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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Understanding the origins of biodiversity has been an aspiration since the days of early natu-

ralists. The immense complexity of ecological, evolutionary, and spatial processes, how-

ever, has made this goal elusive to this day. Computer models serve progress in many

scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary

models are comparatively less developed. We present a general, spatially explicit, eco-evo-

lutionary engine with a modular implementation that enables the modeling of multiple macro-

ecological and macroevolutionary processes and feedbacks across representative

spatiotemporally dynamic landscapes. Modeled processes can include species’ abiotic tol-

erances, biotic interactions, dispersal, speciation, and evolution of ecological traits. Com-

monly observed biodiversity patterns, such as α, β, and γ diversity, species ranges,

ecological traits, and phylogenies, emerge as simulations proceed. As an illustration, we

examine alternative hypotheses expected to have shaped the latitudinal diversity gradient

(LDG) during the Earth’s Cenozoic era. Our exploratory simulations simultaneously produce

multiple realistic biodiversity patterns, such as the LDG, current species richness, and range

size frequencies, as well as phylogenetic metrics. The model engine is open source and

available as an R package, enabling future exploration of various landscapes and biological

processes, while outputs can be linked with a variety of empirical biodiversity patterns. This

work represents a key toward a numeric, interdisciplinary, and mechanistic understanding

of the physical and biological processes that shape Earth’s biodiversity.

Introduction

Ecological and evolutionary processes have created various patterns of diversity in living

organisms across the globe [1]. Species richness varies across regions, such as continents [2,3],

and along spatial and environmental gradients [4,5], such as latitude [6,7]. These well-known
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patterns, derived from the observed multitude of life forms on Earth, have intrigued naturalists

for centuries [1,8,9] and stimulated the formulation of numerous hypotheses to explain their

origin (e.g., [1,6,7,10,11–15]). Ecologists and evolutionary biologists have attempted to test

and disentangle these hypotheses [16], for example, via models of cladogenesis [17] or correla-

tive spatial analyses [18,19]. However, we are only at the beginning of a mechanistic under-

standing of the ecological and evolutionary dynamics driving diversity patterns [20–23].

The complexity of interacting ecological, evolutionary, and spatial processes limits our abil-

ity to formulate, test, and apply the mechanisms forming biodiversity patterns [24,25]. Addi-

tionally, multiple processes act and interact with different relative strengths across

spatiotemporal scales [20]. Current research suggests that allopatric [22,23,26] and ecological

[24] speciation, dispersal [27], and adaptation [28] all act conjointly in interaction with the

environment [29,30], producing observed biodiversity patterns [31]. Comprehensive explana-

tions of the origin and dynamics of biodiversity must therefore consider a large number of bio-

logical processes and feedbacks [32], including species’ ecological and evolutionary responses

to their dynamic abiotic environment, acting on both ecological and evolutionary time scales

[20,33]. Consequently, biodiversity patterns can rarely be explained by a single hypothesis, as

the expectations of the various contending mechanisms are not clearly asserted [20,34].

A decade ago, a seminal paper by Gotelli and colleagues [35] formulated the goal of devel-

oping a “general simulation model for macroecology and macroevolution” (hereafter com-

puter models). Since then, many authors have reiterated this call for a broader use of computer

models in biodiversity research [20,36,37], prompting the implementation of several models to

explore the emergence of patterns [22,23,38,39]. With computer models, researchers can

explore the implications of implemented hypotheses and mechanisms and evaluate whether

emerging model outputs are compatible with observations. Several case studies have illustrated

the feasibility and usefulness of eco-evolutionary computer models in guiding the interpreta-

tion of empirical data [23,26,38,40–46]. Moreover, models have reproduced realistic large-

scale biodiversity patterns, such as those along latitude [22,39,47], by considering climate and

geological dynamics [23,26,38,44] and those related to population isolation, by considering

dispersal ability and geographic distance [22,23,26,38,40–44]. For example, computer models

have been used to examine how oceans’ paleogeography has influenced biodiversity dynamics

in marine ecosystems [26,38,43,47]. Despite these recent studies, there is still scope for devel-

oping advanced computer models to shed light on the mechanisms underlying biodiversity

patterns. In particular, general models that can accommodate and thus contrast several of the

hypotheses listed above have utility in our endeavor to better understand and infer the under-

pinnings of outstanding biodiversity patterns on Earth.

Macroevolutionary studies have highlighted that patterns emerging from simulations are

generally sensitive to the mechanisms implemented and to the landscapes upon which mecha-

nisms act [22,26,38,47]. Systematically comparing and exploring the effects of mechanisms

and landscapes, however, is often hindered by the lack of flexibility and idiosyncrasies of exist-

ing computer models. Most models implement, and thus test, only a limited set of evolutionary

processes and hypotheses. Many models are designed for specific and therefore fixed purposes,

with spatial and temporal boundaries, ranging from the global [22,26,44] to continental [23]

or regional scale [41,42] and from millions of years [38,41,42,47] to thousands of years [22,23].

Moreover, previous eco-evolutionary population models were developed to test a fixed num-

ber of mechanisms [22,26,35,38,39,42,44,46,48–52] without having generality build in by

design. The diverse input and output formats and limited code availability [53], as well as the

different algorithmic implementations, have reduced generality, accessibility, and compatibil-

ity between hitherto available models.
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are documented via the standard R / Roxygen help

files for R-packages. Runtime-critical functions are

implemented in C++ and coupled to R via the Rcpp

framework. Additionally, the package provides

several convenience functions to generate input

data, configuration files and plots, as well as

tutorials in the form of vignettes that illustrate how

to declare models and run simulations. The

software, under an open and free GPL3 license,

can be downloaded from CRAN at https://CRAN.R-

project.org/package=gen3sis. The development

version, open to issue reporting and feature

suggestions, is available at https://github.com/

project-Gen3sis/R-package. Supporting

information, such as notes, scripts, data, figures

and animations, are available at https://zenodo.org/

record/5006413, facilitating full reproducibility.
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Biological hypotheses and landscapes should be compared within a common and standard-

ized platform with the modularity required for flexible explorations of multiple landscapes and

processes [35]. Increased generality is thus a desirable feature of computer models that aim to

explore the mechanisms and landscapes that shape biodiversity in dynamic systems such as

rivers [54], oceans [38,43], islands [41,42,55], and mountains [56,57], or across gradients such

as latitude [20,22,47]. Inspired by the mechanistic implementation in existing models used to

understand the formation of biodiversity gradients [22,23,26,38–46], we created a simulation

engine that can approximate a variety of biological processes over dynamic landscapes. The

model integrates mechanisms including (i) allopatric speciation [26,43,44]; (ii) niche evolution

[38,39]; and (iii) competitive interactions [23]. This modeling engine offers the possibility to

explore the eco-evolutionary dynamics of lineages under a broad range of biological processes

and landscapes within a common framework. Simulated species populations occupy a spatial

domain (hereafter site) bounded by a combination of geological, climatic, and ecological fac-

tors. The sites occupied by a species define the species’ realized geographic range (hereafter

species range) [58]. The engine tracks species populations over time, which can change as a

result of dynamic environments, as well as species dispersal ability, ecological interactions,

local adaptation, and speciation. The initial species range and the criteria for speciation, dis-

persal, ecological interactions, and trait evolution are adjustable mechanisms, allowing the

integration of a wide range of hypotheses within the model. Given the flexibility of modifying

both mechanisms and landscapes, the engine offers a general tool and is thus named the “gen-

eral engine for eco-evolutionary simulations” (hereafter gen3sis). We highlight the potential of

gen3sis to infer the underlying processes behind biodiversity patterns, thus tackling a long-

standing topic in evolutionary ecology.

As an illustration of the flexibility and utility of gen3sis, we implement 5 biological hypothe-

ses with dynamic and static landscapes proposed to explain the latitudinal diversity gradient

(LDG) [20] and other biodiversity patterns. More specifically, we implement and analyze (i) a

null model without ecological interactions, where all terrestrial sites are suitable for all species;

(ii) time for species accumulation [59–62]; (iii) diversification rates, i.e., depending on tempera-

ture [63, 64]; (iv) ecological limits independent of temperature and aridity; and (v) ecological
limits dependent on energetic carrying capacity [65,66]. We use this case study to illustrate

how simulation results can be compared with multiple empirical biodiversity data, including

empirical distribution and phylogenetic patterns of major tetrapod clades (i.e., mammals,

birds, amphibians, and reptiles), to inform us about potential mechanisms underlying

patterns.

Engine principles and scope

Gen3sis is a modeling engine, developed for formalizing and testing multiple hypotheses

about the emergence of biodiversity patterns. The engine simulates the consequences of multi-

ple customizable processes and landscapes responsible for the appearance (speciation) and dis-

appearance (extinction) of species over evolutionary time scales. Speciation and extinction

emerge from ecological and evolutionary mechanisms dependent on dispersal, species interac-

tions, trait evolution, and geographic isolation processes. Customizable eco-evolutionary pro-

cesses, which interact with dynamic landscapes, make it possible to adjust for various macro-

eco-evolutionary hypotheses about specific taxonomic groups, ecosystem types, or processes.

We made the engine openly available to the research community in an R package to catalyze

an interdisciplinary exploration, application, and quantification of the mechanisms behind

biodiversity dynamics. The R statistical programming language and environment [67] is

widely used for reproducible and open-source research [68,69], and since its origins, it has
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been used for handling and analyzing spatial data [70]. Gen3sis follows best practices for scien-

tific computing [71], including high modularization; consistent naming, style, and formatting;

single and meaningful authoritative representation; automated workflows; version control;

continuous integration; and extensive documentation.

Gen3sis operates over a grid-based landscape, either the entire globe or a specific region.

The landscape used as input is defined by the shape of the colonizable habitat (e.g., land masses

for terrestrial organisms), its environmental properties (e.g., temperature and aridity), and its

connectivity to dispersal (e.g., the influence of barriers, such as rivers and oceans for terrestrial

organisms). Gen3sis simulates species’ population range dynamics, traits, diversification, and

spatial biodiversity patterns in response to geological, biological, and environmental drivers.

Using a combined trait-based and biological species concept, gen3sis tracks the creation,

dynamics, and extinction of species ranges, which are composed of a set of sites occupied by

species populations. Eco-evolutionary dynamics are driven by user-specified landscapes and

processes, including ecology, dispersal, speciation, and evolution (Fig 1). Below, we explain the

gen3sis inputs, the configurations (including eco-evolutionary processes), and the landscapes

defining the computer model, as well as user-defined outputs (Fig 1C–1F).

Inputs and initialization

Gen3sis has 2 input objects, which define a particular model (Fig 1). These inputs are (i) a

dynamic landscape (Fig 1A), which is further divided into environmental variables and distance

matrices; and (ii) a configuration (Fig 1B), in which the user can define initial conditions, biologi-

cal functions, and their parameter values, as well as technical settings for the model core.

Fig 1. Schematic of the main components of the computer model: (A, B) model inputs, including the spatiotemporal landscape objects and the configuration file; (C–F)

model outputs, including present and past species ranges, phylogenetic relationships among species, and the ecological traits of species; (G) model engine containing the

mechanics; and (H) empirical data applicable for model validation.

https://doi.org/10.1371/journal.pbio.3001340.g001
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Landscape

The landscape objects (Fig 1A) form the spatiotemporal context in which the processes of spe-

ciation, dispersal, evolution, and ecology take place. Landscape objects are generated based on

temporal sequences of landscapes in the form of raster files, which are summarized in 2 classes.

The first landscape class contains (i) the geographic coordinates of the landscape sites; (ii) the

corresponding information on which sites are generally suitable for a clade (e.g., land or

ocean); and (iii) the environmental conditions (e.g., temperature and aridity). The landscape

may be simplified into a single geographic axis (e.g., [72]) for theoretical experiments, or it

may consider realistic configurations aimed at reproducing real local or global landscapes

[26,73,74]. The second landscape class defines the connectivity of the landscape, used for com-

puting dispersal and consequently isolation of populations. By default, the connection cost

between occupied sites is computed for each time step from the gridded landscape data based

on haversine geographic distances. This can be modified by a user-defined cost function in

order to account for barriers with different strengths (e.g., based on elevation [73], water, or

land) or even to facilitate dispersal in specific directions (e.g., to account for currents and river

flow directions). The final connection costs are stored as sparse distance matrices [75]. Dis-

tance matrices, containing the connection costs, are provided at every time step as either (i) a

precomputed full distance matrix, containing all habitable sites in the landscape (faster simula-

tions but more storage required); or (ii) a local distance matrix, computed from neighboring

site distances up to a user-defined range limit (slower simulation runs but less storage

required).

Configuration

The configuration object (Fig 1B) includes the customizable initialization, observer, speciation,

dispersal, evolution, and ecology functions. These 6 functions define a configuration applied in

the simulation engine (Table 1). The possibility to customize these functions confers the high

flexibility of gen3sis by including a wide range of mechanisms, as illustrated by 5

Table 1. Presentation of the core functions of speciation, dispersal, ecology, and evolution implemented in gen3sis. The computation of core functions is customizable

in the configuration object. Shown are input objects that are combined to generate updated outputs. The table corresponds to the mechanisms presented in Fig 2B.

Objective Input Computation Output

Speciation

Determines the divergence between

geographic clusters of populations

within a species; determines

cladogenesis.

Species divergence matrix; species

trait matrix; species abundance

matrix; landscape values; distance

matrix.

Divergence between geographically isolated clusters

of populations increases over time, while (re)

connected clusters decrease down to zero; speciation

happens when the divergence between 2 clusters is

above the speciation threshold, but it can also

consider trait differences.

Updated species divergence

matrix; new species if speciation

occurred; updated genealogy

table.

Dispersal

Determines the colonization of vacant

sites.

Species trait matrix; species

abundance matrix; landscape

values; distance matrix.

Species disperse according to a unique value or a

distribution of dispersal values.

Updated species abundance

matrix.

Evolution

Determines the change in species

traits in each site, anagenesis.

Species trait matrix; species

abundance matrix; landscape

values; geographic clusters; distance

matrix.

Traits might change for each species in the

populations of occupied sites.

Updated species trait matrix.

Ecology

Determines the species abundance in

each site.

Species trait matrix; species

abundance matrix; landscape

values; genealogy.

Change the species abundance, based on landscape

environmental values and species co-occurrences;

changes species trait values.

Updated species abundance

matrix.

https://doi.org/10.1371/journal.pbio.3001340.t001
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configurations presented in a case study (Table A in S1 Note). Additionally, the configuration

object lists the model settings, including (i) whether a random seed is used, allowing simula-

tion reproducibility; (ii) start and end times of the simulation; (iii) rules about aborting the

simulation, including the maximum global or local species number allowed; and (iv) the list of

ecological traits considered in the simulation. One or multiple traits can be defined, which

should correspond to those used in the ecology function. Moreover, the initialization function

creates the ancestor species at the start of the simulation. Users can define the number of

ancestor species, their distribution within the ancient landscape and their initial trait values.

With the observer function, changes over time in any abiotic or biotic information of the vir-

tual world can be recorded by defining the outputs that are saved at specified time steps. Out-

puts can be saved and plotted in real time as the model runs. The core biological functions (i.e.

speciation, dispersal, evolution, and ecology) are presented below.

Core functions and objects

The states of the model runs are updated in discrete time steps. At each time step, the specia-
tion, dispersal, evolution, and ecology functions are executed sequentially (Fig 2). Speciation

and extinction emerge from interactions across core functions. For example, speciation events

are influenced by the speciation function, as well as by the ecology and dispersal functions that

interact in a dynamic landscape, ultimately dictating populations’ geographic isolation. Like-

wise, global extinctions depend on local extinctions, which decrease the number of inhabited

sites until no sites remain inhabited by a species, rendering it extinct. Extinction happens

when the occupied sites become uninhabitable and no other suitable sites are within dispersal

distance or according to the change in species traits, rendering the species unfit for the envi-

ronment. Internally, the computer model defines core objects of the simulations: species abun-

dances; species trait values; the species divergence matrix between all populations for each

species; and the phylogeny of all species created during the simulation. In the following sec-

tions, we describe the core processes in gen3sis, as well as their inputs and outputs. For a sum-

mary, see Table 1.

Running a simulation in gen3sis consists of the following steps: (i) Read in the configura-

tion object, prepare the output directories, load the initial landscape (Fig 2A), and create the

ancestor specie(s) (using the initialization function create_ancestor_species). (ii) Run the main

loop over the landscape time steps. At every time step, the engine loads the appropriate land-

scape, removes all sites that became uninhabitable in the new time step, and executes the core

functions as defined by the configuration object (Fig 2B). (iii) At the end of every time step,

gen3sis saves the species richness, genealogy, and, if desired, the species, landscape, and other

customized observations that are defined in the observer function (e.g., summary statistics and

species pattern plots). Core functions are modifiable and can account for a wide range of

mechanisms, as illustrated in the case study (S1 and S2 Notes). Conversely, functions can be

turned off, for example, in an ecologically neutral model. For a pseudo-code of gen3sis, see S3

Note.

Speciation. Core. The speciation function iterates over every species separately, registers

populations’ geographic occupancy (species range), and determines when geographic isolation

between population clusters is sufficient to trigger a lineage-splitting event of cladogenesis. A

species’ range can be segregated into spatially discontinuous geographic clusters of sites and is

determined by multiple other processes. The clustering of occupied sites is based on the spe-

cies’ dispersal capacity and the landscape connection costs. Over time, disconnected clusters

gradually accumulate incompatibility (divergence), analogous to genetic differentiation. Dis-

connected species population clusters that maintain geographic isolation for a prolonged

PLOS BIOLOGY gen3sis: Engine for mechanistic eco-evolutionary biodiversity modelling

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001340 July 12, 2021 6 / 31

https://doi.org/10.1371/journal.pbio.3001340


period of time will result in different species after the differentiation threshold Ϟ is reached

(modeling Dobzhansky–Muller incompatibilities [76]). These clusters become 2 or more dis-

tinct species, and a divergence matrix reset follows. On the other hand, if geographic clusters

come into secondary contact before the speciation occurs, they coalesce and incompatibilities

are gradually reduced to zero.

Nonexhaustive modification possibilities. A customizable speciation function can further

embrace processes that modulate speciation. Increased divergence values per time step can be

constant for all species or change depending on biotic and abiotic conditions, such as faster

divergence between species occupying higher temperature sites [64], or they can be dependent

on population size [77] or other attributes [78]. The function also takes the ecological traits as

input, thus allowing for ecological speciation [24], where speciation depends on the divergence

of ecological traits between—but not within—clusters [79].

Fig 2. Schematic example of the gen3sis engine simulation cycle of one species’ populations over a landscape evolution example containing

highlands (yellow), lowlands (green), and a river acting as a barrier (blue). (A) Landscape. A time series of landscapes is used as input, with the

landscape being updated after every time step of the simulation cycle, i.e., after the ecology process. (B) Model core processes. First, the speciation process

determines the divergence between geographic clusters of populations that are not connected and splits the clusters into new species if a threshold is

reached. In this illustration, divergence between clusters of the species’ populations was not sufficient to trigger speciation. Second, in the dispersal

process, the species spreads within a landscape to reachable new sites. In this illustration, the river limits dispersal. Third, the evolution process can

modify the value of the traits in the populations. In this illustration, 2 populations show trait evolution in their ability to cope with the local environment

(i.e., red and white populations). Fourth, the ecology process recalculates the abundance of the species in each site based on the abiotic condition and co-

occurring species, possibly resulting in local extinctions. In this illustration, the red population was unsuited to the lowlands, while the white population

survived in the highlands. Speciation and extinction events emerge from multiple simulation cycles of customizable processes.

https://doi.org/10.1371/journal.pbio.3001340.g002
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Dispersal. Core. The dispersal function iterates over all species populations and deter-

mines the connectivity between sites and the colonization of new sites in the landscape. Dis-

persal distances are drawn following a user-defined dispersal function and then compared

with the distance between pairs of occupied and unoccupied sites accounting for landscape

costs. A unique dispersal value can be used (deterministic connection of sites) or dispersal val-

ues can be selected from a specified distribution (stochastic connection of sites). If the dispersal

cost between the sites is lower than the dispersal value, the dispersal is successful. If popula-

tions from multiple sites of origin manage to reach an unoccupied site, the final colonizer is

selected randomly to seed the newly occupied site.

Nonexhaustive modification possibilities. A customizable dispersal function enables the

modeling of different dispersal kernels depending on the type of organism considered. Dis-

persal values can be further linked with the ecology function, e.g., a trade-off with other traits

[80] and dispersal versus competitive ability [81], and the evolution function allowing dispersal

to evolve, resulting in species with different dispersal abilities [82].

Evolution. Core. The evolution function determines the change in the traits of each popu-

lation in occupied sites of each species. Traits are defined in the configuration object and can

evolve over time for each species’ populations. The function iterates over every population of a

species and modifies the trait(s) according to the specified function (e.g., traits related to dis-

persal, niche, or competition).

Nonexhaustive modification possibilities. A customizable evolution function takes as

input the species abundance, species trait, species divergence clusters, and landscape values. In

the function, it is possible to define which traits evolve and how they change at each time step.

In particular, the frequency and/or amount of change can be made dependent on temperature

[83], ecological traits [84], or abundances [85], while the directions of change can follow local

optima or various evolutionary models, including Brownian motion [86] and Ornstein–

Uhlenbeck [87].

Ecology. Core. The ecology function determines the abundance or presence of popula-

tions in occupied sites of each species. Thus, extinction processes derive from ecology function

interactions with other processes and landscape dynamics. The function iterates over all occu-

pied sites and updates the species population abundances or presences on the basis of local

environmental values, updated co-occurrence patterns, and species traits.

Nonexhaustive modification possibilities. A customizable ecology function takes as input

the species abundance, species trait, species divergence and clusters, and the landscape values.

Inspired by classic niche theory [10,15,88], the function can account for various niche mecha-

nisms, from simple environmental limits to complex multispecies interactions. It is possible,

for example, to include a carrying capacity for the total number of individuals or species [21]

or competition between species based on phylogenetic or trait distances [23], based on an

interaction currency [89], or further constrained by a functional trade-off [80].

Outputs and comparisons with empirical data

The computer model delivers a wide range of outputs that can be compared with empirical

data (Fig 1, Table 2). Gen3sis is therefore suitable for analyzing the links between interacting

processes and their multidimensional emergent patterns. By recording the time and origin of

all speciation events, as well as trait distributions and abundance throughout evolutionary his-

tory, the simulation model records the information required to track the dynamics of species

diversity and the shaping of phylogenetic trees. The most common patterns observed and

studied by ecologists and evolutionary biologists, including species ranges, abundances, rich-

ness, and genealogies, are emergent properties of the modeled processes (Table 2). All internal
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objects are accessible to the observer function, which is configurable and executed during sim-

ulation runs. Gen3sis provides direct simulation outputs in a format ready to be stored, ana-

lyzed, and compared with empirical data. Given the flexibility of gen3sis, it is possible to

explore not only parameter ranges guided by prior knowledge available for a given taxonomic

group, but also a variety of landscape scenarios and mechanisms (Fig 3). Furthermore, to attain

generality, validating modeled outputs with multiple empirical patterns is recommended

[20,25,35]. Gen3sis generates multiple outputs, which can be compared with empirical data

using simulation rankings or acceptance criteria [25,35,90].

Case study: The emergence of the LDG in the Cenozoic

Context

Expanding from previous studies using mechanistic simulation models [22,23,39], we use a

case study to illustrate the flexibility of gen3sis to implement mechanisms that derive from a

variety of biological hypotheses, as well as null models to serve as contrast. We present how

gen3sis can be used to explore a variety of proposed mechanisms and how to explore parame-

ters, but the case study is not a comprehensive exploration of existing hypotheses and their

associated parameters [20].

Table 2. List of outputs from the gen3sis computer model, both direct and indirect, that can be compared with empirical data. Direct outputs are the species abun-

dance matrix, species trait matrix, and phylogeny, while indirect outputs result from various combinations of the direct outputs. The computations of indirect outputs rely

on other packages available in the R environment [67].

Scale

Pattern Spatial Temporal

− I + − I +

Metric Example local regional global present past deep

past

Alpha diversity (α) Local species richness follows marked spatial gradients, such as along latitude

(LDG [91]). Species richness is further correlated across scales when the regional

species pool size is positively associated with local species richness (e.g., [4,92]).

� � � � � �

Beta diversity (β) Species turnover is marked along both spatial and environmental gradients [93,94]

and can display sharp boundaries forming biogeographic domains [95].

� � � � �

Gamma diversity (γ) Regional difference in species richness, e.g., across biogeographic regions with

comparable climates, such as the continental temperate region of North America

versus Asia [96].

� � � �

Species abundance, frequency,

and range

Assemblages are generally composed of a few very abundant species and many rare

species [97,98]. A few species tend to occupy many sites, while most are very rare

and have a restricted range size [99].

� � � � � �

Species ecological niche width

distribution

Niche width is heterogeneous across species [100,101], and narrow niche width

leads to higher speciation [102].

� � � � � �

Trait evolutionary rates Ecological traits and niches generally evolve slowly so that closely related lineages

have similar traits and niches, coined as niche conservatism [60].

� � � � � �

Species diversification rates Species diversification rate varies over time and across clades [103–105]. � � � � �

Topological and temporal

phylogenetic properties

Empirical phylogenetic trees typically display a topological signature [106] and

have more divided branching over time, with marked prevalence of a recent

branching distribution [107].

� � � � �

Phylogenetic alpha (α) and

beta (β) diversity

Local communities can show either phylogenetic overdispersion or clustering

compared with the regional pool [108]; greater geographic distances correspond to

increased phylogenetic β diversity across biogeographic barriers [109]; decay in

phylogenetic similarity with increasing geographic distance [110].

� � � � �

Functional alpha (α) and beta

(β) diversity

Local assemblages represent a subset of the regional functional diversity; functional

traits show a typical turnover spatially, often along environmental gradients [111].

� � � � � �

LDGAU : AbbreviationlistshavebeencompiledforthoseusedinTables2and3:Pleaseverifythatallentriesarecorrect:, latitudinal diversity gradient.

https://doi.org/10.1371/journal.pbio.3001340.t002
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The LDG is one of Earth’s most iconic biodiversity patterns, but the underlying mecha-

nisms remain largely debated [20,63,64,101,102,112–114]. Many hypotheses have been pro-

posed to explain the formation of the LDG [20], and these generally agree that a combination

of biological processes and landscape dynamics has shaped the emergence of the LDG [20].

Among the proposed hypotheses, it has been postulated that older and more stable tropical

environments have more time for cumulating species and have reduced extinctions, while

niche conservatism limits the spread of lineages to more recent colder environments [59–62].

Second, higher temperatures in the tropics increase metabolic and mutation rates, which

could lead to faster reproductive incompatibilities among populations and higher speciation

rates compared with colder environments [63,64]. Third, the tropics are generally more pro-

ductive than colder environments and greater resource availability can sustain higher abun-

dances, and, therefore, a larger number of species can coexist there [65,66,115,116]. From

these hypotheses, we illustrate 5 derivative models in gen3sis: a null model without ecological

filtering or trait evolution (M1); a model of trait evolution only considering niche conserva-

tism where trait evolutionary rates are limited (M2); a model where evolutionary rates are pro-

portional to the occupied site temperatures (M3); a model with uniform carrying capacity

(M4); and a model where carrying capacity depends on temperature and aridity (M5). We
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Fig 3. Schematic representation of the case study showing the model design with 2 landscapes (i.e., L1 and L2, with and without temporal environmental

variability) and configurations of 5 models (i.e., M1, M2, M3, M4, and M5; Table A in S1 Note) and model evaluation and testing, based on multiple patterns

including LDG, spatial α-diversity, range size distributions, phylogenetic balance, and temporal dynamics of species diversification (nLTT). Selection criteria

were based on empirical data from major tetrapod groups, i.e. mammals, birds, amphibians and reptiles (Table 3). LDGAU : AbbreviationlistshavebeencompiledforthoseusedinFigs3and4:Pleaseverifythatallentriesarecorrect:, latitudinal diversity gradient; nLTT,

normalized lineage though time.

https://doi.org/10.1371/journal.pbio.3001340.g003
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simulated the spread, speciation, dispersal, and extinction of terrestrial organisms over the

Cenozoic marked by various shifts in diversification. Finally, we evaluated whether the emerg-

ing patterns from these simulated mechanisms correspond to the empirical LDG, phylogenetic

tree imbalance, and range size frequencies computed from data of major tetrapod groups,

including mammals, birds, amphibians, and reptiles (Fig 3).

Input landscapes

The quality of the outputs of simulation models such as gen3sis hinges on accurate and rele-

vant reconstructions of past environmental conditions [117]. Conditions during the Cenozoic

(i.e., 65 Ma until the present) are considered key for the diversification of the current biota

[118], and the Cenozoic is the period during which the modern LDG is expected to have been

formed [119]. In the Cenozoic, the continents assumed their modern geographic configuration

[26]. Climatically, this period was characterized by a general cooling, especially in the Miocene,

and ended with the climatic oscillations of the Quaternary [120].

We compiled 2 global paleoenvironmental landscapes (i.e., L1 and L2) for the Cenozoic at

1˚ and approximately 170 kyr of spatial and temporal resolution, respectively (S1 Note, S1 and

S2 Animations). To account for uncertainties in paleoreconstructions on the emerging large-

scale biodiversity patterns, we used 2 paleoelevation reconstructions [121,122] associated with

2 approaches for estimating the paleotemperature of sites (S1 Note). L1 had temperatures

defined by Köppen bands based on the geographic distribution of lithologic indicators of cli-

mate [56]. L2 had temperature defined by a composite of benthic foraminifer isotope records

over time [123] and along latitude for specific time periods [124–130]. An aridity index rang-

ing from 0 to 1 was computed based on the subtropical arid Köppen zone for both landscapes

[56]. Finally, in order to test for the effects of deep-time environmental dynamics, we also ran

simulations (i.e., L1.0 and L2.0) in which a constant contemporary landscape was set for the

same number of time steps as in L1 and L2 (S1 Note).

We used available paleoelevation models [121,122] and paleoclimate indicators [56,123–

133] to generate input landscapes to explore the formation of the LDG and account for uncer-

tainties and limitations. Hence, the case study represents an illustration of how gen3sis can

handle multiple reconstructions that interact with eco-evolutionary processes in complex

ways. Further research in geology and climatology is required to generate more accurate paleo-

landscapes than those presented here.

Model configurations

We implemented 5 illustrative gen3sis models derived from hypotheses on the emergence of

the LDG. The models (i.e., M1, M2, M3, M4, and M5) had distinct speciation and ecological

processes and contrast the common idea that time, diversification rates, and ecological limits

underpin the LDG (Fig 3, Table A in S1 Note). As a simplified approach for this illustration, all

simulations were initiated with one single ancestor species spread over the entire terrestrial

surface of the Earth at 65 Ma [134], but initial conditions could also match the ancestral range

informed by fossil records [47]. The temperature optimum of each population was initiated to

match local site conditions. Since we focused on terrestrial organisms, aquatic sites were con-

sidered inhabitable and twice as difficult to cross as terrestrial sites. This approximates the dif-

ferent dispersal limitations imposed by aquatic and terrestrial sites. To compute the full

distance matrix, we used haversine geodesic distances.

M1. We applied a null model where all the terrestrial sites were ecologically equivalent.

Temperature and aridity thus did not determine the niche of the species. The divergence rate

between isolated clusters was kept constant (i.e., +1 for every 170 kyr of isolation). Clusters of
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populations that accumulated differentiation over time speciated according to a speciation

threshold Ϟ. Ecology and trait evolution were turned off, making this null model a baseline

with which all the other more complex models can be contrasted.

M2. In the implementation of the niche conservatism, the ecology function defined the spe-

cies population abundance, where the abundance increased proportionally to the distance

between the population temperature niche optimum and the site temperature (S1 Note). The

temperature optimum of each population was set to evolve randomly, with a normal distribu-

tion following Brownian motion with standard deviation σ2.

M3. In the implementation of the diversification rates, the speciation function applied a

temperature-dependent divergence between population clusters [63,64]. Species in warmer

environments accumulated divergence between disconnected clusters of populations at a

higher rate (S1 Note). The accumulation of divergence was set to be 3 times faster at the warm-

est sites. The rate of differentiation increase was shaped by the average site temperature of the

species clusters to the power of dpower plus a constant. Overall, this created higher speciation

rates at warmer than at colder sites (S1 Note, S1 Fig).

M4. In the implementation of the carrying capacity, we applied a model where the total

number of individuals was equally limited in each site, as an overall constraint on biotic inter-

actions [135]. Because of resource and space limitations, only a limited number of individuals

(k) could coexist within the site. If the sum of all species abundances in a site was above k
(modulated by kpower), species abundances were randomly reduced across species until k was

reached. This contrasts with the next model M5, where the carrying capacity varied with tem-

perature and aridity. Locally extinct species were the ones with zero individuals after the limit

k was applied (S1 Note).

M5. In the implementation of the ecological limits, the ecology function included a carry-

ing capacity k of each site that scaled with area energy (i.e., temperature and aridity) [116,136].

In this model, we assumed that the carrying capacity of the number of individuals at sites

scaled with energy, which indirectly also constrained the number of species that could coexist

in a given place [21,116]. If the sum of all species abundances in a site was above k (modulated

by kpower), species abundances were randomly reduced across species until k was reached, as in

M4 (S1 Note).

Exploration of model parameters

We explored the parameter space of each model using Sobol sequences, a quasi-random num-

ber generator that samples parameters evenly across the parameter space [137]. We explored

parameter ranges by basing upper and lower parameter boundaries on the literature and inter-

active modeling explorations. In all models, species dispersed following a Weibull distribution

with shape f = [2 to 5] and a scale of C = [550 to 850], resulting in most values being around

500 to 1,500 km, with rare large dispersal events above 2,000 km. The explored dispersal distri-

bution parameters ranged in realized mean and 95% quantiles between less than a single cell,

i.e., approximately 50 km for a landscape at 4˚, and more than the Earth’s diameter, i.e.,

approximately 12,742 km (S2 Fig). In all models except M1, the evolution function defined the

temperature niche optimum to evolve following Brownian motion. The temperature optimum

of each population was set to evolve randomly, following a normal distribution in a Brownian

motion fashion with standard deviation σ2 = [0.001 to 0.010], corresponding to [±0.1˚C to

±1˚C] per time step. In all models except M3, species emerged after Ϟ = [6 to 60], correspond-

ing to events occurring after [1 to 10] myr of isolation in the cases where the divergence rate

was kept constant. For M3, the differentiation increase with temperature (i.e., 3 times faster at

the hottest sites) changed to the power of dpower = [2 to 6] plus a constant (S1 Fig).
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Temperature niche optima were homogenized per geographic cluster by an abundance-

weighted mean after ecological processes happened. Carrying capacities had k values ranging

from low to high with a power-law scaling kpower = [1 to 4]. For further details on the simula-

tion model framework, model parameters, initial conditions, paleoenvironmental reconstruc-

tions, and landscape modification experiment, see S1 Note and Table A in S1 Note.

For each model (i.e., M1, M2, M3, M4, and M5) in combination with each landscape (i.e.,

L1 and L2) with and without deep-time environmental dynamics, we ran a full factorial explo-

ration of these parameter ranges at a coarse resolution of 4˚ (i.e., M1 n = 300, M2 n = 780, M3

n = 1,020, M4 n = 300, M5 n = 780) and compared these to empirical data. Simulations consid-

ered further (i) had at least 20 species at the present; (ii) had fewer than 50,000 species; or (iii)

had fewer than 10,000 species cohabiting the same site at any point in time (S1 Note). After

parameter range exploration, we identified realistic parameters and ran a subset at 1˚ for high-

resolution outputs for illustration (Fig 4). Parameter exploration is illustrative and could be

expanded in future research applications.

Correspondence with empirical data

We compared simulation ability to produce the observed biodiversity patterns using a pat-

tern-oriented modeling (POM) approach [25,90]. POM compares the predictions of each

model and parameter combination with a number of diagnostic patterns from empirical

observations. In our case, we used the LDG slope and curve, spatial α-biodiversity, range

size frequencies, tree imbalance, and macroevolutionary temporal dynamics as diagnostic

patterns (Fig 3, S1 Note). The POM approach allows a calibration and model comparison

based on high-level diagnostic patterns, avoiding the hurdles of defining explicit (approxi-

mate) likelihood functions [138]. The POM approach requires the specification of a range

for each pattern under which observation and prediction are accepted, hence when a simu-

lation satisfactorily reproduces empirical observations. Unless POM is coupled with an

explicit probabilistic model [138], the limits for acceptance must be decided based on the

empirical data distribution [25,90]. In complement to POM, we computed the Bayesian

information criteria (BIC), balancing the fit of the model to α-diversity with a penalization

for model complexity (S1 Note).

To generate the empirical values for these patterns, we obtained distribution data on

25,941 species [139–141], following [142], and phylogenetic data on 18,978 species [5,143–

146], following [147] for major tetrapod groups, i.e., terrestrial mammals, birds, amphibi-

ans, and reptiles (S1 Note). LDG%loss was defined as the percentage of species loss per lati-

tudinal degree and was measured as the slope of a linear regression of normalized species

richness against absolute latitude. The β-statistics [31] was used for phylogenetic tree

imbalance in ultrametric trees, following [106]. Species range decrease (SRD) in km2 was

defined as the percentage of species loss per species range and was measured as the slope of

a linear regression of range size distributions. We further compared the mean species num-

ber per latitude curve (LDGcurve), normalized lineage though time (nLTT) curves, and α-

biodiversity spatial distribution (S1 Note). Empirical values of LDG, β, and SRD were as

follows: mammals (LDG = 5.1%, β = −0.4, SRD = 2.3�103%), birds (LDG = 1.5%, β = −1.3,

SRD = 6.5�107%), amphibians (LDG = 3.9%, β = −0.7, SRD = 0.11%), and reptiles

(LDG = 1.5%, β = −0.8, SRD = 5.3�103%). Based on these values, we used the following

acceptance criteria: (i) LDG between 5.4% and 1.1%; (ii) tree shape statistic β between −1.4

and −0.3; (iii) range size frequencies with a decrease in the number of large-range species

with a tolerance of 5% [97–99]; (iv) correlation of mean species number per latitude with

r > 0.4; and (iv) nLTT curve difference < 0.15.
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Simulations results

We illustrate how integrating deep-time environmental dynamics and biological processes can

help us understand the origin of biodiversity patterns. Simulations including deep-time tem-

poral dynamics systematically showed a best fit to empirical data (S4 Fig). Models M4 and M5

resulted in the best match for most of the empirical patterns individually, and M5 was the only

model able to pass all acceptance criteria (Table 3). Although all 5 models were able to repro-

duce the LDG%loss, M5 was superior in explaining the LDGcurve (S5 and S6 Figs), α-diversity,

phylogenetic tree imbalance, and species range size frequencies simultaneously (Table 3).

Most simulations of model M5 (67%) resulted in a decrease in species richness at higher lati-

tudes, indicating that the LDG emerged systematically under M5 mechanisms (S8 Fig, Tables

B, C, and D in S1 Note). Using the BIC approach, and accounting for model complexity, we

found that the models implementing carrying capacities (i.e., M4 and M5) were the only ones

significantly superior to the null model M1 when considering α-diversity spatial patterns (S3,

S5, and S6 Figs). Finally, we found that the support for M4 and M5 over M1, M2, and M3 was

consistent across the 2 alternative landscapes L1 and L2 (S6 and S8 Figs, Table D in S1 Note).

We further illustrate the capacity to run high-resolution simulations for a subset of the

Fig 4. Illustration of one global simulation of the speciation, dispersal, and extinction of lineages over the Cenozoic, starting with a single ancestor

species and imposed energetic carrying capacity (M5 in L1). We selected the best matching simulation of M5 in L1 at 1˚ (n = 12) that predicted realistic

biodiversity patterns. (A) Images of the Earth land masses through time, used as input for the simulation. (B) Selected emerging patterns: evolutionary

dynamics, phylogeny, and present richness. (B.1) Evolutionary dynamics: γ richness (log10 scale) through time (blue line) and diversification rate. (B.2)

Phylogeny showing the distribution of the temperature optima for all extant species. (B.3) Present distribution of simulated α biodiversity globally, which

indicates locations of biodiversity hotspots. For the empirical match, see S8 Fig. (C) Model correspondence with empirical data on terrestrial mammals, birds,

amphibians, and reptiles for the LDG, measured as the standardized and area-scaled mean species number per latitudinal degree. The emerging LDG%loss (i.e.,

4.6% of species loss per latitudinal degree) closely matched empirical curves, with good agreement for mammals (Pearson r = 0.6), birds (r = 0.57),

amphibians (r = 0.57), and reptiles (r = 0.38) (S1 Note, Figs 4C and S9). Data presented here are available in S1 Data at https://zenodo.org/record/5006413,

including selected simulation summary output (phylogeny and richness) and empirical richness used to derive LDG curves. LDG, latitudinal diversity

gradient.

https://doi.org/10.1371/journal.pbio.3001340.g004

Table 3. Model acceptance table with pattern descriptions and details of acceptance derived from empirical data. Percentages of accepted simulations (for both land-

scapes) are shown for each model and acceptance parameter and the combination of all acceptance patterns. For details, see S1 Note.

Acceptance M1 M2 M3 M4 M5

Pattern Description and empirical acceptance n = 300 n =
780

n = 1,020 n = 300 n = 780

LDG%loss Percentage of species loss per latitudinal degree from linear regression slope.

Accept LDGs between 5% and 1%

26% 28% 41% 34% 36%

LDGcurve Standardized mean species number per latitude correlation between simulated and empirical

maximal Pearson correlation.

Accept r > 0.4

21% 28% 43% 38% 60%

α biodiversity Spatial distribution correlation between simulated and empirical maximal Pearson correlation.

Accept r > 0.4

18% 24% 37% 20% 36%

Range Range size distributions.

Accept only distributions that show a consistent frequency decrease toward large-ranged species

with a tolerance of 5%

23% 8% 4% 31% 16%

Phytogenic

balance

The imbalance of a phylogenetic tree is measured by the value that maximizes the likelihood in

the β-splitting model [152].

Accept phylogenies with β between −1.4 and −0.3

56% 56% 55% 73% 64%

nLTT Temporal dynamics of species diversification, measured by the differences between empirical and

simulated nLTT curves [153].

Accept nLTT differences < 0.15

66% 65% 70% 62% 59%

Combined Simulations passing all criteria above with at least 20 species alive at present time 0% 0% 0% 0% 1%

LDG, latitudinal diversity gradient; nLTT, normalized lineage though time.

https://doi.org/10.1371/journal.pbio.3001340.t003
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explored parameters. Increasing the spatial resolution of the simulations (n = 12) resulted in

an increase in γ richness and computation time and a slight decrease in the LDG%loss (S7 Fig),

which was associated with a disproportionally larger number of sites toward higher latitudes,

which, in turn, affected population connectivity and, therefore, speciation rates [148].

In order to gain insight into the eco-evolutionary processes leading to the simulated pat-

terns, we quantified the speciation, extinction, and migration rates within and between low

(23˚ 270 N- 23˚ 270 S) and high (66˚ 330 N -23˚ 270 N; 23˚ 270 S-66˚ 330 S] latitudes from the

best ranking simulations. Speciation and extinction rates were consistently higher at low com-

pared with high latitude (S10 Fig), but speciation was systematically superior to extinction in

contributing to the LDG. In contrast, dispersal from low to high latitude was always more fre-

quent than from high to low latitude (Table F in S1 Note), which contributed to attenuation of

the LDG. Because diversity was higher in the tropics, species were more likely to move from

low to high latitude, corroborating empirical observations [149]. Moreover, our results indi-

cate that an increase in the scaling factor of carrying capacity with energy k resulted in a

steeper LDG%loss (Tables B and C in S1 Note), which is in agreement with findings from previ-

ous studies [21,63,116,136]. Similarly, increasing the time for divergence consistently led to

lower species richness and flattened the LDG slope so that the tropics accumulated diversity

more slowly, but changes in speciation rates were less likely to drive large-scale biodiversity

patterns [114]. Including a carrying capacity led to a characteristic increase in speciation and

extinction rates toward the present, which intensified when temperature and aridity were con-

sidered as limiting factors (S10–S12 Figs), matching the recent diversification found in empiri-

cal data [150].

Synthesis

In accordance with Rangel and colleagues [23], we found that realistic LDG patterns are

dependent on species evolutionary responses to environmental dynamics. Rangel and col-

leagues [23] concluded that LDG patterns in South America are sensitive to the rate of evolu-

tionary adaptation to climatic factors, which are dynamic in time (climate oscillations) and

space (topography). However, while in that study [23], the intensity of competition was

assumed to be an inverse function of phylogenetic distance; in gen3sis, competition can be

modeled directly through traits and carrying capacity, opening up a new pathway for future

investigations. In addition, Saupe and colleagues [22] showed that simulations with poor dis-

persal are better at representing the observed strong LDG in tetrapods. In agreement with

their results, our parameter explorations indicated that dispersal correlated negatively with

LDG [22], and simulations with lower dispersal parameters agreed better with the data (S1

Note). While previous case studies using computer models have conveyed information on the

formation of the LDG [22,23,39], they used a shorter timeframe (i.e., below 1 Ma) and/or

explored few mechanisms, i.e., a simplified landscape or a single acceptance criterion

[26,38,43,114]. Although our case study was illustrative and we implemented only a small rep-

resentative fraction of the candidate processes and parameters expected to shape biodiversity

patterns, it illustrates how gen3sis can handle multiple interacting eco-evolutionary processes

proposed in the literature. Still, it is imperative that future research explore further mecha-

nisms and parameters combinations in order to advance our understanding of the processes

behind the emergence of biodiversity.

Although recent studies using realistic landscapes and computer models reproduced biodi-

versity patterns over a time scale spanning the Quaternary [22,23,39], many speciation and

extinction events shaping present diversity patterns date back before the glaciation, and few

studies have covered deep-time dynamics [26,38,43,142]. Deep-time landscape reconstructions
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are still generally lacking but are increasingly becoming available [121,123]. For example, we

represented Quaternary climatic oscillation using approximately 170 kyr time steps, which

correspond to a coarser temporal scale compared with the frequency of oscillations, and thus

do not account for shorter climatic variation effects on diversity patterns [22,23,39]. We also

did not consider ice cover, which can mask species’ habitable sites, which might explain mis-

matches between simulated and empirical LDG patterns below 50˚ (Fig 4C). Moreover,

paleoindicators of climate from Köppen bands have major limitations, and the temperature

estimation derived in our case study might suffer from large inaccuracies. Lastly, extrapolation

of the current temperature lapse rate along elevation might lead to erroneous estimates, espe-

cially in terms of the interaction with air moisture [151], which was not further investigated

here. Through interdisciplinary research across the fields of geology, climatology, and biology,

we expect that gen3sis will improve our understanding of the shaping of biodiversity across

space, time, and complexity.

Discussion

Understanding the emergence of biodiversity patterns requires the consideration of multiple

biological processes and abiotic forces that potentially underpin them [20,23,35,36]. We have

introduced gen3sis, a modular, spatially explicit, eco-evolutionary simulation engine imple-

mented as an R package, which offers the possibility to explore ecological and macroevolution-

ary dynamics over changing landscapes. Gen3sis generates commonly observed diversity

patterns and, thanks to its flexibility, enables the testing of a broad range of hypotheses

(Table 4). It follows the principle of computer models from other fields [154–156], where

mechanisms are implemented in a controlled numeric environment and emerging patterns

can be compared with empirical data [25]. The combination of exploring patterns emerging

from models and qualitatively and quantitatively matching their outputs to empirical data

should increase our understanding of the processes underlying global biodiversity patterns.

Table 4. A nonexhaustive list of expected applications of gen3sis. Given the flexibility and the range of outputs pro-

duced by the engine, we expect that gen3sis will serve a large range of purposes, from testing a variety of theories and

hypotheses to evaluating phylogenetic diversification methods.

Use Examples from Fig 1

Testing phylogenetic inference methods, including

diversification rates in phylogeographic reconstructions.

Infer diversification rate in gen3sis simulated

phylogenies (E) and compare with a known

diversification in gen3sis (A, B, and G).

Providing biotic scenarios for past responses to

geodynamics.

Based on model outputs (C–F) and comparisons with

empirical data (H), select plausible models (B).

Testing paleoclimatic and paleotopographic

reconstructions using biodiversity data.

Based on model outputs (C–F) and comparisons with

empirical data (H), select plausible landscape(s) (A).

Comparing expectations of different processes relating

to the origin of biodiversity; generating and testing

hypotheses.

Compare models (A, B, and G) with outputs (C–F) and

possibly how well outputs match empirical data (H).

Comparing simulated intraspecific population structure

with empirical genetic data.

Compare simulated divergence matrices with population

genetic data.

Forecasting the response of biodiversity to global

changes (e.g., climate or fragmentation).

Extrapolate plausible and validated models (A, B, and G)

to landscapes under climate change scenarios (A).

Investigating trait evolution through space and time. Combine past and present simulated species traits (F)

and distributions (C, D) with fossil and trait data (H).

Modeling complex systems in space and time in

unconventional biological contexts in order to

investigate eco-evolutionary processes in fields

traditionally not relying on biological principles.

Model eco-evolutionary mechanisms (A, B, and G) in an

unconventional eco-evolutionary context.

https://doi.org/10.1371/journal.pbio.3001340.t004
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Verbal explanations of the main principles underlying the emergence of biodiversity are

frequently proposed but are rarely quantified or readily generalized across study systems [20].

We anticipate that gen3sis will be particularly useful for exploring the consequences of mecha-

nisms that so far have mostly been verbally defined. For example, the origins of biodiversity

gradients have been associated with a variety of mechanisms [7], but these represent verbal

abstractions of biological processes that are difficult to evaluate [20]. Whereas simulation mod-

els can always be improved, their formulation implies formalizing process-based abstractions

via mechanisms expected to shape the emergent properties of a system [157]. Specifically,

when conveying models with gen3sis, decisions regarding the biological processes and land-

scapes must be formalized in a reproducible fashion. By introducing gen3sis, we encourage a

standardization of configuration and landscape objects, which will facilitate future model com-

parisons. This standardization offers a robust framework for developing, testing, comparing,

and applying the mechanisms relevant to biodiversity research. Moreover, modeling eco-evo-

lutionary processes in a flexible platform enables the exploration of how biodiversity statistics

may depend on a multitude of different model assumptions and parameter values. This

approximates how biodiversity patterns relate to eco-evolutionary processes. Further studies

exploring the dependency of summary statistics on model assumptions or parameters are nec-

essary and could be readily assisted by gen3sis.

Studying multiple patterns is a promising approach for disentangling competing hypothe-

ses [20,90]. A wide range of biodiversity dimensions can be simulated with gen3sis (Table 2),

which—after appropriate sampling [158]—can be used in a multidimensional comparison

with empirical data, i.e., a time series of species abundance matrices and trait matrices, as well

as a phylogeny. These output objects are compatible with most R packages used for commu-

nity or phylogenetic analyses. Hence, the model outputs can be linked to packages computing

diversification rates [159], community phylogenetics [160], or functional diversity [161]. The

comparison of simulation outputs with empirical data requires a systematic exploration of pro-

cesses and parameter values when formulating models (e.g., [162]). First, a set of mechanisms

and/or a range of reasonable parameter values are explored, e.g., dispersal distances from mea-

surements in a specific clade [163] and/or evolutionary rates [164]. A range of simulation out-

puts can then be evaluated quantitatively by studying the range of models and parameter

values that produce the highest level of agreement with multiple types of empirical data, using,

for example, a POM approach [90]. For each model, patterns are evaluated given acceptance

criteria (e.g., [42]). A multiscale and multipattern comparison of simulations with empirical

data can be completed to evaluate a model’s ability to simultaneously reproduce not only one,

but a diverse set of empirical patterns across multiple biodiversity dimensions.

Using an illustrative case study, we have demonstrated the flexibility and utility of gen3sis

in modeling multiple eco-evolutionary hypotheses in global paleoenvironmental reconstruc-

tions (Figs 3 and 4). Our case study indicates that global biodiversity patterns can be modeled

realistically by combining paleoenvironmental reconstructions with eco-evolutionary pro-

cesses, thus moving beyond pattern description to pattern reproduction [35]. Nevertheless, in

our case study, we only implemented a few of the standing LDG hypotheses [20,34]. Multiple

macroecological and macroevolutionary hypotheses still have to be tested, including the role

of stronger biotic interactions in the tropics than in other regions [165], and compared with

more empirical biodiversity patterns [20]. Considering multiple additional biodiversity pat-

terns will allow a more robust selection of models. Apart from the global LDG case study, we

propose an additional case study (S2 Note, S15 Fig) illustrating how gen3sis can be used for

regional and theoretical studies, such as investigations of the effect of island ontology on the

temporal dynamics of biodiversity [41,166]. Further, illustrations associated with the program-

ming code are offered as a vignette of the R package, which will support broad application of
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gen3sis. Altogether, our examples illustrate the great potential for exploration provided by

gen3sis, promising future advances in our understanding of empirical biodiversity patterns.

Gen3sis could be a valuable tool for exploring iconic biodiversity patterns whose underlying

mechanisms remain largely under investigation [167]. For example, although we know that

mountains are hotspots of biodiversity [56,168], a causal link between mountain dynamics and

biodiversity remains poorly understood [169]. Coupling gen3sis with orogenic and erosion

models could shed new light on the role of mountain building and associated surface processes

in the formation of biodiversity. More generally, the potential role of plate tectonics and sur-

face processes in generating topographic complexity in biodiversity is becoming a hot research

topic in the Earth sciences [73]. Similarly, there are many more species associated with coastal

reefs (especially coral reefs) in marine ecosystems than in pelagic environments [170]. While it

is expected that a combination of geographic features, including plate tectonics [171], and eco-

logical processes interact to form marine diversity, process strengths and interactions are still

under investigation [172]. Using gen3sis with paleoenvironmental reconstructions, it is possi-

ble to study the interactive effects of ecological and evolutionary processes in shaping global

marine biodiversity, with results increasing in precision as more dense and accurate data on

paleoenvironmental reconstructions become available [121]. Gen3sis can further support the

study of biological processes and can be used to improve our understanding of the links

between temperature and biodiversity. For example, it has been hypothesized that temperature

influences diversification [63], but the mechanisms and their consequences are still under dis-

cussion [173]. Using gen3sis, it is possible to explore the multiple causal pathways between

temperature and biodiversity, with the study of the past providing insight into species

responses to ongoing climate change [174]. Finally, gen3sis can be used to explore not only

species diversity, but also intraspecific genetic structure and thus the correspondence between

these diversity levels [175].

Conclusions

Here, we have introduced gen3sis, a modular simulation engine that enables exploration of the

consequences of ecological and evolutionary processes and feedbacks on the emergence of spa-

tiotemporal macro-eco-evolutionary biodiversity dynamics. This modeling approach bears

similarity to other computer models that have led to significant progress in other fields, such

as climatology [154], cosmology [155], and conservation [156]. We have showcased the versa-

tility and utility of gen3sis by comparing the ability of 3 alternative mechanisms in 2 land-

scapes to generate the LDG while accounting for other global biodiversity patterns. Besides the

LDG, frontiers on the origins of biodiversity involve [16] (i) quantifying speciation, extinction,

and dispersal events [119]; (ii) exploring adaptive niche evolution [23,39]; and (iii) investigat-

ing multiple diversity dependence and carrying capacity mechanisms [21,115,116]. Further

possibilities may include (iv) investigating the mechanisms behind age-dependent speciation

and extinction patterns [106,112,176]; (v) exploring contrasts between terrestrial and aquatic

ecosystems [16]; and (vi) calculating the uncertainty resulting from climatic and geological

dynamics (e.g., [22,23,26,38,43]). Gen3sis can support these research frontiers as a general tool

for formalizing and studying existing theories associated with the origin of biodiversity, for

testing new hypotheses against data, and for making predictions about future biodiversity tra-

jectories (Table 4). Openly available as an R package, gen3sis has the potential to catalyze inter-

disciplinary biodiversity research and advance our numerical understanding of biodiversity.

We call for the formation of a community of ecologists, biologists, mathematicians, geologists,

climatologists, and scientists from other fields around this class of eco-evolutionary simulation

models in order to unravel the processes that have shaped Earth’s biodiversity.
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Supporting information

S1 Animation. Reconstructed dynamic landscape L1 (i.e., world 65 Ma) with the environ-

mental values used for the main case study.

(MP4)

S2 Animation. Reconstructed dynamic landscape L2 (i.e., world 65 Ma) with the environ-

mental values used for the main case study.

(MP4)

S3 Animation. Theoretical dynamic landscape (i.e., theoretical island) with the environ-

mental values used for the supplementary case study.

(MP4)

S4 Animation. Dynamic simulated biodiversity patterns (i.e., M5 L1 world from 65 Ma to

the present). The map shows the α diversity and the top and right graphs indicate the richness

profile of longitude and latitude, respectively.

(MP4)

S1 Fig. Divergence increase per time step di against the normalized occupied niche of isolated

populations for models (A) M1, M2, M4, and M5, which assume temperature-independent

divergence, and (B) M3, which assumes temperature-dependent divergence, where divergence

relates to the mean of the realized temperature with 3 different dpower values.

(PDF)

S2 Fig. Nonexhaustive probability density functions of the explored dispersal parameters

in a Weibull distribution with shape f of 1, 2, and 5 and C of 550, 650, 750, and 850. Data

presented available in S2 Data at https://zenodo.org/record/5006413.

(PDF)

S3 Fig. Models (i.e., M1, M2, M3, M4, and M5) (A) Kernel density estimate of the same

explored parameters (i.e., divergence threshold and dispersal scale) for selected simulations

based on a Pearson correlation of simulated versus best observed (i.e., cor> 0.4) and (B) per-

formance quantified with the BIC. Omitted values from the parameter space were simulations

generating an unacceptable best Pearson correlation to the empirical data (r� 0.4), too many

species (>35,000) or a weak richness gradient (<20 species between minimal and maximal α-

richness). Data presented available in S3 Data at https://zenodo.org/record/5006413. BICAU : AbbreviationlistshavebeencompiledforthoseusedinS3; S4; S7; S8; S13; andS14Figs:Pleaseverifythatallentriesarecorrect:,

Bayesian information criteria.

(PDF)

S4 Fig. Summary statistics of the model fit to empirical data with and without environmental

dynamics for (A) a Pearson correlation of standardized mean species number per latitude

(LDGcurve), (B) a Pearson correlation of spatial α-diversity, and (C) the exact difference

between lineage through time curves (nLTT). Data presented available in S2 Data at https://

zenodo.org/record/5006413. nLTT, normalized lineage though time.

(PDF)

S5 Fig. Standardized mean species number per latitude (LDGcurve) for empirical data (i.e., ter-

restrial mammals, birds, amphibians, and reptiles) and best matching simulation from models

(A) M1, (B) M2, (C) M3, (D) M4, and (E) M5. Data presented available in S4 Data at https://

zenodo.org/record/5006413.

(PDF)

PLOS BIOLOGY gen3sis: Engine for mechanistic eco-evolutionary biodiversity modelling

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001340 July 12, 2021 20 / 31

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s002
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s005
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s006
https://zenodo.org/record/5006413
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s007
https://zenodo.org/record/5006413
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s008
https://zenodo.org/record/5006413
https://zenodo.org/record/5006413
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001340.s009
https://zenodo.org/record/5006413
https://zenodo.org/record/5006413
https://doi.org/10.1371/journal.pbio.3001340


S6 Fig. Frequencies of Pearson correlation between simulated standardized mean species

number per latitude (LDGcurve) against best matching empirical LDGcurve for each dynamic

landscape L1 (in blue) and L2 (in pink) for models (A) M1, (B) M2, (C) M3, (D) M4, and (E)

M5. Models M4 and M5 are the only ones producing correlations >0.5. Data presented avail-

able in S3 Data at https://zenodo.org/record/5006413.

(PDF)

S7 Fig. Effects of grid cell size on simulations of M2 L1. (A) Correlation of grid cell, LDG

slope, and other summary statistics. (B) Simulated LDG slope and grid cell size, showing a sig-

nificant effect of spatial resolution on LDG slope. Data presented available in S5 Data at

https://zenodo.org/record/5006413. CPU, central processing unitAU : PleasedefineCPUinS7Figabbreviationlistifthisindeedisanabbreviation:; LDG, latitudinal diversity

gradient.

(PDF)

S8 Fig. Frequencies of simulated normalized LDG slope (histogram) with empirical LDG

for 4 main groups (dashed gray line) and acceptance range (red line). Frequencies for mod-

els (A) M1, (B) M2, (C) M3, (D) M4, and (E)M5 with total frequency and frequency discrimi-

nated for each landscape, i.e., L1 and L2. Data presented available in S3 Data at https://zenodo.

org/record/5006413. LDG, latitudinal diversity gradient.

(PDF)

S9 Fig. Normalized richness of (A) selected simulation, (B) terrestrial mammals, (C) birds,

(D) amphibians, and (E) reptiles, with Pearson correlation values for comparisons between

simulated and empirical data.

(PDF)

S10 Fig. Mean absolute evolutionary events (i.e., speciation and extinction) for every 1 myr

for the top 7 best matching current spatial α-biodiversity simulations for each model with

and without environmental dynamics. Data presented available in S6 Data at https://zenodo.

org/record/5006413.

(PDF)

S11 Fig. Standardized speciation events for every 1 myr of the top 7 best matching current

spatial α-biodiversity simulations for each model with and without environmental dynam-

ics. Data presented available in S6 Data at https://zenodo.org/record/5006413.

(PDF)

S12 Fig. Standardized extinction events for every 1 myr of the top 7 best matching current

spatial α-biodiversity simulations for each model with and without environmental dynam-

ics. Data presented available in S6 Data at https://zenodo.org/record/5006413.

(PDF)

S13 Fig. Correlation of model parameters and emerging patterns for all models and land-

scapes without deep-time environmental dynamics (A) M0 L1.0, (B) M0 L2.0, (C) M1 L1.0,

(D) M1 L2.0, (E) M2 L1.0, and (F) M2 L2.0. Emerging patterns: (i) phylogeny beta is the phylo-

genetic tree imbalance statistic measured as the value that maximizes the likelihood in the β-

splitting model; (ii) range quant 0.95% is the value of the 95% quantile of the species range

area distribution; (iii) LDG % loss is the slope of the linear regression of species richness; (iv)

richness r is the highest Pearson correlation between simulated and empirical α-diversity; (v)

nLTT diff is the lowest difference between simulated and empirical nLTT curves; and (vi)

LDG curve r is the highest Pearson correlation between simulated and empirical standardized

mean species number per latitude. Data presented available in S3 Data at https://zenodo.org/
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record/5006413. LDG, latitudinal diversity gradient; nLTT, normalized lineage though time.

(PDF)

S14 Fig. Correlation of model parameters and 3 emerging patterns for all models and land-

scapes considering deep-time environmental dynamics (A) M0 L1, (B) M0 L2, (C) M1 L1, (D)

M1 L2, (E) M2 L1, and (F) M2 L2. Emerging patterns: (i) phylogeny beta is the phylogenetic

tree imbalance statistic measured as the value that maximizes the likelihood in the β-splitting

model; (ii) range quant 0.95% is the value of the 95% quantile of the species range area distri-

bution; (iii) LDG % loss is the slope of the linear regression of species richness; (iv) richness r

is the highest Pearson correlation between simulated and empirical α-diversity; (v) nLTT diff

is the lowest difference between simulated and empirical nLTT curves; and (vi) LDG curve r is

the highest Pearson correlation between simulated and empirical standardized mean species

number per latitude. Data presented available in S3 Data at https://zenodo.org/record/

5006413. LDG, latitudinal diversity gradient; nLTT, normalized lineage though time.

(PDF)

S15 Fig. Results of the island case study showing (A) landscape size and environmental

dynamics and (B) results of 3 experiments (i.e., lower, equal, and higher trait evolution com-

pared with the temporal environmental variation). The time series in (B) shows γ richness

(log10 scale) on theoretical oceanic islands, following the geomorphological dynamics of

islands. Thick lines indicate the average of the replicates, whereas thin lines indicate SD enve-

lopes (n = 30 for each trait evolutionary rate scenario). The dashed gray vertical bar crossing

the entire plot indicates the period in which the island reaches its maximum size. Data pre-

sented available in S7 Data at https://zenodo.org/record/5006413.

(PDF)

S1 Note. Global case study: The emergence of the LDG in the Cenozoic.

(DOCX)

S2 Note. Island case study: Does trait evolution impact biodiversity dynamics?

(DOCX)

S3 Note. Gen3sis pseudo-code.

(DOCX)
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