8 and 12 Hz,
ittered across participants. Oscillatory data for these networks are gen-
rated by placing the poles within the z-plane and transforming them
ack to their polynomial form. These polynomials are then used as co-
fficients to filter white noise to produce oscillatory time-series. Each of
he two oscillations are then projected through the network using a set
f weights defining the relative strength of the oscillation in each of the
0 nodes. Finally the two oscillatory networks are added together with
hite noise to create the final signal. 

Each network is described with an order 5 MVAR model. The Fourier-
ased cross and power spectral density (CPSD) 𝑃 𝑓 is computed and the
veraged within two frequency bands of interest 0–4 Hz and 8–12 Hz
eflecting the two simulated oscillations. The modal decomposition is
hen computed and a modal form of 𝑃 𝑚 split into three reduced models,
wo models for the poles which survive the permutation thresholding
rocedure and a residual model. The poles-of-interest for the simulation
re taken as those which are identified as surviving the thresholding
rocedure. The surviving poles are then assigned to the low or high
requency band of interest based on having a characteristic frequency
ying within 4Hz of the relevant frequency (the same ranges as used for
he Fourier analysis). 

An supplemental simulation with an additional oscillatory mode at
2 Hz was run to explore whether the method is able to describe oscil-
atory systems with a wide range of peak frequency values. The anal-
sis parameters are the same as in the main text simulation with the
xception that the model order in increased to 7 to accommodate the
dditional oscillation. A variant of this simulation was run with a vari-
ble level of noise to establish that the SSEs are able to handle low SNR
ignals. Both the standard Fourier power spectrum and modal parame-
ers were robust to increasing noise levels, with all three modes in the
imulation resolvable with noise levels up to five times the standard-
eviation of the signal. Details are presented in supplemental section
ppendix E. A detailed analysis was then run on the simulation at a mod-
rate noise level. The results show that the method is straightforwardly
ble to resolve both the frequency content and network structure of the
hird mode. Details are presented in supplemental section Appendix F. 

.4. Ethics statement 

Resting-state MEG datasets recorded from 79 participants in
he Human Connectome Project ( http://www.humanconnectome.org)
 Larson-Prior et al., 2013; Van Essen et al., 2013 ) are analysed in
4 
his manuscript. Participant recruitment and data collection were car-
ied out by Washington University and the University of Minnesota.
ll participants provided written informed consent prior to data col-

ection ( Van Essen et al., 2013 ). The experimental procedures were
pproved by the Institutional Review Board (IRB) at Washington
niversity (IRB number 201204036; “Mapping the Human Connec-

ome: Structure, Function, and Heritability ”). For the analysis in this
tudy, the preprocessed dataset was downloaded from ConnectomeDB
 https://db.humanconnectome.org) . 

.5. Resting state MEG data 

Each participant underwent three separate runs of a 6 min eyes-open
esting state protocol MEG data were collected using a 4D Neuroimaging
H-3600 scanner, equipped with 248 magnetometer sensor channels

nd 23 reference channels, and were sampled at 2034.51 Hz. Participant
eadshapes were digitised using a polhemus tracker system prior to MEG
ata collection. 

The HCP pre-processed resting state MEG datasets were used along
ith the room noise recordings for the relevant session and informa-

ion regarding the ICA components from the de-noising process. Co-
egistrations for the MEG and MRI data for each participant were taken
rom the models provided by the HCP project. 

Seventy-eight areas from the AAL2 atlas ( Rolls et al., 2015; Tzourio-
azoyer et al., 2002 ) were used as target regions of interest. Beam-

ormer weights were calculated for locations on an 8mm-spaced grid
paced inside each of the regions of interest. A Linearly-Constrained
inimum Variance beamformer ( Van Veen et al., 1997; Woolrich et al.,

011 ) at the orientation which showed maximum power. The source
irtual electrode time-series were then resampled to 240Hz. The indi-
idual time-series from the grid locations within each region were then
educed to a single time-series per region by taking the first principal
omponent across the voxels within the region. The time-series across all
egions were then orthogonalised to reduce the impact of spatial leak-
ge ( Colclough et al., 2015 ). The main analyses were explored with and
ithout this orthogonalisation step on a subset of the HCP dataset (a sin-
le run from each participant) in supplemental section Appendix M. This
dditional analysis indicates that the orthogonalisation has the greatest
mpact on the relatively small, highly damped modes. The larger oscil-
atory modes contain relatively consistent information whether orthog-
nalisation is applied or not. Finally, the beamformed time-series were
ownsampled 2-fold using a windowed fourier-domain method, giving
 final sampling rate of 120 Hz. 

.6. Model order selection 

Prior to analysis of an autoregressive model of any dataset, the model
rder 𝑝 must be selected. This choice can be informed by metrics such as
kaike’s Information Criterion (AIC: Akaike (1974) , however this often
ives a monotonically decreasing profile with no clear optimal model
 Brovelli et al., 2004; Ding et al., 2000; Jansen, 1991; Schlögl and Supp,
006 ). Even if there is a local minimum in the AIC time-domain metric,
his does not guarantee that the resulting power spectrum will provide a
ood representation of the data. In addition, the choice of sampling fre-
uency can have an impact on autoregressive power spectra ( Quirk and
ede Liu, 1983 ). The effect of changing these parameters is relatively
redictable and is analogous to the choice of window length and sam-
le rate in a more conventional measure such as Welch’s Periodogram.
or example, changing model order increases the number of modes that
he MVAR model can represent, with lower model orders having fewer
odes and therefore smoother spectra. In contrast, changing sample rate

ffects the Nyquist frequency of the power spectrum and therefore the
requency range that the available modes represent. 

To demonstrate these effects and to directly assess which combina-
ion of model order and sampling frequency to use in the main analysis,
n exploration of the power spectra and modal parameters was carried

https://vcs.ynic.york.ac.uk/analysis/sails
https://sails.readthedocs.io
https://github.com/OHBA-analysis/osl-core
https://vcs.ynic.york.ac.uk/analysis/rs-mvar
http://www.humanconnectome.org\051
https://db.humanconnectome.org\051
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ut on a subset of the HCP data (a single run per participant). The results
re presented in detail in supplemental section Appendix H. In short,
he we find that model orders below 8 and sampling rates above 120Hz
roduce results which do not well represent the approximately 1–40 Hz
requency range of interest in this paper. The final analysis uses a model
rder of 12 and a sampling rate of 120Hz producing a clear physiological
ower spectrum whose oscillatory modes are evenly distributed across
requency. This choice has the consequence of removing relatively high
requency oscillations (greater than 50 Hz) from the analysis. A differ-
nt parametrisation would be more sensitive to these frequencies at the
mall expense of resolution at lower frequencies. Due to the prevalence
f alpha power in resting state scans, we decided to optimise analysis
or the relatively low frequency bands. Critically, the power spectrum
nd modal decomposition are relatively robust to moderate changes to
oth model order and sampling rate around our chosen values. 

.7. Model fitting and validation 

MVAR Models were fitted with order 12 across all 78 parcels in the
CP data. 12 was chosen by a combination of the AIC and manual in-

pection of the model spectra. An order of 12 produced good spectra
nd was not before an inflection point in the AIC. 

After fitting, the models were checked for stability (using the Stabil-
ty Index (SI): (Lütkepohl, 2007, pages 15–16) ), residual autocorrelation
using the Durbin-Watson index: Durbin and Watson (1950) ) and vari-
nce explained. The models were able to fit between 21 and 29% of
ariance (mean = 24.990%, SD = 4.003%) within each recording session.
e consider this to be a good proportion of variance to explain with a

ingle stationary and linear model of a whole brain functional parcel-
ation. All models were stable, having SI values below 1 (mean = .959,
D = .016) and no substantial autocorrelation could be found in the resid-
als according to the Durbin-Watson test (mean = 2.003, SD < .001). 

Once the MVAR models ( 𝐴 matrix) were fitted for each scan session,
he transfer function 𝐻 and spectral matrix 𝑆 were computed between
 and 48Hz using the Fourier method. The 𝑆 matrices were averaged
ithin the set of specified frequency bands to summarise the frequency-

pecific spatial topologies captured by the MVAR models. 

.8. Fourier and SSE network connectivity estimation 

We validate that a single MVAR model is able to describe the spatial
nd spectral content of a whole brain functional connectome estimated
rom MEG data using a standard Fourier-based approach. The system
ransfer function is estimated using the Fourier Eq. (2) for all frequen-
ies between 0-60Hz in 100 steps. Subsequently the spectral matrix is
omputed for each frequency using the 𝐻( 𝑓 ) and the residual covariance
atrix Σ. Finally, we integrate within a set of pre-specified frequency

ands to summarise how the network structure of oscillatory brain net-
orks changes across frequency. 

.9. Modal decomposition and non-parametric permutation 

The modal decomposition of each MVAR model was computed using
he methods described above and the peak frequency, damping time,

and 𝑆 were computed for each mode. The modal decomposition
f a system returns 𝑚 ∗ 𝑝 modes which could number in the hundreds
r thousand for a large system. Many of these modes are likely to be
odelling noisy characteristics of the system or its measurement rather

han physiologically interesting oscillatory activity. In order to select
he most dynamically relevant modes, a non-parametric permutation
esting method was used on the damping times of the modes. Each in-
ividual time series was split into non-overlapping temporal epochs re-
ulting in a 3d data array [channels x samples x epochs]. Permutations
re carried out by randomising both the channels and epochs in order to
onstruct null datasets in which the relationships between nodes have
een destroyed whilst maintaining the overall spectral nature of the
5 
ata. At each permutation, a MVAR model is estimated on the surrogate
ataset and the modal decomposition computed. A maximum statistic
ethod was then used ( Nichols and Holmes, 2002 ) in which the max-

mum damping time of all of the modes within the given model was
ntered into the null distribution. This was repeated for each permuta-
ion, resulting in a null distribution of damping times for each partic-
pant, for each run. A threshold which represented the 1% tail of the
ull distribution was then established in this way for each run, for each
articipant. Modes were then selected from the un-permuted data using
hese individual damping time thresholds. 

.10. Spatial principal components analysis of SSE networks 

Patterns of spatial and network variation in the SSE surviving the
ermutation scheme was performed using a principal components anal-
sis (PCA). The [nnodes x nnodes] PSD matrices for the significant SSEs
ere vectorised and concatenated a [modes x nnodes ∗ nnodes] matrix
nd demeaned before a PCA was used to identify the principal axes of
ariation across the connections within the network across modes. The
omponents of the PCA then show patterns in the spatial distribution
f oscillatory power across a number of modes regardless of the char-
cteristic frequency of the modes which significantly contribute to the
omponent. Whilst each network is computed at its peak resonant fre-
uency, these resonances are free to vary (within the specified alpha
ange) across networks both between and within individuals. 

The PCA was computed for subsets of SSE whose peak frequency lies
ithin each of three frequency bands. Theta (1–7Hz), alpha (7–13Hz)
nd beta (13–30Hz). Crucially, the inclusion of an SSE in a band depends
nly on its peak frequency. Once included, all information on the net-
ork structure within that SSE is included in the analysis, even if part
f the spectral peak goes outside the specified band. Reproducibility of
he components arising from the PCA were assessed using a split-half
orrelation. 500 split halves of the SSEs included in a PCA were com-
uted and the PCA computed on each half independently before the
patial components of each half are then correlated and stored. Both the
plit-half correlation and proportion of variance explained by each com-
onent was used in determining whether the component was included
n further analyses. The components describe the pattern of variability
cross space captured by that PC whilst the PC-score indicates the ex-
ent to which that shape is expressed in each individual SSE. An example
patial map is computed for maximum and minimum observed score in
ach PC by projecting that score back into the original data-space. 

Relatively few SSEs survived the permutation scheme in the theta
nd beta bands. Potentially as a result, the PCA components from these
ands also showed relatively low reproducibility. For completeness, the
SE and the first 4 PCs for these bands are included in section Appendix
. In contrast, over 1200 SSEs were included in the alpha band and the
rst two PCA components showed high variance explained and split-half
eliability. These are interpreted in the main text and carried forward
or further statistical analysis. 

.11. Relationship between mode frequency and PC projection score 

In order to examine whether there was a relationship between the
requency of each mode and the score with which it projected onto a
iven component, we performed a Bayesian linear regression using the
RMS package ( Bürkner, 2017; 2018 ). For each PC, we scaled the scores
y its standard deviation and fit a model of 𝑆𝑐 𝑜𝑟𝑒 𝑆𝑐𝑎𝑙𝑒𝑑 𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐 𝑦 +
1 |𝑃 𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ) , allowing an overall change in mean frequency per-
articipant. Model inference was performed using the standard NUTS
ampler used by STAN through BRMS. 

The prior for the Frequency parameter was chosen to be normally
istributed with a mean of 0 and a standard deviation of 1; reflecting
ur default position that there was no a-prior reason to expect frequency
o vary with score. Altering the standard deviation of the prior to other
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lausible ranges had no significant effect on the overall results. Exam-
nation of diagnostic plots showed that the parameters have converged
n all cases. 

To assess whether there was a relationship for each principal compo-
ent, we fit an intercept-only model and a model with frequency as an
dditional linear regressor and compared evidence for the models using
 Leave-One-Out (LOO) cross-validation methods ( Vehtari et al., 2017 ).
ur criteria for determining that a model with the additional frequency

egressor has more evidence is that the difference in LOO should be more
han twice the estimate of the LOO standard standard error. For models
here the model with frequency was assessed as having more evidence,
e then report and assess the magnitude of the frequency parameter in

he full model along with is 95% Credible Interval (CI). Due to the scal-
ng of the scores, the frequency parameters is expressed in terms of the
tandard deviation of the score. 

. Results 

.1. Validation in simulated data 

To illustrate the MVAR modal decomposition and Spatio-Spectral
igenmodes we explored a single simulated dataset and a group sim-
lation designed to exhibit realistic inter-run or inter-participant vari-
bility. The simulation scheme is summarised in Fig. 1 A and described
n detail in Section 2.3 . Briefly, the simulated activity in this network
ontained two resonances with pre-specified spatial and spectral struc-
ures. Two modes with distinct spectral structures were defined by direct
ole placement and used to generate time-courses which were projected
nto a 10 node network structure. 20 realisations of 300 s in duration
ere simulated from this network structure. Independent realisations of
hite noise were added to the simulated data prior to MVAR and SSE
nalyses. 

.1.1. Modal decomposition of a single session 

An example segment of simulated data with its generating modes
s shown in Fig. 1 A. A non-oscillatory (blue) and an oscillatory (red)
ource time-course is created and projected across a network to create
0 node time courses (black). The red and blue horizontal bars indicate
he weighting of each model time-course into each of the 10 nodes. The
true ” network matrix containing the structure of each mode is shown
n Fig. 1 B. The time-series were described with an order-5 MVAR model
tted across the whole 300 s simulation. The Fourier based transfer func-
ion and power spectra were computed from this model and the spec-
rum of each node is shown in Fig. 1 C. These spectra show the contri-
utions from the two modes across the ten nodes. Some nodes contain
ignal from mode one (e.g. node 1), mode two (e.g. node 4) or both
odes (e.g. node 7). Next, the modal decomposition was computed and

he PSD con for node 7 (shown in black in Fig. 1 C) is shown in Fig. 1 D.
hilst node 7 contains contributions from both modes which are mixed

n the Fourier-based analysis ( Fig. 1 C), these are clearly split into sepa-
ate peaks (blue and red) in the modal power-spectrum ( Fig. 1 D). 

The frequency 𝜌 of each mode was computed directly from the eigen-
alue 𝜆 of the fitted MVAR model. A 𝑧 -plane plot of the eigenvalues
f the decomposition ( Fig. 1 E) reveals that the 1∕ 𝑓 -type mode is rep-
esented by a single real-valued mode (blue cross), in contrast the 9Hz
ode is modelled by a complex conjugate pair of modes (red crosses). In

he z-plane, frequency is represented by the angle of the complex eigen-
alue, whilst the magnitude of the mode is its distance from the origin.
s a more intuitive alternative, we show a scatter plot with individual
odes with peak frequency on the x-axis and damping time 𝛿 on the

-axis ( Fig. 1 F). The damping time indicates how quickly an oscillation
n that mode would be extinguished, longer damping times indicate that
nergy in the oscillation will dissipate more slowly. The damping time
lots emphasise the dynamically important modes with long damping
imes whilst the frequency can be directly read out from the x-axis. In
ddition, the calculated damping time threshold for the simulation run
6 
s shown as a dotted line, demonstrating that the two relevant modes
re easily separable from the background (Supplementary figure D.10
ontains this data for all 20 realisations). Finally, the network structure
f each of the two modes can be reconstructed from their modal trans-
er functions, computed from the relevant eigenvectors. Fig. 1 G and H
hows the Modal PSD of modes 1 and 2 respectively, each evaluated
t its peak frequency (as determined from the respective eigenvalue).
hese reproduce the ground-truth structure shown in Fig. 1 B. 

.1.2. Modal decomposition of group-level networks 

Next we examined how the Fourier band-integration and SSE ap-
roaches can describe oscillations with between subject variability in
eak frequency. We computed 20 realisations (representative of 20 par-
icipants) of the simulation in Fig. 2 with varying peak frequency and
mplitude in peak 2 whilst keeping the network structure itself static.
ig. 2 A shows the spectra of node 7 across the realisations of the simula-
ion. The alpha peak frequency has a uniform +/-2Hz variability across
ealisations (gray lines represent individual subject); the group average
an be seen as the solid black line. As in the single case, node 7 con-
ains a contribution from both oscillatory networks; showing a 1∕ 𝑓 type
lope and a peak at around 9Hz. The simulated variance in peak fre-
uency can also be seen clearly in the Fourier spectra shown in Fig. 2 B;
he frequencies-of-interest are highlighted in red and blue. The Fourier
pectra captures the average features well, but the use of pre-determined
requency bands leads to clipping at the edges of some peaks. In addi-
ion, we can see contributions from the 0Hz peak influencing the shape
nd magnitude of the PSD around the 10Hz oscillation. Whilst adapting
he frequency band of interest to the individual peak frequency could
educe the effect of peak clipping in the Fourier integration approach, it
s harder to reduce interference between oscillations with overlapping
pectra. As an alternative, the modal PSDs are shown in Fig. 2 C. These
re computed from the reduced transfer functions using poles selected
y their damping time and driving frequency. In contrast to Fourier in-
egration, this approach extracts single-peaks which vary depending on
pecific frequency content of the data. 

The group simulation used the network structure defined in Fig. 2 D,
ith the network connectivity pattern driven by the 1∕ 𝑓 -type signal
n the left and the simulated alpha oscillation on the right. The net-
ork structure estimated by the Fourier frequency band integration ap-
roach captures the core features of the ground-truth simulations, but
how spectral ‘leakage’ between the two underlying network patterns
 Fig. 2 E). The high and low resonances overlap in the frequency axis
eading to low frequency content leaking into the high frequency inte-
ration window and vice-versa. In contrast, this mixing is absent in the
odal estimation ( Fig. 2 F) which is able to separate the contribution

rom each pole to all frequencies and tune itself to variance in individ-
al peak frequency. Both methods achieve a high (r > 0.9) correlation
etween true and estimated network structure across with the whole net-
ork and all realisations, however the modal networks are much more

ightly clustered close to 1 ( Fig. 2 G). In addition, the noise network es-
imated from the residual modes correlates between r = .4 and r = .5 in
he case of the Fourier-integration estimated networks whilst the same
orrelation in the modal networks is much lower (around 0.2) ( Fig. 2 H).

Additional supplemental simulations were able to show that the
VAR model and SSE decomposition is robust to increasing the level

f noise in the simulation (See supplemental section Appendix E and
o the addition of a third oscillatory mode with a distinct spatial struc-
ure (See supplemental section Appendix F). Finally, a simulation with a
on-sinusoidal shows that the MVAR-SSE approach introduces harmonic
omponents to represent non-linear waveform shapes. This limitation is
hared with all Fourier based methods and can lead to ambiguity in the
nterpretation of modes in the presence of strong distortions in wave-
orm shape Huang et al. (1998) ; Quinn et al. (2021) ; See supplemental
ection Appendix G). 
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Fig. 1. The simulations and modal decomposition for 
a single realisation of the simulated data. A: Summary 
of the simulation. ten nodes are generated from lin- 
ear combinations of two modes with different spectra. 
The modes are shown in blue and red with the nodes 
in black, horizontal bars indicate the weighting of the 
two modes into each of the 10 nodes. B: Summary of 
the true network structure of the two modes. Darker 
colours indicate higher power in each node or connec- 
tion. C: The power spectral density from ten nodes. 
These capture the gradual drop in frequency from 0Hz 
and a peak around 9Hz split across the different nodes. 
D: The modal power spectrum for the node highlighted 
in black in C. The gradual slope from 0Hz and the 9Hz 
peak are clearly isolated as distinct resonances. The re- 
maining modes have very low amplitudes with no clear 
peaks. E: 𝑧 -plane representation of the modal eigenval- 
ues (shown as crosses). The frequency of each mode 
relates to its angle as it increases counter-clockwise 
from (1,0) to (-1,0). Negative frequencies correspond 
to angles increasing clockwise from (1,0) to (-1,0). The 
two high-power modes from D are clearly visible as 
the modes with the largest magnitude (red and blue). 
The remaining modes have small magnitudes and have 
evenly distributed angles (black crosses). F: Damping- 
time of each mode as a function of frequency. The 
red and blue modes have significantly longer damping 
times than the null distribution (99% threshold shown 
as the dotted line). These relate to 0Hz and 9Hz res- 
onances in the data. The remaining modes have short 

damping times indicating that the influence of these modes is very short-lived. G: Modal PSD matrix computed from the eigenvectors associated with the blue mode 
(via the transfer function). Darker colours indicate higher power in each node or connection. H: Modal PSD matrix computed from the eigenvectors associated with 
the red mode (via the transfer function). Darker colours indicate higher power in each node or connection. 

Fig. 2. Power spectra and networks from the group 
simulation. A: The PSD of node 7 for all 20 realisa- 
tions with variable spectra (gray) and the group av- 
erage (black). B: Fourier-based PSD of node 7. The 
PSDs are split into pre-specified ‘low’ and ‘high’ fre- 
quency bands (in blue and red respectively). Though 
these capture the features around each frequency, they 
do not account for either individual variance in peak 
frequency or overlap between adjacent frequencies. C: 

Modal-based PSD of node 7. The modal spectra identi- 
fied by thresholding the damping times of each mode 
of the modal decomposition and assigning each mode 
to its closest band (low in blue or high in red). The 
modal spectrum contains a single peak per mode and 
allows for variability in peak frequency between par- 
ticipants. D: Original network structure matrices. This 
figure shows the ground truth for the simulations gen- 
erated in Fig. 1 . Darker colours indicate higher power 
in each node or connection. E: Fourier-based network 
structure reconstruction. The network structure esti- 
mated from the Fourier-integration approach based on 
the bands in 2B, this captures the main structure with 
some interference from the adjacent frequency band. 
Darker colours indicate higher power in each node or 
connection. F: Modal-based network structure recon- 
struction. The network structure estimated from the 
modal bands seen in 2C. Here, the two spectrally dis- 
tinct networks are properly resolved and there is little 
interference between the two. The diagonal structure 

in 2E is contained within the noise modes that did not survive the thresholding. Darker colours indicate higher power in each node or connection. G: The level 
of correlation (across the twenty realisations) between the ground-truth network structure and the network structure extracted for each individual run and both 
the Fourier and Modal analyses. The modal matrices show a much larger correlation with the ground truth than the Fourier-integration derived matrices. H: The 
correlation between the noise modes and the ground truth and Fourier network structures. The Fourier-integration matrices have a large correlation with the diagonal 
structure which is not explicitly associated with either of the simulated structures. 

7 
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Fig. 3. A graphical outline of the analysis pro- 
cedures used in this paper. Upper: Summary 
of the procedures used to calculate the MVAR 
model and analyse the results using a Fourier 
(upper section) or Modal (lower section) ap- 
proach. The Fourier-integration approach is 
used in Fig. 4 and the Modal decomposition 
is explored in example participants in 5 and at 
the group level in 6 Lower: Outline of the pro- 
cedures used to take the modal decomposition 
of the MVAR model and compute spatial prin- 
cipal components each of which can explain 
variability in different frequencies within and 
between-participants. The group results of the 
PCA analysis are presented in Fig. 7 and a sum- 
mary of the results of individual participants in 
Fig. 8 . 
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.2. Oscillatory networks in MEG data 

We next explored the frequency structure of oscillatory networks
n the Human Connectome Project MEG data. We demonstrate that an
utoregressive model can capture the frequency specific content of a
hole-brain functional network using standard Fourier band-integration
efore moving to explore the SSEs. A summary of the whole analysis
ipeline for the HCP is given in Fig. 3 . Pre-processed MEG data were
ource localised to a 5mm grid throughout the brain using an LCMV
eamformer before groups of voxels were combined into parcels based
n the 78 cortical regions in the AAL atlas. The parcel time-courses were
hen orthogonalised to reduce leakage (details on the MEG processing
re included in Section 2.5 ). MVAR models were fitted to each recording
ession before their Power and Cross Spectral Densities were estimated
sing the Fourier-integration approach (Model fitting and validation is
escribed in detail in Sections 2.6 and 2.7 ). 

The topography of MEG functional networks vary as a function of fre-
uency ( Brookes et al., 2011; Colclough et al., 2015; Hipp et al., 2012;
arzetti et al., 2013; Wens et al., 2014 ). As a result the spectrum is typ-

cally split into a set of independently analysed frequency bands. Our
utoregressive model fits were able to capture frequency specific power
istributions and network structure within these a priori defined bands.
he average Fourier derived PSD (across participants) from each node
f the AAL can be seen in Fig. 4 A. Overall, each node shows a 1∕ 𝑓 trend
8 
ith the strongest oscillations visible in the alpha band. Frequency-
pecific source topographies are shown in the remaining columns of
ig. 4 . These maps were computed by averaging the MVAR PSD esti-
ates across participants within a priori frequency bands. Each panel

ncludes source-space images containing the diagonal of the PSD matrix
ithin the frequency band as well as a network matrix showing the off-
iagonal Cross-Spectral Densities (CSD) and a circular connectivity plot
howing the network connectivity based on the CSD. The circular con-
ectivity plots show the connections whose magnitude falls within the
op 5% of the off-diagonal CSD distribution for each frequency band. De-
ails of the labelling and colouring of each cortical region can be found
n the figure caption. 

The 3–7Hz theta band has strongest power in medial prefrontal re-
ions with connectivity including connections with the parietal and oc-
ipital cortex. In contrast, alpha (7–13Hz) power is strongly localised to
ccipital cortex with strong connections within the occipital region and
etween the occipital and temporal regions, with a smaller number of
arietal connections. The detailed structure of the alpha network is ex-
lored by applying an eigenvalue decomposition to the network matrix.
he results reproduced the main occipital structure in the first compo-
ent before revealing more detailed occipito-parietal, parieto-temporal
nd lateralised structures (see supplemental section Appendix I for de-
ails). Beta power (13–30Hz) is predominantly seen in the bilateral mo-
or cortices with a broad range of connections. Overall, these results sug-
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Fig. 4. Fourier-based frequency-specific net- 
works extracted from fitted MVAR parame- 
ters. A: The Fourier Power Spectral Density 
averaged across participants for each node in 
the AAL parcellation. The model captures a 
clear 1/f type trend across the spectrum as 
well as a distinct alpha peak. The diagram 

below shows the colour code for each re- 
gion of the AAL atlas. B: Surface plots show- 
ing the average PSD for in each cortical par- 
cel within the theta, alpha and beta bands. 
C: Network matrices showing the average 
CSD between parcels within the theta, alpha 
and beta bands. Colourscales correspond to 
those in sub-panel B. D: Circular network plot 
showing the average CSD between parcels 
within the theta, alpha and beta bands. Re- 
gion colouring is shown in the legend at 
the bottom of the figure: red: frontal, yel- 
low: medial, purple: temporal, green: pari- 
etal, blue: occipital. Lighter colours refer to 
the left hemisphere (and are on the left of 
the network matrices and circular plots) and 
darker colours refer to the right hemisphere 
(and are on the right of the network matrices 
and circular plots). 

Fig. 5. Spatial and spectral variability illus- 
trated by data from four example participants. 
Each row contains the Fourier power spec- 
trum and modal decomposition for that partici- 
pant. A: The standard Fourier power spectrum, 
coloured lines indicate brain regions following 
the colour code in Fig. 4 A. B: The damping 
times of the modal decomposition as a function 
of mode peak frequency. All modes are shown 
with dynamically important modes shown in 
red. C: The power spectrum averaged across 
all brain regions computed using the Fourier 
method (black) and the reduced spectrum com- 
puted from the modes surviving the permuta- 
tion tests is shown in red. D: Network connectiv- 
ity matrices computed from the reduced modal 
transfer function (corresponding to the red line 
in C). E: Spatial distribution of power from the 
reduced modal transfer function corresponding 
to the diagonals in D. 

9 
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Fig. 6. Assessment of modal poles in individual 
participants. A: Plots of damping time against fre- 
quency for all poles, for all participants. Poles 
coloured in red survived the non-parametric in- 
dividual subject thresholding and were carried 
through to later analyses. The left hand plot shows 
the normalised distributions of poles which sur- 
vive (red) and do not survive (black) the threshold- 
ing procedure against damping time. B: The power 
spectrum of all modes (black) and modes surviv- 
ing the non-parametric permutation scheme (red) 
across all datasets. Each region in the AAL atlas is 
shown as an individual line. C: Plot of the modes 
for all participants sorted by peak alpha frequency. 
Each row on the y-axis shows an individual partici- 
pant and each dot in the graph an individual mode 
(all three runs for each individual are combined 
in one graph). Below threshold modes are shown 
as small black dots whilst modes which survived 
thresholding are shown as larger dots in colours. 
The x-axis shows the frequency of the mode and a 
set of canonical frequency bands are shown in gray 
boxes. 
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est that MVAR model based Fourier frequency-domain power and con-
ectivity estimates are able to represent whole-brain functional connec-
ivity patterns in line with expectations from the literature ( Hillebrand
t al., 2012 ). 

.3. Spatio-Spectral Eigenmodes capture individual variability in 

scillatory networks 

The Spatio-Spectral Eigenmodes (SSEs) provide an alternate descrip-
ion of network power spectra based on their characteristic frequency
nd network structure. The modal decomposition was computed for the
VAR model of each recording session yielding 𝑚𝑝 SSEs (in this case

n MVAR model over 78 regions with model order 12 yields 938 SSEs),
hough only a minority of these reflect dynamically important struc-
ure in the data. Non-parametric permutations were used to split the
ull set of SSEs into an included set of dynamically relevant functional
odes and an excluded set of modes whose damping times are not dis-

inguishable from chance in this dataset (see Section 2.9 for details).
ig. 5 shows the Fourier power spectrum and SSEs for four individual
articipants (in rows). The first participant has a strong alpha peak at
round 11 Hz (Fourier power spectrum shown in column A) which is
ell represented by the SSEs with long damping times (scatter plot of
SE damping times by peak frequency in column B). The SSEs in red are
ncluded in further analyses having survived the non-parametric per-
utations. The power spectrum from full and included set of SSE (black

nd red lines in column C respectively) again indicate that the included
SEs do capture the prominent oscillations in the full power spectrum.
urthermore, the included SSEs have a bilateral spatial distribution and
etwork structure around the occipital pole with a bias toward the right
emisphere (included SSE network connectivity matrix and surface plot
10 
n columns D and E). The second participant has a similar alpha peak
n the power spectrum with a slightly lower peak frequency. In contrast
o the first participant, this participant’s alpha is broadly distributed
round bilateral occipital and parietal regions. The third participant
as a small alpha peak corresponding to significant SSEs with relatively
hort damping times compared to participants 1 and 2. A single SSE
n the beta band survives the permutation scheme and contributes to
 diffuse power and network structure between occipital, parietal and
otor cortex. Finally, example participant 4 shows two separate alpha
eaks in two different brain regions as shown by the 8 and 10Hz peaks
n the power spectrum and SSE damping time plots. The average spec-
rum shows a prominent, relatively low frequency alpha peak which is
ill described by the significant SSEs. Similar to participants 2 and 3,

his participant has a relatively diffuse alpha power distribution across
ccipital and parietal cortex. 

.4. Group variability in alpha peak frequency 

To describe the oscillatory frequency content across the whole brain
nd group, the damping times of all modes across the full HCP dataset
re plotted as a function of peak alpha frequency in Fig. 6 A. The in-
luded sets of SSEs (as identified by non-parametric permutations) are
ndicated in red with the remaining SSEs in black. As in the individ-
al cases, the modes with the longest damping times occur around the
trongest peaks in the Fourier spectrum ( Fig. 4 A). The majority of these
for the present eyes-open resting state data) lie within the traditional
lpha range with a smaller number in the delta, theta and beta ranges
nd a single mode above 30Hz. In contrast, the excluded SSEs are rela-
ively distributed across the whole frequency range. Fig. 6 B shows the
verage power spectrum across all regions and participants (black) and



A.J. Quinn, G.G.R. Green and M. Hymers NeuroImage 240 (2021) 118330 

Fig. 7. Results of the PCA decomposition of 
the modal analysis for PCs 1 and 2. For each 
component we show: A: a surface plot of 
the component structure across nodes in the 
AAL atlas. B: histograms showing the distri- 
bution of SSE frequencies for SSEs with pos- 
itive (purple) and negative (green) scores. C: 

scatter plot showing the relationship between 
SSE peak frequency and PC-score. For PC2, 
this also contains the regression line quantify- 
ing the modelled relationship. The frequency 
component of the model was not significant 
in PC1. D: network matrix showing the com- 
ponent structure across network connections. 
E: circle plot showing the component struc- 
ture across network connections (top 15% of 
connections shown). 
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he spectrum reconstructed from only the significant SSEs (red). The
elatively small number of SSEs preserve the prominent oscillations in
he signal at the group level suggesting that the permutation scheme
s successful in extracting the SSEs related to the largest resonances in
he system. The predominance of alpha in the surviving SSEs reflects
he prominence of the alpha rhythm in power spectra across eyes-open
esting state MEG scans. This is a static power spectrum estimate across
he whole duration of each scan. As such it is possible that individual
ariability in these alpha peaks are driven by temporal dynamics as well
s oscillatory amplitude, similarly there may be transient bursts in other
requencies that are not detected in the average spectrum ( Quinn et al.,
019 ). 

Across all participants the frequency distribution of SSEs provides a
traightforward summary of the spectral variability in the HCP dataset.
 Fig. 6 C; surviving modes are shown as blue-green dots in rows) though
he three runs within each participant are quite consistent. The rows of
ig. 6 C are sorted by Individual Alpha Frequency (IAF; derived from an
verage frequency of SSEs between 6 and 14Hz, weighted by damping
ime) showing the variability across participants. The majority of surviv-
ng modes fall within the traditional 7–13Hz alpha band. 76/79 partici-
ants have at least one significant mode within alpha although peak fre-
uencies are widely variable across participant (median peak frequency
f alpha modes across participants range from 7.4Hz to 12.9Hz; mean
quivalent from 7.4Hz to 12.9Hz). The participants with the lowest and
ighest IAFs lie very close to the boundaries of the standard 7–13Hz
requency range. Though the peak frequency lies within these bounds
nd are therefore well represented by the SSEs, the standard alpha band
oes not contain the full width of the oscillatory peak for these partic-
pants. As such, an analysis that imposed a strict cut-off would likely
11 
lip the edges of these alpha peaks leading to potential distortions or
isrepresentation of the spectral content. A relatively small number of

scillatory modes in some participants occur within the delta, theta and
eta bands. 

.5. Alpha peak frequency varies between occipital and parietal cortex 

Each SSE is a property of the whole brain rather than a single region
r ROI, allowing it to represent the distribution of an oscillation across
pace and network connections. The spatial variability in the SSEs PSD
etworks whose peak lies within the 7–13Hz alpha range was described
y a small number of components in a Principal Components Analy-
is (PCA). The components of PCA analysis describe the axes of spatial
nd network variability across modes whilst the Principal Component
PC) scores indicate the extent to which a particular PC component is
xpressed within a given SSE. The reproducibility of each PC was eval-
ated by split-half correlations, this indicated that the first two compo-
ents were highly replicable across halves of the data (the validations
or the PCA analysis are described in detail in Section 2.10 and the re-
ults are shown in the Supplementary Material in section Appendix J) 

Crucially, this PCA was computed on the spatial network structure
f alpha SSE without knowledge of the corresponding resonant frequen-
ies. We next quantified the correspondence between the spatial content
nd the peak frequencies of the SSEs across participants. A Bayesian re-
ression was used to assess the extent to which peak frequency can be
sed to predict PC score across SSEs. There is large between subjects
ariability in alpha peak frequency ( Fig. 6 C) so we include each partic-
pant as a random effect term in the model. This allows us to directly
uantify the between subject variability in peak frequency and explore
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Fig. 8. Correspondence between the PC scores and 
peak frequency of the surviving modes for PC1 and 
PC2. For each component we show A: a surface plot 
of the component structure across nodes in the AAL 
atlas. B: Histograms of the SSE peak frequency for 
each mode split by positive (purple) and negative 
(green) score for the component. The left hand his- 
togram shows the absolute mean peak frequency for 
each individual for the positive and negative scores. 
The right hand histogram shows the frequency of the 
components relative to the participant mean. C: Per- 
participant scatter plot of the SSE peak frequency for 
each mode split by positive (purple) and negative 
(green) score for the component. The left hand scat- 
ter plot shows the absolute mean peak frequency for 
each individual for the positive and negative scores. 
The right hand scatter plot shows the frequency of the 
components relative to the participant mean. The or- 
der of participants is sorted in the same manner as in 
Fig. 6 C. 
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hether there is a consistent relationship between network structure
nd peak frequency across the dataset even where the absolute peak
requency itself is variable. Further, to assess whether a term in the
odel provides good out of sample predictions, we used a Leave-One-
ut (LOO) cross-validation procedure. Details of the Bayesian model

nference and validation are described in Section 2.11 . 
This PCA analysis was repeated for SSEs lying within the theta and

eta bands. SSEs within these bands reflected the expected spatial struc-
ure of theta and beta activity (details in section Appendix K). As rela-
ively few theta and beta SSEs survived thresholding by non-parametric
ermutation, we did not go on to perform a detailed investigation of the
heir spatio-spectral covariation. The small number of theta and beta
odes surviving permutation reflects the predominance of alpha oscil-

ations in resting state recordings. The distribution of modes reflects the
ontent of the signal, so we would expect to find more theta and beta
odes in the task evoked data. 

The first principal component in the alpha band (PC1: 23.0% vari-
nce explained, 𝑟 = . 94 average split-half correlation) relates to the av-
rage power across an occipital network similar to the standard alpha
etwork. The component values for PC1 have the same sign in all brain
egions indicating that changing PC-scores will act to increase or de-
rease power across this whole network. In other words, SSEs with a
ositive score in PC1 will have a high power across this distribution,
hilst SSEs with a negative score will have low power across the whole
12 
rain ( Fig. 7 PC1). For the first principal component, the difference in
OO scores between the intercept-only and full models was -9.7 (SE:
.3), indicating that there is insufficient evidence to conclude that PC-
core (corresponding to overall power) is related to peak frequency in
his component. 

The second alpha component (PC2: 12.7% variance explained, 𝑟 =
 43 average split-half reproducibility) contains a spatial gradient with
he occipital pole at one end and parietal lobes at the other. Power at
he two ends of this gradient are in counterpoint, a positive score for
C2 indicates high power in occipital lobes with suppressed power in
arietal lobes and vice versa for negative scores. The Bayesian model
as used to assess whether SSE peak frequency can be used to predict
C-score for PC2. In this case, the difference in LOO scores between
he intercept-only and full modes was -102.6 (SE: 13.0) indicating that
here is sufficient evidence to warrant assessing the full model. The fre-
uency parameter in the full model had a central parameter estimate
f 0.46, with a 95% CI of 0.40–0.52. This indicates that an increase
f peak frequency of 1Hz would correspond to an increase in PC-score
f around 0.46 of a standard deviation of the distribution of scores. In
ther words, increasing peak frequency across SSEs corresponds toward
ncreased power in occipital cortex and decreased power in parietal cor-
ex. The overall distribution of SSEs between the two principal compo-
ents is shown in figure L.19. 
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Fig. 9. Projections of PCA scores for four example 
datasets from the HCP MEG data. Each row shows the 
spatial distribution of alpha SSEs for that subject with 
the two columns colour coding the spatial distribution 
of PCA scores for PC 1 and PC 2. 
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.5.1. Within and between subject variability in alpha frequency 

The distribution of SSE damping times as a function of frequency
 Fig. 5 ) and the random effects term in the Bayesian linear model in-
icate that there is very wide individual variability in alpha peak fre-
uency. Next, we visualise how this between subject variability interacts
ith occipto-parietal gradient in PC2. Fig. 8 shows the distribution of
SEs with positive and negative PCs scores as a function of frequency
or PCs 1 and 2. PC1 shows a wide distribution of peak frequencies be-
ween 7 and 13Hz ( Fig. 8 A). The distribution of frequency differences
etween SSEs with positive and negative scores are nearly completely
verlapping ( Fig. 8 B). 

In contrast, the distribution of PC2 frequencies shows a mean shift
etween positive and negative PC scores in both the absolute and rela-
ive distributions. Parietal alpha has, on average, a lower peak frequency
istribution than occipital alpha. The two between subject distributions
egin to overlap around 9Hz. Using the SSE methods to un-mix spatial
nd spectral variability we can see that parietal alpha SSEs occur be-
ween 7–11Hz across participants. The higher end of this distribution
ould otherwise be masked by the stronger occipital power at frequen-

ies above 9Hz. A key source of this mixing is that variability in over-
ll alpha peak frequency between subject is larger than the frequency
ifference between parietal and occipital alpha. Specifically, the over-
ll alpha peak distribution ranges between 7 and 13Hz (range of 6Hz),
hough the relative difference between the two ends of occipito-parietal
radient is around 1Hz. 

The spatial maps in Figs. 7 and 8 show how PC scores are distributed
t the group level. We can project this mapping back to individual sub-
ects to characterise how the gradient structure in PC2 varies across
articipants. Next, we show the spatial variability in four example par-
icipants with SSEs that have both positive and negative scores for PC2.
he left hand column of Fig. 9 shows the average power in alpha across
ortex based on PC1. We see that all four participants show the strongest
ower in occipital regions though there is variability in the more an-
erior end of the distribution towards parietal cortex. The right hand
olumn of Fig. 9 shows the score of PC 2 across cortex for the same
our participants. The higher frequency ‘occipital’ end of this PC is con-
istently focused around the occipital pole whilst the lower frequency
parietal’ end is more anterior. Crucially, the gradient structure seen at
he group level is visible in individual subjects but shows substantial
patial variability. 

. Discussion 

Spatio-Spectral Eigenmodes defined from the properties of an au-
oregressive model provide a flexible representation of oscillatory brain
etworks with minimal pre-specification of regions of frequencies of in-
erest. We introduce the theory behind this approach and demonstrate
13 
ts application in simulations and resting state MEG data from the Hu-
an Connectome Project. Firstly, we established that an autoregres-

ive model is able to describe frequency specific functional networks in
hole brain MEG data. The modal decomposition is then computed on

hese models to identify Spatio-Spectral Eigenmodes (SSEs). The reso-
ant frequencies and damping times of these SSEs are shown to provide a
imple summary of the oscillatory content of whole functional network.
he spatial distribution and network structure of each SSE can then be
xplored through its contribution to the system transfer function and
ubsequently, power and cross spectral density. We utilised these prop-
rties to explore spatial and spectral variability in alpha oscillations.
he SSEs expressed the between subject variation in individual alpha
requency and showed that, on average, alpha oscillations in the pari-
tal lobe are lower frequency than those in the occipital lobe. Though
his is a robust group effect, wide between subject variability means
hat the definition of ’low’ or ’high’ frequency are overlapping across
ndividuals. A 10Hz oscillation could load onto the parietal lobe in one
articipant and the occipital lobe in another. The SSE approach sep-
rates these sources of variability by computing network structure and
eak frequency simultaneously in each dataset. The SSE parameters then
rovide a convenient and intuitive representation of the spectral shape,
patial topography and network connectivity of neuronal oscillations. 

.1. Spatio-Spectral organisation of alpha networks 

The oscillatory signatures of brain function which are measured dur-
ng eyes open resting state are dominated by the alpha rhythm. The
rst spatial component of alpha power identified by our analysis de-
cribes variations in mean power in a network centred, on average,
round medial-occipital cortex ( Ciulla et al., 1999; Hari, 1997 ). The
ndividual resonant frequencies of these SSEs support a wide previ-
us literature showing that IAF estimates between subjects vary widely
ithin and around the traditional 7–13Hz range ( Haegens et al., 2014;
limesch, 1999 ). Crucially, this variability is functionally relevant and
as been linked with a wide range of cognitive and clinical markers
 Clayton et al., 2018 ). This presents a practical problem in that the es-
imation of spatial maps or networks in participants whose alpha peak
ies close to these bounds. If the whole width of the alpha peak is not
ithin the specified range parts of it will be cut off, leading to possi-
le distortions in the estimated maps and networks. One solution to this
s to tune the centre frequency or width of the frequency bands to the
eak of each individual subject ( Haegens et al., 2014; Klimesch, 1999 ),
owever this depends on the accurate quantification of the peak. Here,
e show that the parameters of MVAR-derived SSEs can overcome some
f these limitations by characterising individual spectral peaks without
re-filtering data into frequency bands or locations of interest. 
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The second PC of spatial variability in alpha SSEs shows a distinction
etween networks loaded onto occipital or parietal cortex. On average,
SEs with high scores towards the occipital end of this component tend
o have higher frequencies than those centered at the parietal end ( 10Hz
ompared to 8–9Hz). This split between low and high frequency alpha
s similar to the low and high bands (typically defined around 8.5 and
0Hz in the literature) are suggested to reflect separate cognitive func-
ionality ( Klimesch, 1999 ). Though this difference is strong on the group
evel, the frequency distributions of occipital and parietal SSEs are over-
apping, suggesting that an oscillation of 10Hz could correspond to one
articipant’s low frequency parietal alpha and another participants high
requency occipital alpha. A small minority of participants in this study
how the reverse effect, with higher frequency oscillations in parietal
ather than occipital cortex. The difference between occipital and pari-
tal alpha when both are present within an individual (around 1Hz)
s substantially smaller than the range of alpha peak frequencies across
articipants ( 7–13Hz). As such, the full range of frequency variabil-
ty in these regions is only visible with an analysis approach that can
imultaneously deconvolve spatial and spectral variability. 

The paper presents an exploratory analysis of a publicly available,
yes-open resting state dataset with the aim of characterising the struc-
ure and variability in oscillatory networks. Whilst we can show that
lpha oscillations have these spectral and spatial distributions across a
arge dataset (from the Human Connectome Project), without an exper-
mental task or prior hypothesis we do not make strong claims about
ts functional interpretation based on these analyses. To guide future re-
earch, we propose three potential interpretations of the distinction be-
ween occipital high-alpha and parietal low-alpha found in PC2. Firstly,
hese rhythms may reflect spatially and functionally distinct generators
f alpha ( Sokoliuk et al., 2019 ). Occipital alpha is thought to represent
he locus of visual attention ( Jensen and Mazaheri, 2010 ) whilst, pari-
tal alpha has been linked with attentional processing and is suggested
o exert top-down control of visual alpha depending on attentional state
 van Dijk et al., 2008; Sokoliuk et al., 2019 ). Our results show this dis-
inction between occipital and parietal alpha may be present in resting-
tate data and that these alpha sources are additionally separated by
eak oscillatory frequency. A second possibility is that the second PC
dentified in our analysis represents a continuous gradient of oscillatory
ehaviour between occipital and parietal cortex. Similar gradients in
tructural and functional MRI data have been proposed as an organising
rinciple of the brain ( Huntenburg et al., 2018 ), PC2 may then repre-
ent a occipito-parietal gradient organising alpha oscillations. A related
dea is that PC2 could reflect an aspect of the posterior to anterior alpha
ravelling waves ( Zhang et al., 2018 ). Finally, the parietal end of PC2
ay represent the sensori-motor Mu rhythm rather than a distinct pari-

tal alpha source. The Mu rhythm peaks over sensorimotor cortex and
as a similar frequency but distinct waveform shape to occipital alpha
 Pineda, 2005 ) Future research in this area using task-related data could
istinguish between these hypotheses. 

.2. MVAR models: parameterisation & limitations 

The Spatio-Spectral Eigenmode decomposition method is dependant
n a good estimation of the power spectra of the system via the underly-
ng MVAR model. In turn, the estimation of the PSD is dependent on ad-
quate selection of the hyper-parameter of the MVAR model: the model
rder (p) and the sample rate of the data ( Quirk and Bede Liu, 1983 ).
n the current work we downsample the source time-courses to 120Hz
nd use a model order of 12. This provides a good trade off between
he high spectral resolution arising from high model order and straight-
orward model estimation from low model order (see SI Appendix H
or further details). Further, as autoregressive models will always fit the
ntire spectrum from zero to Nyquist, the low sample rate ensures that
he spectrum fit focuses on the physiological range of interest. Though
hese parameters, give a good fit in this instance, it is not guaranteed
14 
hat they will generalise to novel datasets and appropriate diagnostics
ust be performed in these cases. 

The modal-form of the transfer function has a spatial constraint; a
ingle SSE is associated with a rank-1 network structure. More complex
etwork structure is described through a combination of SSEs. This is
athematically straightforward as the transfer function can be summed

cross modes, yet the method for identifying which modes to combine
ust be tuned to the application in hand. The linear summation of
odes is only equal to the full Fourier model at the level of the transfer

unction. Though properties such as the PSD matrix can be defined from
 single SSE, the summation of these modal-PSD matrices will not nec-
ssarily equal the Fourier equivalent. Here, we explore the spatial and
pectral properties of PSD matrices across many SSEs without directly
umming them. Other applications may wish to combine these SSEs at
he level of the transfer function for each data recording prior to group
nalyses. In addition, the modal cross-spectral densities used in the net-
ork analyses represent both the shared power and phase-locking be-

ween each pair of nodes. A richer representation of connectivity could
e gained by using coherence or directed transfer function based met-
ics rather than the CSD, however the normalisation of these measures
s difficult with the rank-1 matrix structure limitation in SSE analysis.

e are continuing work into these issues and the wider picture of how
he SSE decomposition and modal transfer function relates to standard
ower spectrum and connectivity measures. 

In this analysis we have elected to use a permutation scheme to re-
trict analysis to modes with long damping times when compared to a
ull distribution computed from spatially and temporally shuffled data.
hough this has been effective in identifying the relatively large alpha
scillations in these resting state scans, this permutation scheme might
ot be optimal for all analyses and we do not mean to imply that the re-
aining modes are functionally irrelevant. The choice of SSEs to focus

n in an analysis is flexible choice and is customisable for the analy-
is in hand. For example, an analysis may use all SSEs within a given
requency range irrespective of damping times and spatial structure. Al-
ernatively, the permutation scheme could be adapted to identify sets
f SSEs with consistent spatial structure irrespective of peak frequency
nd damping time. Such mode selection schemes might reveal different
spects of the dynamics in a dataset to the alpha-optimised damping
ime thresholding used in this manuscript. 

.3. Relation to other decompositions 

The decomposition of autoregressive models of univariate EEG time-
eries into their natural frequencies, damping times and transfer func-
ion contributions has a long history ( Franaszczuk and Blinowska, 1985;
ersch and Yonemoto, 1977; Wright et al., 1990 ). Recently, the compu-

ation of natural frequencies and damping times has been generalised
o multivariate autoregressive models ( Neumaier and Schneider, 2001 ).

e link these multivariate parameters to the system transfer function
ia Gilbert’s Realisation ( Gilbert, 1963; Kailath, 1980 ) leading to the
efinition of the Spatio-Spectral Eigenmodes. 

There are several mathematically related approaches in the litera-
ure. In particular the method in this paper are closely related to tech-
iques for modal analysis which have widespread use in engineering.
irstly, SSEs are closely related to the Principal Oscillatory Patterns and
rincipal Interaction Pattern analyses of autoregressive models origi-
ally developed for analyses of climate systems ( von Storch et al., 1995 ).
he peak frequencies and damping times from the eigenvalues of these
nalysis have previously been used to investigate EEG recorded during
pileptic seizures ( Mullen et al., 2012 ). Next, a Hankel matrix can be
sed to identify a state-space parameters and permits a modal decompo-
ition to identify mode frequencies and damping times (for example the
igensystem Realization Algorithm; Juang and Pappa (1985) ). Decom-
ositions of the Hankel matrix have been previously applied to explore
he frequency modes of epileptic seizures ( Hunyadi et al., 2014 ). Finally,
he Dynamic Mode Decomposition (DMD) represents oscillatory dynam-



A.J. Quinn, G.G.R. Green and M. Hymers NeuroImage 240 (2021) 118330 

i  

d  

d  

a  

a  

s  

d
 

t  

C  

c  

t  

P  

s  

p  

t  

m  

c

C

 

c  

t  

b  

u  

i  

l  

t  

p  

e  

t

5

 

W  

g  

T  

f  

c

6

 

a  

h  

u  

H
 

H  

t  

d  

a

A

 

T  

M  

U  

t  

M

A

A  

 

s  

i  

g

𝑋

 

a  

c  

t  

n

𝑧

W  

o
 

t  

i

𝐻

cs via Koopman modes ( Schmid, 2010 ). It is optimised for image-type
atasets where there are more regions or channels than time-points in a
ataset and has previously been applied to fMRI ( Casorso et al., 2019 )
nd ECoG ( Brunton et al., 2016; Shiraishi et al., 2020 ) recordings. The
pplication of these methods and their deeper mathematical relation-
hip is a point of active research in the Neuroscience and the wider
ynamical systems literature. 

A range of conceptually related methods look to isolate oscilla-
ory activity in electrophysiology data using linear spatial filters (see
ohen (2017) for a review). Unlike the approaches above, these typi-
ally involve computing a frequency or time-frequency spectrum across
he dataset and before carrying out the decomposition, often using using
CA, ICA or related techniques. The spectrum estimation and decompo-
ition stages may be carried out and optimised separately. These decom-
ositions tend to be relatively unconstrained in the frequency domain,
he resulting component power spectra can be comprised of complex,
ulti-modal shapes which may be challenging to interpret as clear os-

illatory signals. 

onclusion 

We have shown that a modal decomposition of MVAR parameters
an be used to simultaneously estimate spatial and frequency struc-
ure within human resting state MEG data. In the SSE framework,
rain networks are decomposed into oscillatory signals on an individ-
al whole-brain basis with minimal pre-specification and averaging. Us-
ng this method, we have demonstrated that multiple, spatially over-
apping, sub-networks exist within the normal alpha band activity. De-
ailed within-subject networks can be identified despite large between-
articipant variance. These structure captured by the SSEs can be used
nhance investigation into how individual oscillatory phenotypes relate
o individual difference in cognitive and clinical states. 
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ppendix A. Notation 

Symbol Definition Dimension 

Time-Series 

𝐱 A vector time-series 𝑚 × 𝑇 

𝑥 A single channel time-series 𝑇 

𝑚 Number of channels in a recording 

𝑇 Number of time samples in a recording 

Δ𝑡 The data sampling interval 

Autoregressive Models 

𝐴 Autoregressive parameters 𝑚 × 𝑚 × 𝑝 

𝑝 Autoregressive model order 

𝜖 A white noise process 

Σ Autoregressive residual covariance matrix 𝑚 × 𝑚 

𝐶 Autoregressive parameters 𝐴 in the companion form 𝑚𝑝 × 𝑚𝑝 

Frequency transforms 

𝑧 A 𝑧 transform ( 𝑀𝑒 𝑖𝜔 ) 

𝑀 Magnitude of a point in the 𝑧 -plane 

𝜔 The complex argument of a point in the 𝑧 -plane ( 2 𝜋𝑓Δ𝑡 ) 

𝑓 A frequency in Hertz 

𝐴 ( 𝑓 ) Frequency transformed autoregressive parameters 𝑚 × 𝑚 

𝐻( 𝑓 ) A system transfer function at a given frequency 𝑚 × 𝑚 

𝑆( 𝑓 ) A spectral matrix at a given frequency 𝑚 × 𝑚 

Modal Decomposition 

𝜆 Eigenvalues of 𝐶 𝑚𝑝 

𝑉 Right Eigenvectors of 𝐶 𝑚𝑝 × 𝑚𝑝 

𝑣 𝑗 First 𝑚 values of row/mode 𝑗 of 𝑉 𝑚 

𝑊 Left Eigenvectors of 𝐶 𝑚𝑝 × 𝑚𝑝 

𝑤 𝑗 First 𝑚 values of row/mode 𝑗 of 𝑊 𝑚 

𝜌 Characteristic frequency of an AR mode 

𝛿 Damping time of an AR mode 

𝑅 Residue matrix of an AR mode 𝑚 × 𝑚 

ppendix B. Derivation of the modal form of the transfer function

The transfer function describes the filtering carried out by a linear
ystem as it transforms an input into an output. In this case our input
s a noise process defined by the residual covariance of a fitted autore-
ressive model and the output is the frequency transformed data. 

( 𝑓 ) = 𝐻( 𝑓 )Σ( 𝑓 ) (B.1) 

In the main text, we limit values of 𝑧 to the unit circle (where |𝑧 | = 1 )
s these can be directly related to oscillatory frequencies 𝑓 and the dis-
rete time Fourier transform. In the following derivation we generalise
his to evaluate 𝐻 across any point in the 𝑧 -plane by including a mag-
itude term 𝑀 in the definition of 𝑧 . 

 = 𝑀𝑒 𝚤𝜔 ≡ 𝑀( cos 𝜔 + 𝑖 sin 𝜔 ) (B.2) 

here 𝜔 = 2 𝜋𝑓Δ𝑡 . When 𝑀 = 1 , this is equivalent to evaluation in terms
f oscillatory frequency 𝑓 . 

This transfer function can be written in several forms depending on
he context. In autoregressive spectral estimation, this state-space form
s commonly used (see Eq. (5) in the main text) 

( 𝑧 ) = ( 𝐼 − 𝐴 ( 𝑧 )) −1 (B.3) 

= 

1 
𝐼 − 

∑𝑝 
𝐴 𝑘 𝑧 

− 𝑘 
(B.4) 
𝑘 =1 

https://vcs.ynic.york.ac.uk/analysis/rs-mvar-scripts
https://www.humanconnectome.org
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms\051
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We compute the transfer function using 𝐴 as we start with a simple
utoregressive model with no moving average component, inputs or ob-
ervation equations. The complete state-space form would include input,
utput and feed-forward components which we omit here for simplic-
ty. For our autoregressive model, the numerator of the transfer function
s 1 and the denominator is a polynomial series of the model parame-
ers under a complex valued z-transformation. The denominator can be
xpanded to show the full polynomial form. 

( 𝑧 ) = 

1 
1 − 𝐴 1 𝑧 

−1 − 𝐴 2 𝑧 
−2 − ⋯ − 𝐴 𝑘 𝑧 

− 𝑘 (B.5) 

Here we see that the transfer function of a system is the fraction of
wo polynomials defining how the system transforms inputs into out-
uts. We can evaluate 𝐻( 𝑧 ) around the unit circle ( 𝑧 = 𝑒 − 𝑖 2 𝜋𝑓𝑡 ) where
alues of 𝑧 directly correspond to different frequencies. The output of
( 𝑧 ) can then be used to compute a power spectrum as seen in Eqs. (2) ,

5) and (6) . Though the transfer function can be evaluated for any value
f 𝑧 , the magnitude of 𝐻( 𝑧 ) around the unit circle, and therefore the es-
imated power spectrum, are dependant on the roots of the polynomial
 . The roots of 𝐴 ( 𝑧 ) are called poles ( 𝜆) and they define coordinates in

he 𝑧 plane at which 𝐴 ( 𝑧 ) will evaluate to zero, driving the value of 𝐻( 𝑧 )
o infinity. We can rewrite Eq. (B.5) in terms of the poles 𝜆. 

( 𝑧 ) = 

1 
(1 − 𝜆1 𝑧 

−1 )(1 − 𝜆2 𝑧 
−1 ) …(1 − 𝜆𝑘 𝑧 

−1 ) 
(B.6) 

The value of 𝐻( 𝑧 ) decreases as the distance of 𝑧 from each pole in-
reases. Where there are multiple poles in a system, the value of 𝐻( 𝑧 )
t a given point is dependant on all of the poles, though as the influence
f a pole falls off rapidly with increasing distance the closest poles to
 point 𝑧 have the greatest influence. As such, the value of the transfer
unction at a given point 𝑧 is linearly dependant on the distance of 𝑧 from
his set of poles, providing an alternate formulation of 𝐻( 𝑧 ) (assuming
o repeat poles). 

( 𝑧 ) = 

𝑅 1 
1 − 𝜆1 𝑧 

−1 + 

𝑅 2 
1 − 𝜆2 𝑧 

−1 + ⋯ + 

𝑅 𝑚𝑝 

1 − 𝜆𝑚𝑝 𝑧 
−1 (B.7) 

= 

𝑚𝑝 ∑
𝑗=1 

𝑅 𝑗 

1 − 𝜆𝑗 𝑧 
−1 (B.8) 

Here, 𝑅 𝑗 is the is the coefficient of the term for the 𝑗th pole 𝜆𝑗 in the
artial fraction expansion of 𝐻( 𝑧 ) . The 𝜆 and 𝑅 terms are computed from
he eigenvalue decomposition of the companion form of the 𝐴 parameter
atrix. 𝜆 denotes the eigenvalues (and in this case, the roots of the
enominator of 𝐻( 𝑧 ) ) and 𝑅 the outer product of the eigenvectors for a
iven mode. 

 𝑗 = 𝑣 𝑗 ⊗𝑜𝑢𝑡𝑒𝑟 𝑤 

∗ 
𝑗 (B.9) 

 𝑗 is a 𝑚 × 𝑚 matrix of rank one containing the coefficients for term 𝑗 of
he partial fraction expansion. This scales the mode into each node and
onnection in the system. 

The number of terms in the expansion is the product of the number
f channels in the dataset 𝑚 and the MVAR model order 𝑝 . The poles
ay either exist as single, real valued terms or in complex-conjugate
airs. 

Through the identity, 

1 
1 − 𝜆𝑧 −1 

≡
𝑧 

𝑧 − 𝜆
(B.10) 

e can remove the powers on 𝑧 and further simplify Eq. (B.8) to 

( 𝑧 ) = 

𝑚𝑝 ∑
𝑗=1 

𝑅 𝑗 𝑧 

𝑧 − 𝜆𝑗 

(B.11) 

Eq. (B.11) is also known as Gilbert’s realisation and it re-
arametrises the system transfer function as a partial fraction expan-
ion ( Gilbert, 1963 ). This realisation is valid when there are no re-
eated poles in 𝜆. This approach has wide applications in the field of
16 
ngineering controls systems and a modal analysis ( Schutter, 2000 ).
q. (B.11) shows that 𝐻( 𝑧 ) from a linear system may be written entirely
n terms of the roots of its time domain parameters. As such, the number
f degree of freedom in the frequency domain representation of a linear
ystem is completely determined by the number of roots of 𝑎 . It follows
hat the configuration of 𝜆 in the 𝑧 -plane forms a natural basis for a
et of oscillatory modes as derived by Neumaier and Schneider (2001) .
oreover, each mode (linked to a real valued or complex conjugate pair

f pole) has a direct physical interpretation as an oscillator with a peak
requency and network structure throughout the system. 

ppendix C. Computation of modal parameters 

We can compute the polynomial roots 𝜆 of 𝐻( 𝑧 ) by finding the val-
es at which the denominator polynomial of Eq. (B.1) evaluates to zero.
hese roots may be estimated by computing the eigenvalues of a matrix
orm of the polynomial. In the previous section, we discuss the denom-
nator of 𝐻 in terms of the 3-dimensional parameter matrix 𝐴 however
his does not permit an eigenvalue decomposition. Therefore we replace
he order-p parameter matrix 𝐴 with its companion form 𝐶 as defined
n Eq. (7) . 

( 𝑧 ) = 

1 
1 − 𝐶𝑧 −1 

(C.1) 

As 𝐶 is a [ 𝑚𝑝 × 𝑚𝑝 ] square matrix, we can compute the eigenvalues
ecomposition with eigenvalues 𝜆 and eigenvectors 𝑊 . 

𝑊 − 𝜆𝑊 (C.2) 

he eigenvalues are then the roots of its characteristic polynomial of 𝐶
Golub and Van Loan, 2013, section 7.1.1) . 

= { 𝑧 ∶ 𝑑𝑒𝑡 ( 𝑧𝐼 − 𝐶) = 0} (C.3) 

he roots are the set of values 𝜆 for which Eq. (C.3) evaluates to zero.
his method for computing the roots of a polynomial from the eigen-
alues of the companion matrix is commonly used in software (see doc-
mentation for roots in MATLAB or numpy.roots in Python’s Numpy li-
rary). Crucially, the characteristic polynomials of 𝐴 and 𝐶 are equiva-
ent so their roots will describe the same dynamics. The construction of
he square matrix 𝐶 is convenient to permit this eigenvalue decomposi-
ion. There are many analytic and numerical approaches for computing
he roots of univariate polynomials, but to our knowledge this is the
ost robust approach for finding the roots of a multivariate polynomial

uch as 𝐴 where 𝑚 > 1 . 
The eigenvectors associated with each eigenvalue are then the non-

ero vectors for which Eq. (C.2) holds true. 

𝑤 𝑗 = 𝜆𝑗 𝑤 𝑗 (C.4) 

e are only interested in non-trivial solutions in which 𝑤 𝑗 ≠ 0 that oc-
ur when the determinant in Eq. (C.3) is equal to zero. The eigenvectors
bove are known as the right eigenvectors, the left eigenvectors can be
omputed as the inverse of the conjugate transpose of the right eigen-
ectors. 

 = ( 𝑊 

∗ ) −1 (C.5) 

nce computed from the eigenvalue decomposition of 𝐶, the parame-
ers 𝜆, 𝑊 and 𝑉 can be plugged into the equations in Sections 2.1 and
ppendix B to define the spatio-spectral eigenmodes. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at 10.1016/j.neuroimage.2021.118330 
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