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Transfer Meta-Learning: Information-
Theoretic Bounds and Information

Meta-Risk Minimization
Sharu Theresa Jose , Member, IEEE, Osvaldo Simeone , Fellow, IEEE,

and Giuseppe Durisi , Senior Member, IEEE

Abstract— Meta-learning automatically infers an inductive bias
by observing data from a number of related tasks. The inductive
bias is encoded by hyperparameters that determine aspects of the
model class or training algorithm, such as initialization or learn-
ing rate. Meta-learning assumes that the learning tasks belong
to a task environment, and that tasks are drawn from the same
task environment both during meta-training and meta-testing.
This, however, may not hold true in practice. In this paper,
we introduce the problem of transfer meta-learning, in which tasks
are drawn from a target task environment during meta-testing that
may differ from the source task environment observed during
meta-training. Novel information-theoretic upper bounds are
obtained on the transfer meta-generalization gap, which measures
the difference between the meta-training loss, available at the
meta-learner, and the average loss on meta-test data from a new,
randomly selected, task in the target task environment. The first
bound, on the average transfer meta-generalization gap, captures
the meta-environment shift between source and target task envi-
ronments via the KL divergence between source and target data
distributions. The second, PAC-Bayesian bound, and the third,
single-draw bound, account for this shift via the log-likelihood
ratio between source and target task distributions. Furthermore,
two transfer meta-learning solutions are introduced. For the first,
termed Empirical Meta-Risk Minimization (EMRM), we derive
bounds on the average optimality gap. The second, referred
to as Information Meta-Risk Minimization (IMRM), is obtained
by minimizing the PAC-Bayesian bound. IMRM is shown via
experiments to potentially outperform EMRM.

Index Terms— Transfer meta-learning, information-theoretic
generalization bounds, PAC-Bayesian bounds, single-draw
bounds, information risk minimization.

I. INTRODUCTION

ANY machine learning algorithm makes assumptions on
the task of interest, which are collectively referred to as
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the inductive bias. In parametric machine learning, the induc-
tive bias is encoded in the choice of a model class and of a
training algorithm used to identify a model parameter vector
based on training data. The inductive bias is fixed a priori,
ideally with the help of domain expertise, and it can be refined
via validation. As a typical example, an inductive bias may
consist of a class of neural networks parameterized by synaptic
weights and of an optimization procedure such as stochastic
gradient descent (SGD). Hyperparameters including number
of layers and SGD learning rate schedule can be selected by
optimizing the validation error on an held-out data set.

Meta-learning or learning to learn aims to automatically
infer some aspects of the inductive bias based on the observa-
tion of data from related tasks [1]–[3]. For example, the choice
of an inductive bias—model class and training algorithm—for
the problem of classifying images of animals may be based
on labelled images of vehicles or faces. As formalized in [4],
meta-learning assumes the presence of a task environment
consisting of related learning tasks. A task environment is
defined by a distribution on the set of tasks and by per-task
data distributions. A meta-learner observes data sets from a
finite number of tasks drawn from the task environment to
infer the inductive bias, while its performance is evaluated
on a new, previously unseen, task drawn from the same task
environment.

As discussed, a key assumption in the standard formulation
of meta-learning is that the tasks encountered during meta-
learning are from the same environment that generates the new
“meta-test” task on which the performance of the hyperpara-
meter is evaluated. When this assumption is violated, a meta-
learner trained on highly likely tasks in the meta-learning
environment may encounter a rare task during meta-testing.
Since the hyperparameter is fit to the popular tasks in the
meta-learning environment, it may fail to generalize to the rare
meta-test tasks. In this paper, we address this problem, for the
first time, in terms of transfer meta-learning: The rare tasks
encountered during meta-training are modelled as belonging
to a different, meta-testing, task environment wherein it is
highly probable; and the generalization performance of the
meta-learned hyperparameter is assessed by averaging over the
meta-testing task distribution.

The outlined mismatched conditions between meta-training
and meta-testing are observed in many real-world problems.
For instance, consider the problem of developing a person-
alized health application using details of patients—with each

0018-9448 © 2021 Crown Copyright
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Fig. 1. Illustration of conventional learning, transfer learning, conventional meta-learning and transfer meta-learning with PZ|τ denoting the
distribution PZ|T=τ .

patient corresponding to a task—admitted in Hospital A (meta-
training task environment), while the app is tested on patients
in Hospital B (meta-testing task environment). Hospital A
largely caters to patients with cardiac and renal failures (highly
probable tasks in the meta-training task environment), while
Hospital B caters mainly to patients requiring gynaecology
and fertility treatments (more rare in the meta-training task
environment). The application implements a machine learning
model that monitors health conditions—blood pressure/sugar,
heart rate, etc.—that are personalized to each individual
patient. The normal ranges of these metrics for each indi-
vidual patient then constitute the per-task model parameters.
The model is meta-learned (hyperparameters such as normal
ranges for each age group and sex) using patient details from
Hospital A, whereas the application is deployed on patients in
Hospital B. Given the mentioned mismatch, the personalized
application may fail and give incorrect outcomes for patients
in Hospital B. Similar examples arise in many applications
including communication systems [5] and robotics.

As illustrated in Figure 1, we consider a general formulation
of transfer meta-learning where the meta-learner observes a
meta-training set of N datasets ZM

1 , . . . , ZM
N , each of M

samples, of which βN , with β ∈ (0, 1], datasets correspond to
tasks drawn from the source task environment and (1 − β)N
datasets correspond to tasks from the target task environment.
Under source and target task environments, tasks are drawn
according to distinct distributions PT and P ′

T , respectively.
Based on the meta-training set ZM

1:N = (ZM
1 , . . . , ZM

N ),
the meta-learner infers the vector of hyper-parameters u ∈ U .
The hyperparameters u determine the base learning algorithm
through a conditional distribution PW |ZM ,U=u, that maps a
training set ZM to a model parameter W given u. The
performance of the inferred hyperparameter u is evaluated in

terms of the transfer meta-generalization loss L′
g(u), which is

the expected loss over a data set ZM ∼ PM
Z|T sampled from a

task T randomly selected from the target task distribution P ′
T .

The subscript g of L′
g(u) indicates that the considered loss

is the generalization loss and the superscript ′ indicates that
the generalization loss is evaluated with respect to the target
task distribution P ′

T . This objective function is not available to
the meta-learner since the target task distribution P ′

T and the
per-task distributions PZ|T=τ for every task τ are unknown.
Instead, the meta-learner can evaluate the empirical perfor-
mance of the inferred hyperparameter on the meta-training
set ZM

1:N in terms of the meta-training loss Lt(u|ZM
1:N ). The

subscript t of Lt(u|ZM
1:N ) indicates that the loss considered is

training loss.
The difference between the transfer meta-generalization

loss and the meta-training loss, referred to as the transfer
meta-generalization gap ΔL′(u|ZM

1:N), is a key metric to
evaluate the generalization performance of the meta-learner.
If the transfer meta-generalization gap is small, on aver-
age or with high probability, the meta-learner can take the
performance on the meta-training set as a reliable measure
of accuracy of the inferred hyperparameter in terms of the
transfer meta-generalization loss. In this paper, we first study
information-theoretic upper bounds on the transfer meta-
generalization gap of three different flavours – bounds on
the average transfer meta-generalization gap, high-probability
probably-approximately-correct (PAC)-Bayesian bounds, and
high-probability single-draw bounds – and we introduce two
transfer meta-learning algorithms based on Empirical Meta-
Risk Minimization (EMRM) and Information Meta-Risk Min-
imization (IMRM).

The transfer meta-learning setting considered in this paper
generalizes conventional transfer learning [6]–[8], as well as
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meta-learning (see Figure 1). Specifically, when the source and
target task distributions are delta functions centered at source
domain task τ and target domain task τ ′ respectively, with
τ �= τ ′, and the hyperparameter u to be inferred coincides with
the model parameter, the transfer meta-learning setting reduces
to transfer learning. While there exists a rich literature on
generalization bounds and algorithms for transfer learning, this
work is, to the best of our knowledge, the first one to extend
the notion of transfer to meta-learning, to derive information-
theoretic upper bounds on the transfer meta-generalization gap,
and to propose transfer meta-learning design criteria.

A. Related Work

Three distinct kinds of bounds on generalization gap, i.e.,
the difference between training and generalization losses,
have been studied in literature for conventional learning—
bounds on average generalization gap, high-probability
PAC-Bayesian bounds and high-probability single-draw
bounds [9]. For learning algorithms described as a stochastic
mapping from the input training set to the model parameter,
the average generalization gap evaluates the average differ-
ence between the training and generalization losses over the
learning algorithm and its input training set. Information-
theoretic upper bounds on the average generalization gap
have been studied first by Russo and Zhou [10] and
Xu and Raginsky [11], and variants of the bounds have been
investigated in [12]–[14]. Of particular relevance to our work
is the individual sample mutual information (ISMI) based
bound [12], which captures the sensitivity of the learning
algorithm to the input training set, and thus the generalization
ability, via the mutual information (MI) between the model
parameter output of the algorithm and individual data sample
of the input training set. These bounds have the distinction that
they depend explicitly on the data distribution, the learning
algorithm, and the loss function. Moreover, for deterministic
algorithms, the ISMI approach yields a finite upper bound as
compared to the MI bounds in [11]. The ISMI bound has been
extended to obtain bounds on generalization gap for transfer
learning in [15] and for meta-learning in [16], where, in the
latter, the MI between the hyperparameter and per-task data
of the meta-training set captures the sensitivity of the meta-
learner to the meta-training data set. The results in this paper
can be seen as a natural extension of these lines of work to
transfer meta-learning.

Apart from bounds on average generalization gap, PAC
bounds on the generalization gap which hold with high prob-
ability over the training set have been studied in the literature.
Classical PAC bounds for conventional learning assume deter-
ministic learners and employ measures of complexity of the
model class like Vapnik-Chervonenkis (VC) dimension [17]
or Rademacher complexity [18] to characterize the generaliza-
tion gap. For stochastic learning algorithms, McAllester [19]
developed a PAC-Bayesian upper bound on the average of the
generalization gap over the learning algorithm, which holds
with probability at least 1 − δ, with δ ∈ (0, 1), over the
input training set. These bounds employ a reference data-
independent ‘prior’ distribution on the model parameter space,

and the sensitivity of the learning algorithm to the training set
is captured by the Kullback-Leibler (KL) divergence between
the posterior distribution of the learning algorithm and the
prior. As such, the PAC-Bayesian bounds are independent of
data distributions. We note that the recent line of work in [20]
suggests tightening the PAC-Bayesian bounds by choosing a
data-dependent prior distribution evaluated on an heldout data
set, which is not part of the training data.

Various refinements of PAC-Bayesian bounds have been
studied for conventional learning [21]–[24], and for meta-
learning [25]–[27] where for the latter PAC-Bayesian bounds
employ a hyper-prior distribution on the space of hyperpa-
rameters in addition to the prior. A PAC-Bayesian approach
to domain adaptation specialized to linear classifiers has been
considered in [28]. Furthermore, PAC-Bayesian bounds can be
employed to design learning algorithms that ensure general-
ization through the principle of Information Risk Minimization
(IRM) [29]. For conventional learning, the IRM principle finds
a randomized learning algorithm that minimizes the PAC-
Bayesian upper bound on the generalization loss, which is
given by the empirical training loss regularized by the KL
divergence between the posterior learning algorithm and the
prior. In Section IV-B, we resort to the IRM principle and
propose a novel learning algorithm for transfer meta-learning.

PAC-Bayesian bounds apply to the scenario when a model
parameter is drawn every time the learning algorithm is used,
and the performance of the learner is evaluated with respect
to the average of the generalization gap over these draws.
In contrast, high-probability single-draw bounds are relevant in
scenarios when a model parameter is drawn only once from the
stochastic learner, and the goal is to evaluate the generalization
performance with respect to this parameter. Precisely, single-
draw probability bounds yield upper bounds on the general-
ization gap which holds with probability at least 1 − δ, with
δ ∈ (0, 1), over the training set and the model parameter. For
conventional learning, MI-based single-draw bounds have been
obtained in [30], [31], while information-theoretic quantities
like Rényi divergence, α-mutual information, and information
leakage have been used in [32]. To the best of our knowledge,
single-draw bounds have not been studied in the context of
meta-learning or transfer meta-learning before.

In comparison to the generalization bounds for conventional
learning, the generalization bounds for transfer learning have
to account for the domain shift between source domain and
target domain. For conventional transfer learning, an upper
bound on the generalization loss on target domain is obtained
in terms of generalization loss on the source domain, together
with a divergence measure that captures the domain shift
[6], [33], [34]. Various distance and divergence measures
have been explored in the literature to quantify the domain
shift. These measures have the advantage that they can be
empirically estimated from finite data sets from source and
target domains. For example, [6] studies transfer learning
for classification tasks and obtains high-probability upper
bounds on the target domain generalization loss based on the
H -divergence, or dA-distance, in terms of VC dimension
or Rademacher complexity [33]. The dA distance has been
generalized to the discrepancy distance so as to account
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for loss functions beyond the detection loss in [34], and to
integral probability metric in [35]. Estimates of these distance
measures yield generalization bounds in terms of Radmacher
complexity. The H -divergence has been further extended to
define the H ΔH divergence in [36]. While these distance
measures are tailored to given loss functions and model
class, general statistical divergence measures, such as Rényi
divergence and Wasserstein distance have been considered
in [37]–[39] and [40] respectively. The information-theoretic
generalization bound in [15] captures the domain shift in terms
of the KL divergence between source and target domain. Our
work draws inspiration from this line of research.

Finally, we note that the recent works [41], [42] account
for the difference in meta-training and meta-testing conditions.
While the work in [41] presents a “task robust” Model Agnos-
tic Meta-Learning (MAML) algorithm for meta-learning that
is insensitive to distributional differences between training and
testing tasks; reference [42] accounts for such differences in
a Bayesian setting via a task-adaptive meta-learning (TAML)
approach. Our work, in contrast, models the out-of-distribution
meta-test task as belonging to a different task environment than
the meta-learning task environment, and the generalization
performance of the meta-learned hyperparameter is assessed
over the meta-test task environment.

B. Main Contributions

Building on the lines of work on transfer learning out-
lined above, we introduce the problem of transfer meta-
learning, in which data from both source and target task
environments are available for meta-training. Inspired by the
methods in [33], [35], [36] for transfer learning, we mea-
sure the meta-training loss as a weighted average of the
training losses on source and target task environment data
sets. This weighted average includes as special cases meth-
ods that use only data from source or target task environ-
ments. We refer to the resulting design criterion as EMRM.
We derive information-theoretic upper bounds on the aver-
age transfer meta-generalization gap, i.e., on the average
difference between transfer meta-generalization loss L′

g(u)
and meta-training loss Lt(u|ZM

1:N). The bounds generalize
prior works on transfer learning [15] and meta-learning [16].
We also present novel PAC-Bayesian and single-draw proba-
bility bounds. We detail the main contributions as follows.

1) We extend the individual task mutual information (ITMI)
based approach of [16] for meta-learning to obtain novel
upper bounds on the average transfer meta-generalization
gap that hold for any meta-learner. The resulting bound
captures the meta-environment shift from source to target
task distributions via the KL divergence between source
environment data distribution and target environment data
distribution.

2) We specialize the obtained generalization bound on
the average transfer meta-generalization gap to study the
performance of the EMRM algorithm that minimizes the
empirical average meta-training loss, and obtain a novel
upper bound on the average transfer excess meta-risk

for EMRM. The average transfer excess meta-risk is
the optimality gap between the average transfer meta-
generalization loss of EMRM and the optimal transfer
meta-generalization loss.

3) We derive novel PAC-Bayesian bounds for transfer meta-
learning that quantify the impact of the meta-environment
shift through the log-likelihood ratio of the source and
target task distributions. We use these bounds to introduce
a novel meta-training algorithm, termed IMRM, based on
the principle of information risk minimization [29].

4) We obtain new single-draw probability bounds for trans-
fer meta-learning in terms of information densities and
a log-likelihood ratio between source and target task
distribution. Single-draw bounds capture the performance
under a single realization of the hyperparameter drawn
by a stochastic meta-learner. Furthermore, the resulting
bounds can be specialized to obtain novel single-draw
bounds for conventional meta-learning.

5) Finally, we compare the performance of EMRM and
IMRM algorithms on a transfer meta-learning example,
and show that IMRM can outperform EMRM in terms
of transfer meta-generalization loss for sufficiently small
number of tasks and per-task data samples. As the number
of tasks and per-task data samples grow, IMRM reduces
to EMRM.

At a technical level, this work builds on the exponential
inequality based approach introduced in [9], [43] as a unified
analysis tool to obtain average and high-probability bounds
on the generalization gap for conventional learning. The
application of this tool to transfer meta-learning is highly
non-trivial, since the analysis of transfer meta-learning must
contend with contributions to the generalization gap that arise
at both environment and within-task level, while conventional
learning operates on a single task. Through this analysis,
our study yields new results and insights into the impact of
meta-environment shift, number of source or target tasks, and
per-task data samples, producing the novel IMRM transfer
meta-learning criterion.

C. Notation

Throughout this paper, we use upper case letters, e.g. X ,
to denote random variables and lower case letters, e.g. x to
represent their realizations. We use P(·) to denote the set of all
probability distributions on the argument set or vector space.
For a discrete or continuous random variable X taking values
in a set or vector space X , PX ∈ P(X ) denotes its probability
distribution, with PX(x) being the probability mass or density
value at X = x. We denote as PN

X the N -fold product
distribution induced by PX . The conditional distribution of
a random variable X given random variable Y is similarly
defined as PX|Y , with PX|Y (x|y) representing the probability
mass or density at X = x conditioned on the event Y = y.
We define the Kronecker delta δ(x − x0) = 1 if x = x0 and
δ(x − x0) = 0 otherwise, and use IE to denote the indicator
function which equals one when the event E is true and equals
zero otherwise.
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II. PROBLEM FORMULATION

A. Conventional Transfer Learning

We review first the conventional transfer learning prob-
lem [33], [35], [36] in order to define important notation
and provide the necessary background for the introduction of
transfer meta-learning. We refer to Figure 1 for an illustra-
tion comparing conventional learning and transfer learning.
In transfer learning, we are given a data set that consists of:
(i) data points from a source task τ drawn from an underlying
unknown data distribution, PZ|T=τ ∈ P(Z), defined in a
subset or vector space Z; as well as (ii) data from a target task
τ ′, drawn from a generally different distribution PZ|T=τ ′ ∈
P(Z). The goal is to infer a machine learning model that
generalizes well on the data from the target task τ ′. For
notational convenience, in the following, we use PZ|τ to
denote source data distribution PZ|T=τ , and PZ|τ ′ to denote
the target data distribution PZ|T=τ ′ .

The learner has access to a training data set ZM =
(Z1, Z2, . . . , ZM ), which consists of βM , for some fixed β ∈
(0, 1], independent and identically distributed (i.i.d.) samples
(Z1, . . . , ZβM ) ∼ P βM

Z|τ drawn from the source data distribu-
tion PZ|τ , and (1 − β)M i.i.d. samples (ZβM+1, . . . ZM ) ∼
P

(1−β)M
Z|τ ′ from the target data distribution PZ|τ ′ . Since the

learner does not know the distributions PZ|τ and PZ|τ ′ , it uses
the data set ZM to choose a model, or hypothesis, W from
the model class W by using a randomized training procedure
defined by a conditional distribution PW |ZM ∈ P(W) as
W ∼ PW |ZM . The conditional distribution PW |ZM defines
a stochastic mapping from the training data set ZM to the
model class W .

The performance of a model parameter vector w ∈ W on
a data sample z ∈ Z is measured by a loss function l(w, z)
where l : W×Z → R+. The generalization loss, or population
loss, for a model parameter vector w ∈ W is evaluated on the
target task τ ′, and is defined as

Lg(w|τ ′) = EPZ|τ′ [l(w, Z)], (1)

where the average is taken over a test example Z drawn inde-
pendently of ZM from the target task data distribution PZ|τ ′ .

The generalization loss cannot be computed by the learner,
given that the data distribution PZ|τ ′ is unknown. A typical
solution is for the learner to minimize instead the weighted
average training loss on the data set ZM , which is defined as
the empirical average

Lt(w|ZM )=
α

βM

βM∑
i=1

l(w, Zi) +
1 − α

(1 − β)M

M∑
i=βM+1

l(w, Zi),

(2)

where α ∈ [0, 1] is a hyperparameter [36]. Note that this
formulation assumes that the learner knows which training data
comes from the source task and which are from the target task.
We distinguish the generalization loss and the training loss via
the subscripts g and t of Lg(w|τ ′) and Lt(w|ZM ) respectively.
The difference between generalization loss (1) and training
loss (2), known as transfer generalization gap, is a key metric
that relates to the performance of the learner. This is because

a small transfer generalization gap ensures that the training
loss (2) is a reliable estimate of the generalization loss (1).
An information theoretic study of the transfer generalization
gap and of the excess risk gap of a learner that minimizes (2)
was presented in [15].

B. Meta-Learning

We now review the meta-learning setting [44]. To start,
let us fix a class of within-task base learners PW |ZM ,U=u

mapping a data set ZM to a model parameter vector W , where
each base learner is identified by a hyperparameter u ∈ U .
Meta-learning aims to automatically infer the hyperparameter
u using data from related tasks, thereby “learning to learn”.
Towards this goal, a meta-learner observes data from tasks
drawn from a task environment. A task environment is defined
by a task distribution PT supported over the set of tasks
T , as well as by a per-task data distribution PZ|T=τ for
each τ ∈ T . Using the meta-training data drawn from a
randomly selected subset of tasks, the meta-learner infers the
hyperparameter u ∈ U with the goal of ensuring that the
base learner PW |ZM ,u generalize well on a new, previously
unobserved meta-test task T ∼ PT drawn independently from
the same task environment.

To elaborate, as seen in Figure 1, the meta-training data
set consists of N data sets ZM

1:N = (ZM
1 , . . . , ZM

N ), where
each ith sub-data set ZM

i is generated independently by
first drawing a task Ti ∼ PT and then generating a task
specific data set ZM

i ∼ PM
Z|T=Ti

. The meta-learner does not
know the distributions PT and {PZ|T=τ}τ∈T . We consider a
randomized meta-learner [16]

U ∼ PU|ZM
1:N

, (3)

where PU|ZM
1:N

is a stochastic mapping from the meta-training
set ZM

1:N to the space U of hyperparameters. As discussed,
for a given hyperparameter U = u and given a data set ZM ,
the within-task base learner PW |ZM ,u ∈ P(W) maps the per-
task training subset ZM to random model parameter W ∼
PW |ZM ,u. The average per-task test loss for a given task T is
obtained as

Lg(u|T, ZM) = EP
W |ZM ,u

[Lg(W |T )], (4)

where the per-task generalization loss Lg(w|T ) is defined
in (1). The goal of meta-learning is to minimize the meta-
generalization loss defined as

Lg(u) = EPT P M
Z|T

[Lg(u|T, ZM)]. (5)

The meta-generalization loss is averaged over new, meta-
test tasks T ∼ PT drawn from the task environment PT and
on the corresponding training data ZM drawn i.i.d from the
data distribution PM

Z|T .

The meta-generalization loss cannot be computed by the
meta-learner, given that the task distribution PT and per-task
data distribution PZ|T are unknown. The meta-learner relies
instead on the empirical meta-training loss

Lt(u|ZM
1:N) =

1
N

N∑
i=1

Lt(u|ZM
i ), (6)

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on October 25,2022 at 10:02:19 UTC from IEEE Xplore.  Restrictions apply. 



JOSE et al.: TRANSFER META-LEARNING: INFORMATION-THEORETIC BOUNDS AND IMRM 479

Fig. 2. A Bayesian network representation of the variables involved in the definition of transfer meta-learning.

where Lt(u|ZM
i ) is the average per-task training loss,

Lt(u|ZM
i ) = EP

W |ZM
i

,u
[Lt(W |ZM

i )], (7)

with Lt(w|ZM ) defined in (2) (with α = β = 1). The
difference between the meta-generalization loss (5) and meta-
training loss (6) is known as the meta-generalization gap, and
is a measure of performance of the meta-learner.

C. Transfer Meta-Learning

In this section, we introduce the problem of transfer meta-
learning. As we will explain, it generalizes both transfer
learning and meta-learning. In transfer meta-learning, as seen
in Figure 2, a meta-learner observes meta-training data from
two different environments: (i) a source task environment
which is defined by a source task distribution PT ∈ P(T ) and
a per-task data distribution PZ|T ; and (ii) a target task environ-
ment which is defined by target task distribution P ′

T ∈ P(T )
and per-task data distribution PZ|T . For a given family of per-
task base learner PW |ZM ,u, the goal of transfer meta-learning
is to infer a hyperparameter u ∈ U from the meta-training
data such that the base learner PW |ZM ,u generalize well to a
new task T ∼ P ′

T drawn independently from the target task
distribution P ′

T .
The source and target task distributions PT and P ′

T model
the likelihood of observing a given set of tasks during
meta-training and meta-testing, respectively. Highly “popu-
lar”, or more frequently observed, tasks in the source task
environment may have a smaller chance of being observed,
or they may even not appear, in the target task environment,
while new tasks may only be encountered during meta-testing.
For example, a personalized health application may be meta-
trained by using data from a population of users that is not
fully representative of the distribution of the health profiles
expected in a different population on which the application is
deployed and meta-tested.

The meta-training data set consists of N data sets ZM
1:N =

(ZM
1 , . . . , ZM

N ), where (ZM
1 , . . . , ZM

βN) � ZM
1:βN , for some

fixed β ∈ (0, 1], constitutes the source environment data set,

with each ith sub-data set ZM
i being generated independently

by first drawing a task Ti ∼ PT from the source task distrib-
ution PT and then a task-specific data set ZM

i ∼ PM
Z|T=Ti

.

The sub-data sets (ZM
βN+1, . . . , Z

M
N ) � ZM

βN+1:N belong
to the target environment with each ith data set generated
independently by first drawing a task Ti ∼ P ′

T and then task
specific data set ZM

i ∼ PM
Z|T=Ti

. All distributions PT , P ′
T

and {PZ|T=τ}τ∈T are unknown to the meta-learner. Note that
β = 1 corresponds to the extreme scenario in which only data
from source task environment is available for meta-training.

Considering a randomized meta-learner U ∼ PU|ZM
1:N

∈
P(U) as in (3), the goal of the meta-learner is to minimize
the transfer meta-generalization loss

L′
g(u) = EP ′

T P M
Z|T

[
Lg(u|ZM , T )

]
, (8)

evaluated on a new meta-test task T ∼ P ′
T drawn from the

target task distribution P ′
T and on the corresponding training

data ZM drawn i.i.d. from the data distribution PZ|T .
In analogy with the weighted average training loss (2) used

for transfer learning, we propose that the meta-learner aims
at minimizing the weighted average meta-training loss on the
meta-training set ZM

1:N , which is defined as

Lt(u|ZM
1:N ) =

α

βN

βN�
i=1

Lt(u|ZM
i ) +

1 − α

(1 − β)N

N�
i=βN+1

Lt(u|ZM
i ),

(9)

for some hyper-hyperparameter α ∈ [0, 1]. We note that
this formulation assumes that the meta-learner knows which
data comes from the source task environment and which are
from the target task environment. We distinguish the transfer
meta-generalization loss and the meta-training loss via the
subscripts g, t of L′

g(u) and Lt(u|ZM
1:N ) respectively, with

the superscript ′ of L′
g(u) denoting that the generalization

loss is evaluated with respect to the target task distribution
P ′

T . The meta-training loss (9) can be computed by the meta-
learner based on the meta-training data ZM

1:N and it can be
used as a criterion to select the hyperparameter u (for a
fixed α). We refer to the meta-training algorithm that outputs
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the hyperparameter that minimizes (9) as Empirical Meta-Risk
Minimization (EMRM). Note that EMRM is deterministic with
PU|ZM

1:N
= δ(U − UEMRM(ZM

1:N)) where

UEMRM(ZM
1:N ) = arg min

u∈U
Lt(u|ZM

1:N ). (10)

Here, and hence forth, we take arg min to output any one of
the optimal solutions of the problem at hand and we assume
that the set of optimal solutions is not empty.

Remark II.1: The EMRM approach considers the opti-
mization problem in (10), where the objective function,
Lt(u|ZM

1:N ), depends on the hyperparameter u through
the expectation of the per-task training loss, Lt(W |ZM

i ),
taken with respect to the probability distribution PW |ZM

i ,u.
To solve the stochastic optimization problem (10), one
can apply standard stochastic gradient schemes that lever-
age Monte-Carlo gradient estimators [45] of the gradient
∇u[EP

W |ZM
i

,u
[Lt(W |ZM

i )]]. �
In the following sections, we also use loss func-

tions with double subscripts. For example, L′
g,t(u) =

EP ′
T P M

Z|T
[Lt(u|ZM )], defined in (22), with subscripts g, t

denote that it accounts for the generalization loss (‘g’) at the
environment level (with average over T ∼ P ′

T and ZM ), and
the empirical training loss (‘t’) at the task level (Lt(u|ZM )).
We conclude this section with the following remark.

Remark II.2: The transfer meta-learning setting introduced
here generalizes conventional learning, transfer learning and
meta-learning:

1) When β = 1, only data from source task environment
is available for meta-training. If, in addition, source and
target task distributions are equal, i.e., if PT = P ′

T ,
we recover the conventional meta-generalization problem
reviewed in Section II-B.

2) Consider now the special case where source and target
task distributions are concentrated around two specific
tasks τ and τ ′ respectively, that is, we have PT = δ
(T − τ) and P ′

T = δ(T − τ ′) for some τ, τ ′ ∈ T .
With N = 2, the meta-training set ZM

1:N = (ZβNM
τ ,

Z
(1−β)NM
τ ′ ) with ZβNM

τ ∼ P βNM
Z|T=τ and Z

(1−β)NM
τ ′ ∼

P
(1−β)NM
Z|T=τ ′ contains samples that are generated i.i.d. from

the source data distribution PZ|T=τ and target data dis-
tribution PZ|T=τ ′ . Assume that the base learner neglects
data from the task to output always the hyperparameter
U , i.e., PW |ZM ,U = δ(W − U). Upon fixing W = U ,
we then have the meta-learner PU|ZM

1:N
= PW |ZM

1:N
.

With these choices, the problem of transfer meta-learning
reduces to the conventional transfer learning reviewed in
Section II-A by mapping the transfer meta-generalization
loss L′

g(u) to the generalization loss Lg(w|τ ′) =
Lg(u|τ ′) and the meta-training loss Lt(u|ZM

1:N ) to the
training loss Lt(w|ZNM ) = Lt(u|ZNM ).

�

III. INFORMATION-THEORETIC ANALYSIS OF

EMPIRICAL META-RISK MINIMIZATION

In this section, we focus on the information-theoretic analy-
sis of empirical meta-risk minimization (EMRM), which is

defined by the optimization (10). To this end, we will first
study bounds on the average transfer meta-generalization gap
for any meta-learner PU|ZM

1:N
, where the average is taken

with respect to PZM
1:N

PU|ZM
1:N

. Since our goal is to specialize
the derived bound to a deterministic algorithm like EMRM,
we obtain individual task based bounds [16], which yield non-
vacuous bounds for deterministic mappings from the space of
ZM

1:N to U . We then apply the results to analyze the average
transfer excess meta-risk for EMRM. We refer to Section IV-B
for PAC-Bayesian bounds and Section V for single-draw
bounds on transfer meta-generalization gap. We start with a
formal definition of the performance criteria of interest.

The transfer meta-generalization gap is the difference
between the transfer meta-generalization loss (8) and the meta-
training loss (9). For any given hyperparameter u ∈ U , it is
defined as

ΔL′(u|ZM
1:N ) = L′

g(u) − Lt(u|ZM
1:N). (11)

For a general stochastic meta-learner PU|ZM
1:N

, the average
transfer meta-generalization gap is obtained as

EP
ZM
1:N

P
U|ZM

1:N
[ΔL′(U |ZM

1:N )] (12)

with the expectation taken over the meta-training data set
ZM

1:N and hyperparameter U ∼ PU|ZM
1:N

. Note that PZM
1:N

is the marginal of the product distribution
∏βN

i=1 PTiP
M
Z|T=Ti∏N

i=βN+1 P ′
Ti

PM
Z|T=Ti

, as described in the previous section.
The average transfer meta-generalization gap (12) quantifies
how close the meta-training loss is to the transfer meta-
generalization loss, which is the desired, but unknown, meta-
learning criterion. If the transfer meta-generalization gap is
sufficiently small, the meta-training loss can be taken as
a reliable measure of the transfer meta-generalization loss.
In this case, one can expect EMRM (10), which relies on
the minimum of the weighted meta-training loss Lt(u|ZM

1:N ),
to perform well.

We note that the meta-training loss (9) is an α-weighted
average of losses from source and target task environments,
whereas the transfer generalization loss (8) is defined solely
over the target task environment. The suitability of the meta-
training loss (9) as a proxy for the transfer meta-generalization
loss thus depend on the specific choice of α. For instance,
when large data sets are available from the target task envi-
ronment, it is preferable to choose α = 0, thereby discarding
the data from source task environment. With abundant data
from target tasks and with α = 0, the average transfer
meta-generalization gap is expected to vanish in the limit
of large M , as confirmed by Theorem 3.1. More generally,
a sub-optimal choice of α > 0 results in a residual bias
due to the difference between the source and target task
environments, even in the asymptotic regime of large M and
N (see Remark III.3).

The average transfer excess meta-risk evaluates the per-
formance of a meta-training algorithm with respect to the
optimal hyperparameter u∗ that minimizes the transfer meta-
generalization loss (8). For a fixed class of base learners
PW |ZM ,u, the optimal hyperparameter minimizing (8) is
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given by

u∗ = arg min
u∈U

L′
g(u). (13)

The average transfer excess meta-risk of the EMRM algo-
rithm is hence computed as

EP
ZM
1:N

[L′
g(U

EMRM(ZM
1:N )) − L′

g(u
∗)]. (14)

In the next subsection, we present the technical assump-
tions underlying the analysis, as well as some exponential
inequalities that will play a central role in the derivations.
In Section III-B, we obtain upper bounds on the average
transfer meta-generalization gap (12) for any meta-learner,
while Section III-C focuses on bounding the average transfer
excess meta-risk (14) for EMRM.

A. Assumptions and Exponential Inequalities

We start by defining σ2-sub-Gaussian random variables.
Definition 3.1 ([46, Theorem 2.6]): A random variable

X ∼ PX with finite mean, i.e., EPX [X ] < ∞, is said to be
σ2-sub-Gaussian if its moment generating function satisfies

EPX [exp(λ(X − EPX [X ]))] ≤ exp

(
λ2σ2

2

)
, for all λ ∈ R.

(15)

Or, equivalently,

EPX

[
exp

(
λ(X − EPX [X ])2

2σ2

)]
≤ 1√

1−λ
, for all λ ∈ [0, 1).

(16)

Moreover, if Xi, i = 1, . . . , n are independent σ2-sub-
Gaussian random variables, then the average

∑n
i=1 Xi/n is

σ2/n-sub-Gaussian.
Throughout, we denote as PU the marginal of the joint dis-

tribution PZM
1:N

PU|ZM
1:N

induced by the meta-learner. We also
use PZM to denote the marginal of the joint distribution
PT PM

Z|T of the data under the source environment and, in a
similar manner, P ′

ZM to denote the marginal of the joint
distribution P ′

T PM
Z|T of the data under the target environment.

In the rest of this section, we make the following assumptions
on the loss function.

Assumption 3.1: The environment distributions PT , P ′
T ,

and {PZ|T=τ}τ∈T , the base learner PW |ZM ,U , and the meta-
learner PU|ZM

1:N
satisfy the following assumptions.

(a) For each task τ ∈ T , the loss function l(W, Z) is
δ2
τ -sub-Gaussian when (W, Z) ∼ PW |T=τPZ|T=τ , where

PW |T=τ is the marginal of the model parameter trained
for task τ , which is obtained by marginalizing the joint
distribution PUPM

Z|T=τPW |ZM ,U ;
(b) The per-task average training loss Lt(U |ZM ) is σ2-sub-

Gaussian when (U, ZM ) ∼ PUP ′
ZM .

We note that the Sub-Gaussianity properties in
Assumption 3.1(a) and Assumption 3.1(b) are with
respect to different distributions. As such, satisfying
Assumption 3.1(a) does not guarantee sub-Gaussianity
in the sense of Assumption 3.1(b). However, if the loss
function is bounded, i.e., l(·, ·) ∈ [a, b] for 0 ≤ a ≤ b < ∞,

it can be verified that both of these assumptions hold with
δ2
τ = (b − a)2/4 = σ2 for any τ ∈ T .

Definition 3.2: The information density between two dis-
crete or continuous random variables (A, B) ∼ PA,B

with well-defined joint probability mass or density function
PA,B(a, b), and marginals PA(a) and PB(b) is the random
variable

ı(A, B) = log
PA,B(A, B)

PA(A)PB(B)
= log

PA|B(A|B)
PA(A)

. (17)

The information density quantifies the evidence for the
hypothesis that A is produced from B via the stochastic mech-
anism PA|B rather than being drawn from the marginal PA.
The average of the information density is given by the mutual
information (MI) I(A; B) = EPA,B [ı(A, B)].

In the analysis, the information densities ı(U, ZM
i ) for

i = 1, . . . , N , and ı(W, Zj|T = τ) for j = 1, . . . , M will
play a key role. The information density ı(U, ZM

i ) is defined
for random variables (U, ZM

i ) ∼ PU,ZM
i

, where PU,ZM
i

is
obtained by marginalizing the joint distribution PZM

1:N
PU|ZM

1:N

over the subsets ZM
j of the meta-training set ZM

1:N for all
j �= i, j = 1, . . . , N . Similarly, the information density
ı(W, Zj|T = τ) is defined for random variables (W, Zj) ∼
PW,Zj |T=τ , where PW,Zj |T=τ is obtained by marginalizing
the joint distribution PUPW |ZM ,UPM

Z|T=τ over U and over
data samples Zk of the training set ZM for all k �= j with
k = 1, . . . , M . The information density ı(U, ZM

i ) quantifies
the evidence for the hyperparameter U to be generated by the
meta-learner PU|ZM

1:N
based on meta-training data that includes

the data set ZM
i . Similarly, the evidence for the model para-

meter W to be produced by the base learner PW |ZM (which
is the marginal of the joint distribution PUPW |ZM ,U ) based
on the training set for task τ that includes the data sample
Zj is captured by the information density ı(W, Zj |T = τ).
All these measures can also be interpreted as the sensitivity
of hyperparameter and model parameter to per-task data set
ZM

i (from source or target environment) and data sample Zj

within per-task data set, respectively. Moreover, the average
of these information densities yield the following MI terms

I(U ; ZM
i ) =

��
�

EP
ZM

i
P

U|ZM
i

[ı(U, ZM
i )] for i = 1, . . . , βN,

EP ′
ZM

i

P
U|ZM

i

[ı(U, ZM
i )] for i = βN + 1, . . . , N,

I(W ;Zj |T = τ )=EPW,Zj|T=τ
[ı(W, Zj |T =τ )] for j = 1, . . . , M.

(18)

Assumption 3.2: The joint distribution PW,Zj |T=τ and the
product of the marginals PW |T=τPZj |T=τ have the same
support for all τ ∈ T and j = 1, . . . , M . Similarly, the joint
distribution PU,ZM

i
and the product of the marginals PUPZM

i

(for i = 1, . . . , βN ) or PUP ′
ZM

i
(for i = βN + 1, . . . , N )

share the same support. Finally, we assume that the source
environment data distribution PZM and the target environment
data distribution P ′

ZM have the same support.
Assumption 3.2 ensures that the mutual information terms

I(W ; Zj |T = τ), I(U ; ZM
i ) and the KL divergence term

D(PZM ||P ′
ZM ) are well-defined and finite. We are now ready

to present two important inequalities that will underlie the
analysis in the rest of the section. We note that a similar
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Fig. 3. Illustration of the variables involved in the definition of transfer meta-generalization gap (11).

unified approach was presented in [9] to study generalization
in conventional learning, and our methodology is inspired by
this work.

Lemma 3.1: Under Assumption 3.1(a) and Assumption 3.2,
the following inequality holds

EPW,Zj |T=τ

[
exp

(
λ(l(W, Zj) − EPW |T=τ PZj |T=τ

[l(W, Zj)])

− λ2δ2
τ

2
− ı(W, Zj |T = τ)

)]
≤ 1, (19)

for all j = 1, . . . , M , λ ∈ R and for each task τ ∈ T .
Proof: See Appendix B.

Lemma 3.2: Under Assumption 3.1(b) and Assumption 3.2,
we have the following inequalities

EP ′
ZM

i

P
U|ZM

i

[
exp

(
λ(Lt(U |ZM

i ) − EPU P ′
ZM

i

[Lt(U |ZM
i )])

− λ2σ2

2
− ı(U, ZM

i )
)]

≤ 1, (20)

for i = βN + 1, . . .N and

EP
ZM

i
P

U|ZM
i

[
exp

(
λ(Lt(U |ZM

i ) − EPU P ′
ZM

i

[Lt(U |ZM
i )])

− λ2σ2

2
− log

PZM
i

(ZM
i )

P ′
ZM

i

(ZM
i )

− ı(U, ZM
i )

)]
≤ 1,

(21)

for i = 1, . . . , βN , which holds for all λ ∈ R.
Proof: See Appendix C.

Inequalities (19)–(21) relate the per-task training and meta-
training loss functions to the corresponding ensemble averages
and information densities, and will be instrumental in deriv-
ing information theoretic bounds on average transfer meta-
generalization gap and average transfer excess meta-risk.

B. Bounds on the Average Transfer Meta-Generalization Gap

In this section, we derive upper bounds on the average
transfer meta-generalization gap (12) for a general meta-
learner PU|ZM

1:N
. The results will be specialized to the EMRM

meta-learner in Section III-C.
To start, we decompose the average transfer meta-

generalization gap (12) as

EP
ZM
1:N ,U

[ΔL′(U |ZM
1:N )] = EP

ZM
1:N ,U

[(
L′

g(U) − L′
g,t(U)

)
+

(
L′

g,t(U) − Lt(U |ZM
1:N)

)]
, (22)

where we have used the notation PZM
1:N ,U = PZM

1:N
PU|ZM

1:N
,

and L′
g,t(u) is the average training loss when data is drawn

from the distribution PZ|T of a task T sampled from the target
task distribution P ′

T , i.e.

L′
g,t(u) = EP ′

T
EP M

Z|T
[Lt(u|ZM )]. (23)

A summary of all definitions for transfer meta-learning can
be found in Figure 3.

The decomposition (22) captures two distinct contributions
to the meta-generalization gap in transfer meta-learning. The
first difference in (22) accounts for the within-task generaliza-
tion gap that is caused by the observation of a finite number M
of data samples for the meta-test task. In contrast, the second
difference accounts for the environment-level generalization
gap that results from the finite number of observed tasks
(βN from the source environment and (1 − β)N from the
target environment), as well as from the meta-environment
shift in task distributions from PT to P ′

T . To upper bound
the average transfer meta-generalization gap, we proceed by
separately bounding the two differences in (22) via the expo-
nential inequalities (19)–(21). This results in the following
information-theoretic upper bound for transfer meta-learning
that extends the individual sample mutual information based
approach in [12] for conventional learning.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on October 25,2022 at 10:02:19 UTC from IEEE Xplore.  Restrictions apply. 



JOSE et al.: TRANSFER META-LEARNING: INFORMATION-THEORETIC BOUNDS AND IMRM 483

Theorem 3.1: Under Assumption 3.1 and Assumption 3.2,
the following upper bound on the average transfer meta-
generalization gap holds for β ∈ (0, 1)

|EP
ZM
1:N ,U

[ΔL′(U |ZM
1:N)]|

≤ α

βN

βN∑
i=1

√
2σ2

(
D(PZM ||P ′

ZM ) + I(U ; ZM
i )

)

+
1 − α

(1 − β)N

N∑
i=βN+1

√
2σ2I(U ; ZM

i )

+ EP ′
T

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj |T = τ)
]
, (24)

with the MI terms defined in (18).
Proof: See Appendix D.

The upper bound (24) on the average transfer meta-
generalization gap is expressed in terms of three distinct
contributions (i) source environment-level generalization gap:
the MI I(U ; ZM

i ), for i = 1, . . . , βN , captures the sensi-
tivity of the meta-learner U to the per-task data ZM

i of the
source environment data set, while the meta-environment shift
between the source and target environment per-task data is
captured by the KL divergence D(PZM ||P ′

ZM ); (ii) target
environment-level generalization gap: the MI I(U ; ZM

i ), for
i = βN + 1, . . . , N , accounts for the sensitivity of the meta-
learner to the per-task data sample ZM

i from the target task
environment; and lastly (iii) within-task generalization gap:
the MI I(W ; Zj|T = τ) captures the sensitivity of the base
learner to the data sample Zj of the meta-test task data
ZM ∼ PM

Z|T=τ .
As N increases, the dependence of a well-designed meta-

learner output on each individual task-data set is expected to
decrease, yielding a vanishing MI I(U ; ZM

i ). Similarly, with
an increase in number M of per-task data samples, the MI
I(W ; Zj |T = τ) is expected to decrease to zero. An inter-
esting observation from (24) is that, for α > 0, even if these
conditions are satisfied, as N , M → ∞, the meta-environment
shift between source and target task distributions results in a
non-vanishing bound on the transfer meta-generalization gap,
which is quantified by the KL divergence D(PZM ||P ′

ZM ).
Remark III.3: (Choice of α) The average transfer

meta-generalization gap, EP
ZM
1:N ,U

[ΔL′(U |ZM
1:N )], and the

corresponding upper bound (24), are defined for any fixed
value of the weighing parameter α. Ideally, the choice
of α should be optimized to minimize the transfer meta-
generalization loss, or more practically, the upper bound
(24). This optimization is not straightforward, since the
mutual information terms in (24) can implicitly depend
on α through the transfer meta-learner PU|ZM

1:N
as in the

case of EMRM. That said, in order to ensure asymptotic
correctness in the limit of large M and N , one can, for
instance, choose α = 1/((1 − β)N) (assuming at least one
task from target environment is observable). With this choice,
the transfer meta-generalization gap vanishes in the limit of
large M and N . �

Furthermore, when no data from target environment is avail-
able for meta-training, the bound in (24) can be specialized as
follows.

Corollary 3.2: Under Assumption 3.1 and Assumption 3.2,
when only data from the source environment is available for
meta-training, i.e., when β = 1 and α = 1, the following upper
bound on average transfer meta-generalization gap holds

|EP
ZM
1:N ,U

[ΔL′(U |ZM
1:N )]|

≤ 1
N

N∑
i=1

√
2σ2

(
D(PZM ||P ′

ZM ) + I(U ; ZM
i )

)

+ EP ′
T

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj |T = τ)
]
. (25)

If, in addition, the source and target task distributions
coincide, i.e., if PT = P ′

T , the bound (24) recovers the
following result presented in [16, Cor. 5.8].

Corollary 3.3: When the source and task environment data
distributions coincide, i.e., when PT = P ′

T , for β = 1 and
α = 1, we have the following upper bound on average meta-
generalization gap

|EP
ZM
1:N ,U

[ΔL(U |ZM
1:N )]|

≤ 1
N

N∑
i=1

√
2σ2I(U ; ZM

i )

+ EPT

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj|T = τ)
]
. (26)

Finally, the upper bound in (24) on average transfer meta-
generalization gap can be specialized to recover the following
upper bound [15, Cor. 2] on average generalization gap in
conventional transfer learning (see Remark II.2).

Corollary 3.4: Consider the setting of Theorem 3.1 with
PT = δ(T − τ) and P ′

T = δ(T − τ ′) for some τ, τ ′ ∈
T . For N = 2, let the meta-training set be ZM

1:N =
(ZβM̄

τ , Z
(1−β)M̄
τ ′ ) := ZM̄ where M̄ = NM and ZβM̄

τ ∼
P βM̄

Z|τ and Z
(1−β)M̄
τ ′ ∼ P

(1−β)M̄
Z|τ ′ . Assume that PW |ZM ,U =

δ(W − U) and fix W = U . Then, the following upper bound
on the average generalization gap for transfer learning holds
for β ∈ (0, 1)

|EP
ZM̄ ,W

[Lg(W |τ ′) − Lt(W |ZM̄ )]|

≤ α

βM̄

βM̄∑
i=1

√
2δ2

τ ′

(
D(PZ|τ ||PZ|τ ′) + I(W ; Zi)

)

+
1 − α

(1 − β)M̄

M̄∑
i=βM̄+1

√
2δ2

τ ′I(W ; Zi). (27)

where the MI I(W ; Zi) is evaluated with respect to the joint
distribution PW,Zi|τ for i = 1, . . . , βM̄ and is evaluated with
respect to the joint distribution PW,Zi|τ ′ for i = βM̄ +
1, . . . , M̄ .

Proof: See Appendix E.
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Finally, we remark that, as proved in Appendix F, all the
upper bounds in this section, starting from (24), can be also
obtained under the following different assumption analogous
to the one considered in the work of Xu and Raginsky [11].

Assumption 3.3: For every task τ ∈ T , the loss function
l(w, Z) is δ2

τ -sub-Gaussian when Z ∼ PZ|T=τ for all w ∈ W .
Similarly, the per-task average training loss Lt(u|ZM ) is
σ2-sub-Gaussian when ZM ∼ P ′

ZM for all u ∈ U .
As discussed in [13], this assumption does not imply

Assumption 3.1, and vice versa. This is unless the loss function
l(·, ·) is bounded in the interval [a, b], in which case both these
assumptions hold.

C. Bounds on Transfer Excess Meta-Risk of EMRM

In this section, we obtain an upper bound on the aver-
age transfer meta-excess risk (14) for the EMRM meta-
learner (10). We will omit the dependence of UEMRM on ZM

1:N

to simplify notation. We start by decomposing the average
transfer excess meta-risk (14) of EMRM as

EP
ZM
1:N

[L′
g(U

EMRM) − L′
g(u

∗)]

= EP
ZM
1:N

[(
L′

g(U
EMRM) − Lt(UEMRM|ZM

1:N)
)

+
(
Lt(UEMRM|ZM

1:N) − Lt(u∗|ZM
1:N)

)
+

(
Lt(u∗|ZM

1:N ) − L′
g(u

∗)]
)]

. (28)

We first observe that we have the inequality
Lt(UEMRM|ZM

1:N ) ≤ Lt(u∗|ZM
1:N) which is by the definition

of EMRM (10). Therefore, from (28), the average transfer
meta-excess risk is upper bounded by the sum of average
transfer meta-generalization gap studied above, which is
the first difference in (28), and of the average difference
EP

ZM
1:N

[Lt(u∗|ZM
1:N) − L′

g(u
∗)], the last difference in (28).

Combining a bound on this term with the bound (24) on the
transfer meta-generalization gap yields the following upper
bound on the average transfer excess meta-risk.

Theorem 3.5: Under Assumption 3.3 and Assumption 3.2,
and for β ∈ (0, 1), the following upper bound on the
average transfer meta-excess risk holds for the EMRM meta-
learner (10)

EP
ZM
1:N

[L′
g(U

EMRM) − L′
g(u

∗)]

≤ α

βN

βN∑
i=1

√
2σ2

(
D(PZM ||P ′

ZM ) + I(UEMRM; ZM
i )

)

+
1 − α

(1 − β)N

N∑
i=βN+1

√
2σ2I(UEMRM; ZM

i )

+ EP ′
T

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj |T = τ)
]

+ α
√

2σ2D(PZM ||P ′
ZM )

+ EP ′
T

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj |T = τ, u∗)
]
, (29)

where the MI terms are defined in (18) with U = UEMRM.
Proof: See Appendix G.

Comparing (29) with (24) reveals that, in addition to the
terms contributing to the average transfer meta-generalization
gap, the excess meta-risk of EMRM meta-learner also includes
the KL divergence between source and target environment
per-task data D(PZM ||P ′

ZM ) and the MI I(W ; Zj |u∗, τ). The
latter captures the sensitivity of the base learner PW |ZM ,u∗

under the optimal hyperparameter u∗ to a training sample Zj

of the meta-test task data ZM ∼ P ′
ZM . Since u∗ is unknown in

general, once can further upper bound this mutual information
by the supremum value supu∈U I(W ; Zj |T = τ, u).

All the bounds obtained in this section depend on the
distributions of source and target task environments, namely
PT , and P ′

T , and per-task data distributions {PZ|T=τ}τ∈T , all
of which are generally unknown. In the next section, we obtain
high-probability PAC-Bayesian bounds on the transfer meta-
generalization gap, which are in general independent of these
distributions except for the quantity that captures the meta-
environment shift. We further build on this bound to define
a novel meta-learner inspired by the principle of information
risk minimization [29].

IV. INFORMATION RISK MINIMIZATION FOR

TRANSFER META-LEARNING

In this section, we first obtain a novel PAC-Bayesian bound
on the transfer meta-generalization gap which holds with high
probability over the meta-training set. Based on the derived
bound, we then propose a new meta-training algorithm, termed
Information Meta Risk Minimization (IMRM), that is inspired
by the principle of information risk minimization [29]. This
will be compared to EMRM through a numerical example
in Section VI.

We first discuss in the next sub-section some technical
assumptions that are central to the derivation of PAC-Bayesian
bound for transfer meta-learning. We then present the PAC-
Bayesian bounds in Section IV-B, and we introduce IMRM
in Section IV-C.

A. Assumptions

The derivation of the PAC-Bayesian bound relies on slightly
different conditions than Assumption 3.3, which are stated
next.

Assumption 4.1: The environment distributions PT , P ′
T and

{PZ|T=τ}τ∈T , the base learner PW |ZM ,U and the meta-learner
PU|ZM

1:N
satisfy the following assumptions.

(a) For each task τ ∈ T , the loss function l(w, Z) is δ2
τ -sub-

Gaussian under Z ∼ PZ|τ for all w ∈ W .
(b) The average per-task generalization loss Lg(u|T, ZM ) in

(4) is σ2-sub-Gaussian when (T, ZM ) ∼ P ′
T PM

Z|T for all
u ∈ U .

Assumption 4.1(a) on the loss function l(w, Z) is the same
as the one considered in Assumption 3.3. In contrast, while
Assumption 4.1(b) is on the average per-task generalization
loss, Assumption 3.3 considers average per-task training loss.
This distinction is necessary in order to also bound the task-
level generalization gap in high probability. If the loss function
is bounded in the interval [a, b], then both Assumption 3.3 and
Assumption 4.1 are satisfied with σ2 = δ2

τ for all τ ∈ T .
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PAC-Bayes bounds depend on arbitrary reference data-
independent “prior” distributions that allow the evaluation
of sensitivity measures for base learners [47] and meta-
learners [26]. Accordingly, in the following sections, we con-
sider a hyper-prior QU ∈ P(U) for the hyperparameter and a
family of priors QW |U=u ∈ P(W) for each u ∈ U satisfying
the following assumption.

Assumption 4.2: The hyper-prior QU ∈ P(U) must satisfy
that QU and PU|ZM

1:N =zM
1:N

have the same support for all
zM
1:N ∈ ZMN . Similarly, for given u ∈ U , the prior QW |U=u ∈
P(W) and PW |ZM=zM ,U=u have the same support for all
zM ∈ ZM . Finally, PT and P ′

T must also have the same
support.

Assumption 4.2 ensures that relevant information-theoretic
metrics, such as the KL divergence D(PU|ZM

1:N
||QU ), are all

well-defined and finite. The derivation of PAC-Bayesian bound
is based on novel exponential inequalities that are obtained in
a similar manner as in the previous section and can be found
in Appendix H. In the following, we use T1:N = (T1, . . . , TN )
to denote the N selected tasks for generating the meta-training
data set ZM

1:N with PT1:N =
∏βN

i=1 PTi

∏N
j=βN+1 P ′

Ti
and

PZM
1:N |T1:N

denoting the product distribution
∏N

i=1 PM
Z|Ti

.

B. PAC-Bayesian Bound for Transfer Meta-Learning

In this section, we focus on obtaining PAC-Bayesian bounds
of the following form: With probability at least 1− δ over the
distribution of meta-training tasks and data (T1:N , ZM

1:N) ∼
PT1:N PZM

1:N |T1:N
, the transfer meta-generalization gap satisfies∣∣∣EP

U|ZM
1:N

[ΔL′(U |ZM
1:N)]

∣∣∣ ≤ ε, (30)

for δ ∈ (0, 1). To start, we define the empirical weighted
average of the per-task test loss of the meta-training set as

Lt,g(u|ZM
1:N , T1:N) =

α

βN

βN∑
i=1

Lg(u|ZM
i , Ti)

+
1 − α

(1 − β)N

N∑
i=βN+1

Lg(u|ZM
i , Ti), (31)

where Lg(u|ZM
i , Ti) is defined in (4). Then, the transfer meta-

generalization gap can be decomposed as

EP
U|ZM

1:N

[
ΔL′(U |ZM

1:N )
]

= EP
U|ZM

1:N

[(
L′

g(U) − Lt,g(U |ZM
1:N , T1:N )

)
+

(
Lt,g(U |ZM

1:N , T1:N) − Lt(U |ZM
1:N)

)]
. (32)

In (32), the first difference accounts for the environment-
level generalization gap resulting from the observation of
a finite number N of meta-training tasks and also from
the meta-environment shift between source and target task
distributions. The second difference accounts for the within-
task generalization gap in each subset of the meta-training
set ZM

1:N arising from observing a finite number M of per-
task data samples. We note that the decomposition in (32) can
also be used to obtain an upper bound on the average transfer
meta-generalization gap. However, the resulting bound does

not recover the bound in [16], or specialize to the case of
conventional transfer learning. We leave a full investigation of
this alternate bound to future work.

As in the bounds on average transfer meta-generalization
gap presented in Section III-B, the idea is to separately
bound the above two differences in high probability over
(T1:N , ZM

1:N ) ∼ PT1:N PZM
1:N |T1:N

and then combine the results
via union bound. This results in the following PAC-Bayesian
bound.

Theorem 4.1: For a fixed base learner PW |ZM ,U , let QU ∈
P(U) be an arbitrary hyper-prior distribution over the space
of hyper-parameters and QW |U=u ∈ P(W) be an arbitrary
prior distribution over the space of model parameters for
each u ∈ U and β ∈ (0, 1). Then, under Assumption 4.1
and Assumption 4.2, the following inequality holds uniformly
for any meta-learner PU|ZM

1:N
with probability at least 1 − δ,

δ ∈ (0, 1), over (T1:N , ZM
1:N ) ∼ PT1:N PZM

1:N |T1:N∣∣∣∣EP
U|ZM

1:N
[ΔL′(U |ZM

1:N )]
∣∣∣∣

≤
(

2σ2

N − 1

(
α2

β
+

(1 − α)2

(1 − β)

)(βN∑
i=1

log
PT (Ti)
P ′

T (Ti)

+ D(PU|ZM
1:N

||QU ) + log
2
√

N

δ

))0.5

+
α

βN

βN∑
i=1

(
2δ2

Ti

M − 1

(
D(PU|ZM

1:N
||QU )

+ EP
U|ZM

1:N
[D(PW |U,ZM

i
||QW |U )] + log

4βN
√

M

δ

))0.5

+
1 − α

(1 − β)N

N∑
i=βN+1

(
2δ2

Ti

M − 1

(
D(PU|ZM

1:N
||QU )

+ EP
U|ZM

1:N
[D(PW |U,ZM

i
||QW |U )]+ log

4(1−β)N
√

M

δ

))0.5

.

(33)

Proof: See Appendix I.
The first term in the upper bound (33) captures

the environment-level generalization gap through the log-
likelihood ratio log(PT (Ti)/P ′

T (Ti)), which accounts for
the meta-environment shift, and through the KL divergence
D(PU|ZM

1:N
||QU ). This quantifies the sensitivity of the meta-

learner PU|ZM
1:N

to the meta-training set ZM
1:N through its

divergence with respect to the data-independent hyper-prior
QU . The second term of (33) captures the generalization
gap within the task data from source environment in terms
of the average KL divergence EP

U|ZM
1:N

[D(PW |U,ZM
i
||QW |U )]

between model posterior and prior distributions together
with D(PU|ZM

1:N
||QU ), while the last term accounts for

the generalization gap within the task data from the tar-
get environment. We note that the average KL divergence,
EP

U|ZM
1:N

[D(PW |U,ZM
i
||QW |U )], quantifies the sensitivity of

the base learner PW |ZM ,U to the training set ZM through its
divergence with respect to the data-independent prior QW |U
for a hyperparameter U ∼ PU|ZM

1:N
.
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The bound in (33) can be relaxed to obtain the following
looser bound that is more amenable to optimization, as we
will discuss in the next subsection.

Corollary 4.2: In the setting of Theorem 4.1, the follow-
ing inequality holds with probability at least 1 − δ over
(T1:N , ZM

1:N) ∼ PT1:N PZM
1:N |T1:N

for β ∈ (0, 1),

EP
U|ZM

1:N
[L′

g(U)]

≤ EP
U|ZM

1:N

[
Lt(U |ZM

1:N) +
α

βNM

βN∑
i=1

D(PW |ZM
i ,U ||QW |U )

+
1 − α

(1 − β)NM

N∑
i=βN+1

D(PW |ZM
i ,U ||QW |U )

]

+
(

1
N

+
1
M

)
D(PU|ZM

1:N
||QU ) + Ψ, (34)

where we have defined the quantity

Ψ =
σ2N

2(N − 1)

(
α2

β
+

(1 − α)2

1 − β

)
+

1
N

βN∑
i=1

log
PT (Ti)
P ′

T (Ti)

+
1
N

log
2
√

N

δ
+

α

βN

βN∑
i=1

δ2
Ti

M

2(M − 1)
+

α

M
log

4βN
√

M

δ

+
1 − α

(1 − β)N

N∑
i=βN+1

δ2
Ti

M

2(M − 1)

+
1 − α

M
log

4(1 − β)N
√

M

δ
. (35)

Proof: See Appendix J

C. Information Meta-Risk Minimization (IMRM)
for Transfer Meta-Learning

For fixed base learner PW |ZM ,U and given prior QW |U
and hyper-prior QU distributions, the PAC-Bayesian bound
in (34) holds for any meta-learner PU|ZM

1:N
. Consequently,

following the principle of information risk minimization [29],
one can design a meta-learner PU|ZM

1:N
so as to minimize

the upper bound (34) on the transfer meta-generalization
loss. As compared to EMRM, this approach accounts for the
transfer meta-generalization gap, and can hence outperform
EMRM in terms of meta-generalization performance. The
same idea was explored in [27] for conventional meta-learning,
i.e., for the special case when PT = P ′

T .
To proceed, we consider β ∈ (0, 1) and denote

L(u, ZM
1:N)

= Lt(u|ZM
1:N) +

α

βNM

βN∑
i=1

D(PW |ZM
i ,U=u||QW |U=u)

+
1 − α

(1 − β)NM

N∑
i=βN+1

D(PW |ZM
i ,U=u||QW |U=u) (36)

as the meta-training loss regularized by the average KL diver-
gence D(PW |ZM

i ,U=u||QW |U=u) between the base learner
output and the prior distribution QW |U=u over the base learner
input data from source and target environments. The IMRM

meta-learner is then defined as any algorithm that solves the
optimization problem

P IMRM
U|ZM

1:N
= arg min

P
U|ZM

1:N
∈P(U)

(
EP

U|ZM
1:N

[L(U, ZM
1:N )]

+
(

1
N

+
1
M

)
D(PU|ZM

1:N
||QU )

)
. (37)

For fixed N, M , QU , QW |U and base learner PW |ZM ,U ,
the IMRM meta-learner can be expressed as

P IMRM
U|ZM

1:N
(u) ∝ QU (u) exp

(
− NM

N + M
L(u, ZM

1:N )
)

, (38)

where the normalization constant is given by
EQU

[
exp

(
−NML(U ; ZM

1:N)/(N + M)
)]

.

For a given meta-training set, EMRM outputs the single
value of the hyperparameter u ∈ U that minimizes the meta-
training loss (9). In contrast, the IMRM meta-learner (38)
updates the prior belief QU after observing meta-training
set, producing a distribution in the hyperparameter space.
Given the significance of the meta-learning criterion (37)
as an upper bound on the transfer meta-generalization loss,
the optimizing distribution (38) captures the impact of the
epistemic uncertainty related to the limited availability of the
meta-training data. In line with this discussion, it can be seen
from (37) that as M, N → ∞ with M/N equal to a constant,
the IMRM meta-learner tends to EMRM.

To implement the proposed IMRM meta-learner, we adopt
one of the two approaches. The first, referred to as IMRM-
mode, selects a single hyperparameter centered at the mode of
(38) as

U IMRM−mode(ZM
1:N )

= argmax
u∈U

QU (u) exp

(
− NM

N + M
L(u; ZM

1:N )
)

. (39)

IMRM-mode is akin to Maximum A Posteriori (MAP)
inference in conventional machine learning. Alternatively,
we obtain one sample from the IMRM meta-learner (38)
for use by the base learner and then average the obtained
transfer meta-generalization loss as per definition (12). This
can be in practice done by using Monte Carlo methods such
as Metropolis-Hastings or Langevin dynamics [48]. As men-
tioned, this approach, referred to IMRM-Gibbs, reduces to the
EMRM in the limit as M, N → ∞ when M/N is a constant.

V. SINGLE-DRAW PROBABILITY BOUNDS

ON TRANSFER META-LEARNING

So far, we have considered the performance of meta-
learning procedures defined by a stochastic mapping PU|ZM

1:N
on average over distributions PU|ZM

1:N
. As discussed in the

context of IMRM, this implies that the performance metric of
interest is to be evaluated by averaging over realizations of the
hyperparameter U ∼ PU|ZM

1:N
. It is, however, also of interest

to quantify performance guarantees under the assumption that
a single draw U ∼ PU|ZM

1:N
is fixed and used throughout.

Similar single-draw bounds have been derived for conventional
learning in [9]. With this goal in mind, in this section,
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we present novel single-draw probability bounds for transfer
meta-learning. The bound takes the following form: With prob-
ability at least 1 − δ, with δ ∈ (0, 1), over (T1:N , ZM

1:N , U) ∼
PT1:N PZM

1:N |T1:N
PU|ZM

1:N
, the transfer meta-generalization gap

satisfies the bound ∣∣ΔL′(U |ZM
1:N)

∣∣ ≤ ε. (40)

Towards the evaluation of single-draw bounds of this form,
we resort again to the decomposition (32) used to derive the
PAC-Bayesian bound in Section IV-B. We use the following
mismatched information density

j(U, ZM
1:N ) = log

PU|ZM
1:N

(U |ZM
1:N)

QU (U)
, (41)

which quantifies the evidence for the hyperparameter U to
be generated according to the meta-learner PU|ZM

1:N
based on

meta-training set, rather than being generated according to the
hyper-prior distribution QU . Considering Assumption 4.1 on
loss functions and Assumption 4.2 on information densities,
we then yield the following single-draw probability bound for
transfer meta-learning.

Theorem 5.1: For a fixed base learner PW |ZM ,U , let QU ∈
P(U) be a hyper-prior distribution over the space of hyperpa-
rameters and QW |U=u ∈ P(W) be a prior distribution over
the space of model parameters for each u ∈ U and β ∈ (0, 1).
Then, under Assumption 4.1 and Assumption 4.2, the fol-
lowing inequality holds for any meta-learner PU|ZM

1:N
with

probability at least 1 − δ, δ ∈ (0, 1), over (T1:N , ZM
1:N , U) ∼

PT1:N PZM
1:N |T1:N

PU|ZM
1:N∣∣∣∣ΔL′(U |ZM

1:N )
∣∣∣∣

≤
(

2σ2

N − 1

(
α2

β
+

(1 − α)2

(1 − β)

)(βN∑
i=1

log
PT (Ti)
P ′

T (Ti)

+ j(U, ZM
1:N) + log

2
√

N

δ

))0.5

+
α

βN

βN∑
i=1

(
2δ2

Ti

M − 1

(
j(U, ZM

1:N) + D(PW |U,ZM
i
||QW |U )

+ log
4βN

√
M

δ

))0.5

+
1 − α

(1 − β)N

N∑
i=βN+1

(
2δ2

Ti

M − 1

(
j(U, ZM

1:N)

+ D(PW |U,ZM
i
||QW |U ) + log

4(1 − β)N
√

M

δ

))0.5

. (42)

Proof: See Appendix K.
As in the PAC-Bayesian bound (33), the upper bound in (42)

comprises of three contributions: (i) the environment-level
generalization gap, which is captured by the meta-environment
shift term log(PT (Ti)/P ′

T (Ti)) and by the mismatched infor-
mation density j(U, ZM

1:N), with the latter quantifying the
sensitivity of the meta-learner PU|ZM

1:N
to the meta-training

set; (ii) the generalization within the task drawn from source
environment, which is accounted for by the KL divergence

D(PW |ZM
i ,U ||QW |U ) quantifying the sensitivity of the base

learner PW |ZM ,U to the training set ZM through its diver-
gence with respect to the prior distribution QW |U , along with
the mismatched information density j(U, ZM

1:N), and finally,
(iii) the generalization gap within the task data from target
environment, which is similarly captured through the KL
divergence D(PW |ZM

i ,u||QW |U ) and the mismatched informa-
tion density j(U, ZM

1:N).
The bound in (42) can be specialized to the case of

conventional meta-learning as given in the following corollary,
which appears also to be a novel result.

Corollary 5.2: Assume that the source and target task distri-
butions coincide, i.e., PT = P ′

T , and α = β = 1. Then, under
the setting of Theorem 5.1, the following bound holds with
probability at least 1 − δ, δ ∈ (0, 1), over (T1:N , ZM

1:N , U) ∼
PT1:N PZM

1:N |T1:N
PU|ZM

1:N∣∣∣∣ΔL(U |ZM
1:N )

∣∣∣∣
≤

(
2σ2

N − 1

(
j(U, ZM

1:N) + log
2
√

N

δ

))0.5

+
1
N

N∑
i=1

(
2δ2

Ti

M − 1

(
D(PW |ZM

i ,U ||QW |U )

+ j(U, ZM
1:N) + log

2N
√

M

δ

))0.5

. (43)

VI. EXAMPLE

In this section, we consider the problem of estimating the
mean of a Bernoulli process based on a few samples. To this
end, we adopt a base learner based on biased regularization
and meta-learn the bias as the hyperparameter [49].

A. Setting

The data distribution for each task is given as PZ|T=τ ∼
Bern(τ) for a task-specific mean parameter τ ∈ [0, 1]. For
meta-training, we sample tasks from the source task distrib-
ution τ ∼ PT given by a beta distribution Beta(τ ; a, b) with
shape parameters a, b > 0, while the target task distribution
τ ∼ P ′

T encountered during meta-testing is Beta(τ ; a′, b′)
with generally different shape parameters a′, b′ > 0. We recall
that the mean of a random variable τ ∼ Beta(τ ; a, b) is
given as R(a, b) = a/(a + b) and the variance is V (a, b) =
ab/((a + b)2(a + b + 1)). For any task τ , the base learner
uses training data, distributed i.i.d. from Bern(τ), to determine
the model parameter W , which is used as a predictor of a
new observation Z ∼ Bern(τ) at test time. The loss function
l(w, z) = (w − z)2 measures the quadratic error between
prediction and the test input z.

The base learner adopts a quadratic regularizer with bias
given by a hyperparameter u ∈ [0, 1] [49], and randomizes its
output. Accordingly, the base learner computes the empirical
average Di = 1

M

∑M
j=1 ZM

i,j , over the training set, where ZM
i,j

denotes the jth data sample in the training set of ith task. Then,
it computes the convex combination Ri(u) = γDi +(1−γ)u,
with the hyperparameter u ∈ [0, 1], where γ ∈ [0, 1] is
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a fixed scalar. Finally, it outputs a random model parameter
W with mean Ri(u) by drawing W as

PW |ZM
i ,U=u(w) = Beta(w; cRi(u), c(1 − Ri(u))), (44)

where c > 0 is fixed and it determines the variance
Vi(u) := V (cRi(u), c(1 − Ri(u))) of the output of the base
learner.

The meta-training loss (9) can be directly computed as

Lt(u|ZM
1:N)

=
α

βN

βN∑
i=1

(
Vi(u) + Ri(u)2 − 2Ri(u)Di +

M∑
j=1

1
M

Z2
i,j

)

+
(1 − α)

(1 − β)N

N∑
i=βN+1

(
Vi(u) + Ri(u)2 − 2Ri(u)Di

+
M∑

j=1

1
M

Z2
i,j

)
, (45)

while the transfer meta-generalization loss (8) evaluates as

L′
g(u)

= u(1 − γ)
(

1
c + 1

+ u(1 − γ)
c

c + 1
+ 2γR′ c

c + 1
− 2R′

)

+
γR′

c + 1
+

γ2c

c + 1

(
R′

M
+ (V ′ + R′2)

(
1 − 1

M

))
− 2γ(V ′ + R′2) + R′, (46)

where V ′ = V (a′, b′) is the variance and R′ = R(a′, b′) is the
mean of the random variable τ ∼ P ′

T .

B. Experiments

For the base learner as described above, we analyze
the average transfer meta-generalization gap EP

ZM
1:N

P
U|ZM

1:N

[ΔL′(U |ZM
1:N)] in (12) under EMRM (10) and IMRM (38),

as well as the average excess meta-risk EPU [L′
g(U)] −

minu∈[0,1] L′
g(u). For IMRM, we consider a prior distrib-

ution QW |U=u(w) = Beta(w; cu, c − cu) in the space of
model parameters and a hyper-prior distribution QU (u) =
Beta(u; 1.8, 2.5) in the space of hyperparameters. The prior
distribution QW |U indicates that, in the absence of data,
the base learner should select a model parameter with mean
equal to the hyperparameter u. For the IMRM, we consider
both IMRM-mode and IMRM-Gibbs.

To start, in Figure 4, we illustrate the hyper-prior QU (u),
the IMRM hyper posterior P IMRM

U|ZM
1:N

in (38), and the output
of EMRM (10). It is observed that, for the given values
of M = 10 and N = 8 and for the given hyper-prior,
the IMRM hyper-posterior retains information about the resid-
ual uncertainty on the value of the hyperparameter u, which
is instead reduced to a point estimate based solely on meta-
training data by EMRM.

In Figure 5, we then analyze the performance of EMRM,
IMRM-mode and IMRM-Gibbs as a function of increasing
values of M and N , for a fixed ratio M/N = 0.85, where
a = 1.5, b = 7.5, a′ = 4, b′ = 5, γ = 0.55, α = 0.48,
β = 0.48 and c = 5. It can be seen that while EMRM yields,

Fig. 4. Hyper-prior distribution QU , IMRM hyper-posterior P IMRM
U|ZM

1:N
in

(38), and EMRM solution (9) for a given meta-training set ZM
1:N . (M = 10,

N = 8, a = 1.5, b = 7.5, a′ = 4, b′ = 5, c = 5, α = 0.1, β = 0.6,
γ = 0.55).

by definition, the smallest meta-training loss, IMRM improves
the average transfer meta-generalization loss (Figure 5(a))
by decreasing the average transfer meta-generalization gap
(Figure 5(b)). This gain is more significant for sufficiently
small values of M and N , since, as M and N increases,
IMRM tends to EMRM. We also observe that there exists
a non-vanishing generalization gap even at high values of
M and N . As discussed in Section III-B, this is caused by
the meta-environment shift from PT to P ′

T . Finally, IMRM-
mode and IMRM-Gibbs are seen to perform similarly, with
the former being generally advantageous in this example. This
suggest that the main advantage of IMRM is due to the meta-
regularizing effect of the KL term in (37). In the following
two experiments, we adopt IMRM-mode.

Figure 6 studies the impact of the meta-environment shift
when the target task distribution P ′

T is fixed to Beta(a′ = 4,
b′ = 5) and the source task distribution PT is given as
Beta(a = 9 − b, b = 9(1 − R)) with a varying mean
R = a/(a + b). Other parameters are set as γ = 0.55,
α = 0.6, β = 0.6, N = 10, m = 5 and c = 5. The
analysis in Section III-B revealed that the KL divergence
D(PZM ||P ′

ZM ) between the data distributions under source
and target environments is a key quantity in bounding the aver-
age transfer meta-generalization gap. The numerical results in
the figure confirm that average transfer meta-generalization
gap (24) for EMRM and IMRM-mode also shows a similar
trend as the KL divergence as we vary the degree of meta-
environment shift: The gap is small when PT and P ′

T are
similar in terms of KL divergence, and it increases when the
divergence grows.

The average transfer excess meta-risk of EMRM and
IMRM-mode are considered in Figure 7 as a function of the
parameter α used in the definition (9) of the weighted meta-
training loss. The choice of α that minimizes the average
transfer excess meta-risk is seen to generally lie somewhere
between the extreme points α = 0, which prescribes the use
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Fig. 5. Average losses under EMRM, IMRM-mode and IMRM-Gibbs against increasing values of M and N = dM with d = 1/0.85 for a = 1.5, b = 7.5,
a′ = 4, b′ = 5, γ = 0.55, α = 0.48, β = 0.48 and c = 5: (a) average transfer meta-generalization loss (8) and average meta-training loss (9), and (b)
average transfer meta-generalization gap (12).

Fig. 6. Impact of meta-environment shift when P ′
T is fixed to Beta(a′ = 4, b′ = 5) and PT varies as Beta(a = 9 − b, b = 9(1 − R)), R = a/(a + b):

(a) the KL divergence between PZM and P ′
ZM ; and (b) (top) MI bound on the average transfer meta-generalization gap (24); (bottom) average transfer

meta-generalization gap for EMRM and IMRM-mode (γ = 0.55, α = 0.6, β = 0.6, N = 10, M = 5 and c = 5).

of only target environment data, or α = 1, corresponding to
the exclusive use of source environment datasets. Furthermore,
the analytical bound (29) for EMRM (top figure) is seen to
accurately predict the optimal value of α obtained from the
actual average transfer excess meta-risk (14) (bottom figure).
We note that it would also be interesting to derive similar

analytical upper bound on the average transfer excess meta-
risk for IMRM, by following the methodologies of papers such
as [50], [51].

Finally, in Figure 8, we evaluate the single-draw proba-
bility bounds obtained in (42) for IMRM-Gibbs. Note that
the single-draw performance of EMRM coincides with its
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Fig. 7. Average transfer excess meta-risk as a function of the parameter α
used in the definition (9) of the weighted meta-training loss: (top) MI-based
bound on the average transfer excess meta-risk (29) for EMRM; (bottom)
average excess transfer meta-risk for EMRM and IMRM-mode (a = 1.67,
b = 8.3, a′ = 4.45, b′ = 5.55, γ = 0.55, β = 0.4, N = 23, M = 15 and
c = 5).

Fig. 8. Analysis of single-draw probability bounds for IMRM-Gibbs as a
function of the number of tasks N for δ = 0.25, 0.5 and 0.75. The top
panel illustrates the single-draw bound (42) on transfer meta-generalization
gap, while the bottom panel shows a box plot of the numerical evaluation of
transfer meta-generalization gap. The lower quantile (δ = 0.25) corresponds
to the top of the box and the upper quantile (δ = 0.75) corresponds to the
bottom of the box, while the circled dot in the middle of the box indicates
the median (δ = 0.5) (a = 1.5, b = 7.5, a′ = 4, b′ = 5, γ = 0.55,
β = α = 0.25, M = 5 and c = 5).

average performance since it is deterministic. To illustrate the
single-draw scenario, for each meta-training set of N tasks,
we generate samples U of the hyperparameter according to
P IMRM

U|ZM
1:N

. We then compute the transfer meta-generalization

gap ΔL′(u|ZM
1:N ) for each of the generated samples. In the

bottom panel of Figure 8, we use a box plot to illustrate
the obtained empirical distribution of the transfer meta-
generalization gap ΔL′(U |ZM

1:N ) with U ∼ P IMRM
U|ZM

1:N
for

increasing values of N and fixed M = 5. For each value of N ,
the top of the box represents the 25th percentile (δ = 0.25),
the bottom corresponds to the 75th percentile (δ = 0.75)

and the centre dash correspond to the median (δ = 0.5) of the
distribution of ΔL′(U |ZM

1:N). The two lines outside the box
are the “whiskers” that indicate the support of the empirical
distribution. The information-density based single-draw upper
bound (42) is illustrated for comparison in the top panel of
Figure 8 for δ = 0.25, 0.5, and 0.75. It can be seen that
the bounds exhibit a similar decreasing trend as the empirical
transfer meta-generalization gap in the bottom panel.

VII. CONCLUSION

This paper introduced the problem of transfer meta-learning,
in which the meta-learner observes data from tasks belong-
ing to a source task environment, while its performance is
evaluated on a new meta-test task drawn from the target
task environment. We obtained three forms of upper bounds
on the transfer meta-generalization gap – bounds on average
generalization gap, high-probability PAC-Bayesian bounds and
high-probability single-draw bounds. These bounds capture
the meta-environment shift between source and target task
distributions via the KL divergence between source and target
data distributions for the average generalization gap bound,
and the log-likelihood ratio between the source and target task
distributions for the PAC-Bayesian and single-draw bounds.
We note that these metrics can be numerically estimated
from finite per-task data sets via various parametric or non-
parametric methods [52]. Furthermore, we leveraged the
derived PAC-Bayesian bound to propose a new meta-learning
algorithm for transfer meta-learning, IMRM, which was shown
in experiments to outperform an empirical weighted meta-risk
minimization algorithm.

Directions for future work include the development of
larger-scale experiments for linear and non-linear base
learners, the application of the bounding methodologies
of [13], [14] and the analysis of the excess risk for IMRM
by adapting the tools of [50], [51]. It would also be inter-
esting to analyze bounds on transfer meta-generalization gap
that capture the meta-environment shift via other statistical
divergences like Jensen-Shannon divergences [53].

APPENDIX A
BASIC TECHNICAL TOOLS EMPLOYED

Throughout the Appendix, we use the notation PW |τ to
denote the distribution PW |T=τ , PZ|τ to denote PZ|T=τ and
PW |ZM ,u to denote PW |ZM ,U=u. Almost all proofs in the
Appendix rely on the following change of measure lemma.

Lemma A.1 ([54, Prop. 17.4]): Let X and Y denote two
discrete or continuous random variables taking values in
spaces X and Y respectively. Let PX,Y and QX,Y denote
two well-defined joint probability distributions (pmf or pdf)
defined on the space X ×Y such that PX,Y (x, y) = 0 almost
surely for all x ∈ X , y ∈ Y such that QX,Y (x, y) = 0.
Let f : X × Y → R be such that f(x, y) is zero when-
ever (PX,Y (x, y)/QX,Y (x, y)) = 01. Then, the following

1We define log(PX,Y (x, y)/QX,Y (x, y)) = −∞ when PX,Y (x, y) = 0
and QX,Y (x, y) > 0.
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equality holds

EQX,Y [f(X, Y )]=EPX,Y

[
f(X, Y ) exp

(
− log

PX,Y (X, Y )
QX,Y (X, Y )

)]
.

(47)

Proof: The proof follows by a simple change of measure
argument as follows

EQX,Y [f(X, Y )]
(a)
= EPX,Y

[
f(X, Y )

QX,Y (X, Y )
PX,Y (X, Y )

]

= EPX,Y

[
f(X, Y ) exp

(
− log

PX,Y (X, Y )
QX,Y (X, Y )

)]
,

(48)

where the right hand side (RHS) of (a) is valid even if for
some x ∈ X , y ∈ Y , PX,Y (x, y) = 0 since f(x, y) = 0.

In the proofs in Appendix, we use a slightly different variant
of Lemma A.1. We assume that PX,Y and QX,Y have the same
support, whereby − logPX,Y (x, y)/QX,Y (x, y) �= −∞ for all
x ∈ X and y ∈ Y . Consequently, for any f : X × Y → R,
we have

EQX,Y [f(X, Y )]=EPX,Y

[
f(X, Y ) exp

(
− log

PX,Y (X, Y )
QX,Y (X, Y )

)]
.

(49)

APPENDIX B
PROOF OF LEMMA 3.1

We first restate Lemma 3.1.
Lemma B.1: Under Assumption 3.1(a) and

Assumption 3.2, the following inequality holds

EPW,Zj |T=τ

[
exp

(
λ(l(W, Zj) − EPW |T=τ PZj |T=τ

[l(W, Zj)])

− λ2δ2
τ

2
− ı(W, Zj|T = τ)

)]
≤ 1, (50)

for all j = 1, . . . , M , λ ∈ R and for each task τ ∈ T .
Proof: Under Assumption 3.1(a), the following inequality

holds for each task τ ∈ T ,

EPW |τ PZj |τ

[
exp

(
λ(l(W, Zj) − EPW |τ PZj |τ [l(W, Z)])

− λ2δ2
τ

2

)]
≤ 1. (51)

Subsequently, using Assumption 3.2 and applying a change
of measure from PW |τPZj |τ to PW,Zj |τ as in Lemma A.1
yields the inequality (50).

APPENDIX C
PROOF OF LEMMA 3.2

We now restate Lemma 3.2.
Lemma C.1: Under Assumption 3.1(b) and

Assumption 3.2, we have the following inequalities

EP ′
ZM

i

P
U|ZM

i

[
exp

(
λ(Lt(U |ZM

i ) − EPU P ′
ZM

i

[Lt(U |ZM
i )])

− λ2σ2

2
− ı(U, ZM

i )
)]

≤ 1, (52)

for i = βN + 1, . . .N and

EP
ZM

i
P

U|ZM
i

[
exp

(
λ(Lt(U |ZM

i ) − EPU P ′
ZM

i

[Lt(U |ZM
i )])

− λ2σ2

2
− log

PZM
i

(ZM
i )

P ′
ZM

i

(ZM
i )

− ı(U, ZM
i )

)]
≤ 1, (53)

for i = 1, . . . , βN , which holds for all λ ∈ R.
Proof: Under Assumption 3.1(b), the following inequality

holds for i = 1, . . . , N ,

EPU P ′
ZM

i

[
exp

(
λ(Lt(U |ZM

i ) − EPU P ′
ZM

i

[Lt(U |ZM
i )])

− λ2σ2

2

)]
≤ 1. (54)

Applying change of measure from P ′
ZM

i
PU to P ′

ZM
i

PU|ZM
i

using Lemma A.1 then yields inequality (52). To get to (53),
we start from (54), and perform change of measure from
PUP ′

ZM
i

to PUPZM
i

which results in

EPU P
ZM

i

[
exp

(
λ(Lt(U |ZM

i ) − EPU P ′
ZM

i

[Lt(U |ZM
i )])

− λ2σ2

2
− log

PZM
i

(ZM
i )

P ′
ZM

i

(ZM
i )

)]
≤ 1, (55)

for i = 1, . . . , βN . Applying the change of measure again
from PZM

i
PU to PZM

i
PU|ZM

i
as before yields (53).

APPENDIX D
PROOF OF THEOREM 3.1

We first restate Theorem 3.1.
Theorem D.1: Under Assumption 3.1 and Assumption 3.2,

the following upper bound on the average transfer meta-
generalization gap holds for β ∈ (0, 1)

|EP
ZM
1:N ,U

[ΔL′(U |ZM
1:N )]|

≤ α

βN

βN∑
i=1

√
2σ2

(
D(PZM ||P ′

ZM ) + I(U ; ZM
i )

)

+
1 − α

(1 − β)N

N∑
i=βN+1

√
2σ2I(U ; ZM

i )

+ EP ′
T

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj |T = τ)
]
, (56)

with the MI terms defined in (18).
Proof: To obtain the required upper bound on

|EP
ZM
1:N

P
U|ZM

1:N
[ΔL′(U |ZM

1:N)]|, we leverage the decomposi-

tion in (22). Using triangle inequality, it then follows that

|EP
ZM
1:N

P
U|ZM

1:N
[ΔL′(U |ZM

1:N )]|

≤ |EPU [L′
g(U) − L′

g,t(U)]|
+ |EP

ZM
1:N

P
U|ZM

1:N
[L′

g,t(U) − Lt(U |ZM
1:N )]|. (57)
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The idea is to separately bound the two averages
in (57). Towards this, we first consider the average difference
|EPU [L′

g(U)−L′
g,t(U)]| which can be equivalently written as

|EP ′
T P M

Z|T
EPU P

W |ZM ,U
[Lg(W |T ) − Lt(W |ZM )]|

≤ EP ′
T
|EP M

Z|T
EP

W |ZM
[Lg(W |T ) − Lt(W |ZM )]| (58)

≤ EP ′
T

[
1
M

M∑
j=1

∣∣∣∣EPW |T PZj |T [l(W, Zj)]−EPW,Zj |T [l(W, Zj)]
∣∣∣∣
]
.

(59)

We now bound the difference EPW |T PZj |T [l(W, Zj)] −
EPW,Zj |T [l(W, Zj)] using (50). For T = τ , applying Jensen’s
inequality on (50) and taking log on both sides of the resultant
inequality gives that

λ

(
EPW,Zj |T=τ

[l(W, Zj)] − EPW |T=τ PZj |T=τ
[l(W, Z)]

)

≤ λ2δ2
τ

2
+ I(W ; Zj |T = τ). (60)

Choosing λ = (EPW,Zj |T=τ
[l(W, Zj)] −

EPW |T=τ PZj |T=τ
[l(W, Zj)])/δ2

τ so as to optimize (60)
yields that(

EPW,Zj |T=τ
[l(W, Zj)] − EPW |T=τ PZj |T=τ

[l(W, Zj)]
)2

≤ 2δ2
τI(W ; Zj |T = τ), (61)

from which it directly follows that

[|EPW,Zj |T=τ
[l(W, Zj)] − EPW |T=τ PZj |T=τ

[l(W, Zj)]|

≤
√

2δ2
τI(W ; Zj |T = τ). (62)

Substituting back in (59), and averaging over T yields the
following upper bound

EP ′
T
|EP M

Z|T
EP

W |ZM
[Lg(W |T ) − Lt(W |ZM )]|

≤ EP ′
T

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj |T = τ)
]
. (63)

We now bound the second average difference in (57)
using the the exponential inequalities (52)–(53). Towards this,
we denote by PZM

1:βN
the marginal of the joint distribution∏βN

i=1 PTiP
M
Z|Ti

and by P ′
ZM

βN+1:N
the marginal of the joint

distribution
∏N

i=βN+1 P ′
Ti

PM
Z|Ti

. We will also use

Lt(u|ZM
1:βN) =

1
βN

βN∑
i=1

Lt(u|ZM
i )

for the meta-training loss on task data from source environ-
ment and

Lt(u|ZM
βN+1:N) =

1
(1 − β)N

N∑
i=βN+1

Lt(u|ZM
i )

for the meta-training loss on task data from target environment.
Then, the second average difference in (57) can be equivalently

written as

|EP
ZM
1:N ,U

[L′
g,t(U) − Lt(U |ZM

1:N )]|

=
∣∣∣∣EP

ZM
1:βN

P ′
ZM

βN+1:N
P

U|ZM
1:N

[
α

(
L′

g,t(U) − Lt(U |ZM
1:βN)

)

+ (1 − α)
(
L′

g,t(U) − Lt(U |ZM
βN+1:N)

)]∣∣∣∣
≤ α|EP

ZM
1:βN

P
U|ZM

1:βN

[L′
g,t(U) − Lt(U |ZM

1:βN)]|

+ (1−α)|EP ′
ZM

βN+1:N
P

U|ZM
βN+1:N

[L′
g,t(U) − L′

t(U |ZM
βN+1:N)]|

= α

���� 1

βN

βN�
i=1

�
EPU P ′

ZM
i

[Lt(U |ZM
i )]−EP

ZM
i

P
U|ZM

i

[Lt(U |ZM
i )]

�����

+ (1 − α)
∣∣∣∣ 1
(1 − β)N

N∑
i=βN+1

(
EPU P ′

ZM
i

[Lt(U |ZM
i )]

− EP ′
ZM

i

P
U|ZM

i

[Lt(U |ZM
i )]

)∣∣∣∣. (64)

We now proceed to use the exponential inequalities in (52)
and (53) to bound the two terms in (64). To bound the first
difference, we use (53). Applying Jensen’s inequality and
taking log on both sides of the resulting inequality yields

λ

(
EP

ZM
i

P
U|ZM

i

[Lt(U |ZM
i )] − EPU P ′

ZM
i

[Lt(U |ZM
i )]

)

≤ λ2σ2

2
+ D(PZM ||P ′

ZM ) + I(U ; ZM
i ). (65)

As with (60), choosing λ = (EP
ZM

i
P

U|ZM
i

[Lt(U |ZM
i )] −

EPU P ′
ZM

i

[Lt(U |ZM
i )])/σ2 so as to optimize (65) gives that

(
EP

ZM
i

P
U|ZM

i

[Lt(U |ZM
i )] − EPU P ′

ZM
i

[Lt(U |ZM
i )]

)2

≤ 2σ2

(
D(PZM ||P ′

ZM ) + I(U ; ZM
i )

)
, (66)

from which it directly follows that

|EP
ZM

i
P

U|ZM
i

[Lt(U |ZM
i )] − EPU P ′

ZM
i

[Lt(U |ZM
i )]|

≤

√
2σ2

(
D(PZM ||P ′

ZM ) + I(U ; ZM
i )

)
. (67)

In a similar way, the second difference in (64) can
be bounded by using (52). Applying Jensen’s inequal-
ity, taking log on both sides, and finally choosing λ =
(EPU P ′

ZM
i

[Lt(U |ZM
i )] − EP ′

ZM
i

P
U|ZM

i

[Lt(U |ZM
i )])/σ2 then

yields

|EPU P ′
ZM

i

[Lt(U |ZM )] − EP ′
ZM

i

P
U|ZM

i

[Lt(U |ZM
i )]|

≤
√

2σ2I(U ; ZM
i ) (68)

Combining (67) and (68) in (64) and using it in (57) together
with (63) gives the upper bound in (56).
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APPENDIX E
PROOF OF COROLLARY 3.4

We first restate Corollary 3.4.
Corollary E.1: Consider the setting of Theorem D.1 with

PT = δ(T − τ) and P ′
T = δ(T − τ ′) for some τ, τ ′ ∈

T . For N = 2, let the meta-training set be ZM
1:N =

(ZβM̄
τ , Z

(1−β)M̄
τ ′ ) := ZM̄ where M̄ = NM and ZβM̄

τ ∼
P βM̄

Z|τ and Z
(1−β)M̄
τ ′ ∼ P

(1−β)M̄
Z|τ ′ . Assume that PW |ZM ,U =

δ(W − U) and fix W = U . Then, the following upper bound
on the average generalization gap for transfer learning holds
for β ∈ (0, 1)

|EP
ZM̄ ,W

[Lg(W |τ ′) − Lt(W |ZM̄ )]|

≤ α

βM̄

βM̄∑
i=1

√
2δ2

τ ′

(
D(PZ|τ ||PZ|τ ′) + I(W ; Zi)

)

+
1 − α

(1 − β)M̄

M̄∑
i=βM̄+1

√
2δ2

τ ′I(W ; Zi). (69)

where the MI I(W ; Zi) is evaluated with respect to the joint
distribution PW,Zi|τ for i = 1, . . . , βM̄ and is evaluated with
respect to the joint distribution PW,Zi|τ ′ for i = βM̄ +
1, . . . , M̄ .

Proof: The bound (69) follows by specializing the bound
(56) to the setting considered here. Towards this, we first
note that the meta-training set ZM

1:N = ZM̄ = (Z1, . . . ZM̄ )
with its ith sub-set ZM

i corresponding to the data sample Zi,
where Zi ∼ PZ|τ for i = 1, . . . , βM̄ and Zi ∼ PZ|τ ′ for
i = βM̄ + 1, . . . , M̄ . Thus, there are βNM = βM̄ data
samples from the source task environment and (1 − β)M̄
samples from the target task environment. Using PW |ZM ,U =
δ(W − U) and U = W , we then have L′

g(u) = Lg(w|τ ′),
and Lt(u|ZM

1:N) = Lt(w|ZM̄ ) with Lt(u|ZM
i ) = l(w, Zi).

Consequently, we have I(U ; ZM
i ) = I(W ; Zi) and the KL

divergence D(PZM ||P ′
ZM ) = D(PZ|τ ||PZ|τ ′). It can also be

verified that PW,Zj |τ ′ = PW |τ ′PZj |τ ′ = PW PZj |τ ′ whereby
the MI I(W ; Zj |τ ′) = 0 in (56). Further, since Lt(u|zM ) =
l(w, z), Assumption 3.1 then implies that σ2 = δ2

τ ′ . Using all
these expressions in (56) yields the bound (69).

APPENDIX F
EXPONENTIAL INEQUALITIES BASED ON ASSUMPTION 3.3

Lemma F.1: Under Assumption 3.3 and Assumption 3.2,
the following inequality holds for j = 1, . . . , M ,

EPW,Zj |τ

[
exp

(
λ(l(W, Zj) − EPZj |τ [l(W, Zj)])

− ı(W, Zj |T = τ) − λ2δ2
τ

2

)]
≤ 1, (70)

for all λ ∈ R and for each task τ ∈ T . Moreover, we have
the following inequality for i = 1, . . . , βN

EP
ZM

i
P

U|ZM
i

[
exp

(
λ(Lt(U |ZM

i ) − EP ′
ZM

i

[Lt(U |ZM
i )])

− log
PZM

i
(ZM

i )

P ′
ZM

i

(ZM
i )

− ı(U, ZM
i ) − λ2σ2

2

)]
≤ 1, (71)

and for i = βN + 1, . . . , N , we have

EP ′
ZM

i

P
U|ZM

i

[
exp

(
λ(Lt(U |ZM

i ) − EP ′
ZM

i

[Lt(U |ZM
i )])

− ı(U, ZM
i ) − λ2σ2

2

)]
≤ 1, (72)

which holds for all λ ∈ R.
Proof: Under Assumption 3.3, the following inequality

holds for each task τ ∈ T and for all w ∈ W and λ ∈ R,

EPZj |τ

[
exp

(
λ(l(w, Zj) − EPZj |τ [l(w, Z)]) − λ2δ2

τ

2

)]
≤ 1.

(73)

Now, averaging both sides with respect to W ∼ PW |τ ,
where PW |τ is obtained by marginalizing PW |ZM ,UPU

PM
Z|T=τ , we get that

EPW |τ PZj |τ

[
exp

(
λ(l(W, Zj) − EPZj |τ [l(W, Z)]) − λ2δ2

τ

2

)]
≤ 1. (74)

Performing change of measure from PZj |τPW |τ to PW,Zj |τ
similar to Appendix B gets us to the exponential inequality
in (70).

Similarly, for obtaining environment-level exponential
inequalities, we have from Assumption 3.3 the following
inequality

EP ′
ZM

i

[
exp

(
λ(Lt(u|ZM

i )−EP ′
ZM

i

[Lt(u|ZM
i )])−λ2σ2

2

)]
≤1,

(75)

for i = 1, . . . , N , which holds for all u ∈ U and λ ∈ R. Now,
to get to (71), average both sides with respect to U ∼ PU ,
and change measure from P ′

ZM
i

to PZM
i

. This results in the
following for i = 1, . . . , βN

EP
ZM

i
PU

[
exp

(
λ(Lt(U |ZM

i ) − EP ′
ZM

i

[Lt(U |ZM
i )])

− log
PZM

i
(ZM

i )

P ′
ZM

i

(ZM
i )

− λ2σ2

2

)]
≤ 1. (76)

Performing a second change of measure from PZM
i

PU to
PZM

i
PU|ZM

i
using Lemma A.1 then yields the exponential

inequality in (71). For i = βN+1, . . . , N , we obtain (72) from
(75) by first averaging over PU , then performing a change of
measure from P ′

ZM
i

PU to P ′
ZM

i
PU|ZM

i
.

To see how the exponential inequalities in Lemma F.1 yield
the upper bound in Theorem 3.1, we proceed as in the proof
of Theorem 3.1 in Appendix D. To bound the difference in
expectation in (59), we use the exponential inequality (70).
Note that applying Jensen’s inequality on (70) results in the
inequality (60). Similarly, to bound the environment-level gen-
eralization gap in (64), we use the exponential inequalities (71)
and (72) and apply Jensen’s inequality. In particular, applying
Jensen’s inequality on (71) leads to (65). The required bound
is then obtained by proceeding as in Appendix D.
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APPENDIX G
PROOF OF THEOREM G.1

We first restate Theorem G.1.
Theorem G.1: Under Assumption 3.3 and Assumption 3.2,

and for β ∈ (0, 1), the following upper bound on the
average transfer meta-excess risk holds for the EMRM meta-
learner (10)

EP
ZM
1:N

[L′
g(U

EMRM) − L′
g(u

∗)]

≤ α

βN

βN∑
i=1

√
2σ2

(
D(PZM ||P ′

ZM ) + I(UEMRM; ZM
i )

)

+
1 − α

(1 − β)N

N∑
i=βN+1

√
2σ2I(UEMRM; ZM

i )

+ EP ′
T

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj |T = τ)
]

+ α
√

2σ2D(PZM ||P ′
ZM )

+ EP ′
T

[
1
M

M∑
j=1

√
2δ2

T I(W ; Zj |T = τ, u∗)
]
, (77)

where the MI terms are defined in (18) with U = UEMRM.
Proof: For obtaining an upper bound on the average

transfer meta-excess risk, we bound the average transfer gen-
eralization gap, the first difference in (28), by (56).

We now bound the second difference in (28). This can be
equivalently written as

EP
ZM
1:N

[Lt(u∗|ZM
1:N) − L′

g(u
∗)]

= EP
ZM
1:N

[Lt(u∗|ZM
1:N ) − L′

g,t(u
∗) + L′

g,t(u
∗) − L′

g(u
∗)]

= αEP
ZM
1:βN

[Lt(u∗|ZM
1:βN) − L′

g,t(u
∗)]

+ (1 − α)EP ′
ZM

βN+1:N

[Lt(u∗|ZM
βN+1:N) − L′

g,t(u
∗)]

+ L′
g,t(u

∗) − L′
g(u

∗)

= αEP
ZM
1:βN

[Lt(u∗|ZM
1:βN) − L′

g,t(u
∗)]+L′

g,t(u
∗)−L′

g(u
∗),

(78)

where the last equality follows since EP ′
ZM

βN+1:N

[Lt(u∗|
ZM

βN+1:N)] = L′
g,t(u

∗). We now separately bound the two
differences in (78).

To bound the first difference in (78), note that

EP
ZM
1:βN

[Lt(u∗|ZM
1:βN) − L′

g,t(u
∗)]

= EP
ZM

[Lt(u∗|ZM )] − EP ′
ZM

[Lt(u∗|ZM )].

To bound this term, we resort to the inequality (75) which
is a consequence of Assumption 3.3 (note that we can ignore
the subscript i in the current context), and fix u = u∗.
Applying change of measure from P ′

ZM to PZM then yields

the following inequality,

EP
ZM

[
exp

(
λ(Lt(u∗|ZM ) − EP ′

ZM
[Lt(u∗|ZM )])

− log
PZM (ZM )
P ′

ZM (ZM )
− λ2σ2

2

)]
≤ 1, (79)

which holds for all λ ∈ R. In particular, considering
λ > 0, applying Jensen’s inequality and choosing λ =√

2D(PZM ||P ′
ZM )/σ to optimize (79) then gives that

EP
ZM

[Lt(u∗|ZM )] − EP ′
ZM

[Lt(u∗|ZM )]

≤
√

2σ2D(PZM ||P ′
ZM ). (80)

We now bound the second difference in (78). Towards this,
note that the following set of relations hold,

L′
g,t(u

∗) − L′
g(u

∗)

= EP ′
T

EP M
Z|T

EP
W |ZM ,u∗ [Lt(W |ZM ) − Lg(W |T )]

= EP ′
T

[
1
M

M∑
j=1

(
EPW,Zj |u∗,T=τ

[l(W, Zj)]

− EPW |u∗,T=τ PZj |T=τ
[l(W, Zj)]

)]
. (81)

To bound the difference EPW,Zj |u∗,T=τ
[l(W, Zj)] −

EPW |u∗,T=τ PZj |T=τ
[l(W, Zj)], we slightly modify the

exponential inequality (70) in Lemma F.1. Towards this,
we average the inequality (73) with respect to W ∼ PW |τ,u∗ ,
where PW |τ,u∗ is the marginal of the joint distribution
PW |ZM ,u∗PZM |τ , and subsequently perform a change of
measure from PZj |τPW |τ,u∗ to PW,Zj |τ,u∗ . This results in the
following modified form of (70)

EPW,Zj |τ,u∗

[
exp

(
λ(l(W, Zj) − EPZj |τ [l(W, Zj)]

− ı(W, Zj |T = τ, u∗) − λ2δ2
τ

2

)]
≤ 1, (82)

which holds for all λ ∈ R. For our problem setting, we only
require λ > 0. Now, applying Jensen’s inequality, and choos-
ing λ =

√
2I(W ; Zj |T = τ, u∗)/δτ so as to optimize (82)

gives that

EPW,Zj |τ,u∗ [l(W, Zj)] − EPW |τ,u∗PZj |τ [l(W, Zj)]

≤
√

2δ2
τI(W ; Zj |T = τ, u∗). (83)

Substituting this in (81), and using the resulting inequality
together with (80) in (78), and combining with (56) yields the
required bound.

APPENDIX H
EXPONENTIAL INEQUALITIES FOR PAC-BAYESIAN

AND SINGLE-DRAW PROBABILITY BOUNDS

We now present two exponential inequalities that are crucial
to the derivation of high-probability PAC-Bayesian and high-
probability single-draw bounds. Towards this, we first define
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the following mismatched information densities

j(U, ZM
1:N) = log

PU|ZM
1:N

(U |ZM
1:N)

QU (U)
,

j(W, ZM |U) = log
PW |ZM ,U (W |ZM , U)

QW |U (W |U)
(84)

where QU ∈ P(U) represents an arbitrary data-independent
hyper-prior over the space of hyperparameters, and QW |U=u ∈
P(W) represents a class of arbitrary data-independent priors
over the space of model parameters for each u ∈ U . The
mismatched information density j(U, ZM

1:N) quantifies the evi-
dence for the hyperparameter U to be generated according
to the meta-learner PU|ZM

1:N
based on the meta-training set,

rather than being generated according to the hyper-prior dis-
tribution QU . Similarly, the density j(W, ZM |U) quantifies the
evidence of the model parameter W being generated by the
base learner PW |ZM ,U based on the training set ZM , rather
than being generated according to the prior.

We denote ZM
1:N\i := (ZM

1 , . . . , ZM
i−1, Z

M
i+1, . . . , Z

M
N ), for

i = 1, . . . , N , to be the meta-training set without the ith subset
and is distributed according to PZM

1:N\i
which is obtained by

marginalizing PZM
1:N

.

Lemma H.1: Under Assumption 4.1(a) and
Assumption 4.2, the following exponential inequality holds
for the ith sub-set, ZM

i ∼ PM
Z|T=Ti

, of the meta-training set
ZM

1:N = (ZM
i , ZM

1:N\i) for i = 1, . . . , N ,

EP
ZM
1:N\i

EP M
Z|T =Ti

EP
U|ZM

1:N
P

W |ZM
i

,U

[
exp

(
−j(W, ZM

i |U)

+
(M − 1)(Lt(W |ZM

i ) − Lg(W |Ti))2

2δ2
Ti

− log(
√

M)
)

− j(U, ZM
1:N)

)]
≤ 1. (85)

Proof: From Assumption 4.1(a), we have that for task
T = Ti, Lt(w|ZM

i ) is the average of M independent
δ2
Ti

-sub-Gaussian random variables l(w, Zi). It is then easy
to see that Lt(w|ZM

i ) is δ2
Ti

/M -sub-Gaussian under ZM
i ∼

PM
Z|Ti

for all w ∈ W . This can be equivalently expressed using
(16) as (with λ = 1 − 1/M therein)

EP M
Z|T =Ti

[
exp

(
(M − 1)(Lt(w|ZM

i ) − Lg(w|Ti))2

2δ2
Ti

− log(
√

M)
)]

≤ 1, (86)

which holds for all w ∈ W . Averaging both sides with respect
to ZM

1:N/i gives that

EP
ZM
1:N\i

EP M
Z|T=Ti

[
exp

(
(M − 1)(Lt(w|ZM

i ) − Lg(w|Ti))2

2δ2
Ti

− log(
√

M)
)]

≤ 1, (87)

for all w ∈ W . To get to the inequality (85), we consider (87)
as a function of both model parameter w and hyperparame-
ter u. Subsequently, average both sides of inequality (87) with

respect to QW,U = QUQW |U ∈ P(W × U). This results in
the following inequality

EP
ZM
1:N\i

EP M
Z|T=Ti

EQW,U

[
exp

(
(M−1)(Lt(W |ZM

i )−Lg(W |Ti))2

2δ2
Ti

− log(
√

M)
)]

≤ 1. (88)

Denoting PW,U|ZM
i ,ZM

1:N\i
= PU|ZM

1:N
PW |U,ZM

i
, and per-

forming change of measure from PZM
1:N\i

PM
Z|T=Ti

QW,U

to PZM
1:N\i

PM
Z|T=Ti

PW,U|ZM
i ,ZM

1:N\i
results in the following

inequality

EP
ZM
1:N\i

EP M
Z|T=Ti

EP
W,U|ZM

i
,ZM

1:N\i

[
exp

(
− log(

√
M)

+
(M − 1)(Lt(W |ZM

i ) − Lg(W |Ti))2

2δ2
Ti

− log
PW,U|ZM

i ,ZM
1:N\i

(W, U |ZM
i , ZM

1:N\i)

QW,U (W, U)

)]
≤ 1,

(89)

which together with the relation

log
PW,U|ZM

i ,ZM
1:N\i

(W, U |ZM
i , ZM

1:N\i)

QW,U (W, U)
= j(W, ZM

i |U)

+ j(U, ZM
1:N),

yields the exponential inequality (85).
Inequality (85) relates the per-task training loss to the

per-task generalization loss and the mismatched informa-
tion densities j(W, ZM

i |U), j(U, ZM
1:N). We will use this

to bound the contribution of within-task generalization gap
to transfer meta-generalization gap. Assumption 4.1(b) then
provides the following exponential inequality on the difference
Lt,g(u|ZM

1:N , T1:N)−L′
g(u), which is employed to bound the

contribution of the environment-level generalization gap to
transfer meta-generalization gap.

Lemma H.2: Under Assumption 4.1(b) and Assump-
tion 4.2, the following exponential inequality holds

EPT1:βN
P ′

TβN+1:N
P

ZM
1:N |T1:N

EP
U|ZM

1:N

[
exp

(
− log(

√
N)

+
(N − 1)(Lt,g(U |T1:N , ZM

1:N) − L′
g(U))2

2σ2

(
α2

β + (1−α)2

(1−β)

)

−
βN∑
i=1

log
PT (Ti)
P ′

T (Ti)
− j(U, ZM

1:N)
)]

≤ 1. (90)

Proof: In the following, we denote T1:βN :=
(T1, . . . , TβN), TβN+1:N := (TβN+1, . . . , TN ), the empirical
average per-task test loss of the source environment data set as

Lt,g(u|T1:βN , ZM
1:βN) =

1
βN

βN∑
i=1

Lg(u|ZM
i , Ti),

and the empirical average per-task test loss of the target
environment data set as

Lt,g(u|TβN+1:N , ZM
βN+1:N)=

1
(1−β)N

N∑
i=βN+1

Lg(u|ZM
i , Ti).
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From Assumption 4.1(b), we get that Lt,g(u|T1:βN , ZM
1:βN)

is the average of i.i.d. σ2-sub-Gaussian random variables
under (Ti, Z

M
i ) ∼ P ′

Ti
PM

Z|Ti
. Consequently, it is σ2/βN -

sub-Gaussian when (T1:βN , ZM
1:βN) ∼ P ′

T1:βN
PZM

1:βN |T1:βN
for

all u ∈ U . Here, P ′
T1:βN

PZM
1:βN

|T1:βN
denotes the product

distribution
∏βN

i=1 P ′
Ti

PM
Z|Ti

. In a similar manner, it can be seen

that Lt,g(u|TβN+1:N , ZM
βN+1:N) is σ2/(1−β)N -sub-Gaussian

under (TβN+1:N , ZM
βN+1:N) ∼ P ′

TβN+1:N
PZM

βN+1:N |TβN+1:N

for all u ∈ U . Here, P ′
TβN+1:N

PZM
βN+1:N |TβN+1:N

denotes

the product distribution
∏N

i=βN+1 P ′
Ti

PM
Z|Ti

. Further, denoting

P ′
T1:N

=
∏N

i=1 P ′
Ti

and using the Sub-Gaussianity assumptions
discussed above, we get that for all u ∈ U and λ ∈ R,
the following inequality holds

EP ′
T1:N

P
ZM
1:N |T1:N

[
exp

(
λ(Lt,g(u|T1:N , ZM

1:N) − L′
g(u))

)]

= EP ′
T1:βN

P
ZM
1:βN

|T1:βN

[
exp

(
λα

(
Lt,g(u|T1:βN , ZM

1:βN)

− L′
g(u)

))]
×EP ′

TβN+1:N
P

ZM
βN+1:N |TβN+1:N

[
exp

(
λ(1 − α)×(

Lt,g(u|TβN+1:N , ZM
βN+1:N) − L′

g(u)
))]

≤ exp

(
λ2σ2

2N

(
α2

β
+

(1 − α)2

(1 − β)

))
. (91)

This in turn implies that Lt,g(u|T1:N , ZM
1:N) is σ2(α2/β +

(1 − α)2/(1 − β))/N -sub-Gaussian under (T1:N , ZM
1:N) ∼

P ′
T1:N

PZM
1:N |T1:N

for all u ∈ U . This can be equivalently
written using (16) (with λ = 1 − 1/N therein) to get the
following inequality

EP ′
T1:N

P
ZM
1:N |T1:N

[
exp

(
(N−1)(Lt,g(u|T1:N , ZM

1:N) − L′
g(u))2

2σ2

(
α2

β + (1−α)2

(1−β)

)

− log(
√

N)
)]

≤ 1, (92)

which holds for all u ∈ U . Recalling that P ′
T1:N

PZM
1:N |T1:N

=
P ′

TβN+1:N
PZM

βN+1:N |TβN+1:N
P ′

T1:βN
PZM

1:βN |T1:βN
and

applying change of measure from P ′
T1:βN

PZM
1:βN |T1:βN

to PT1:βN
PZM

1:βN |T1:βN
, then yields

EPT1:βN
P ′

TβN+1:N
P

ZM
1:N |T1:N

[
exp

(
− log

PT1:βN
(T1:βN)

P ′
T1:βN

(T1:βN)

+
(N−1)(Lt,g(u|T1:N , ZM

1:N)−L′
g(u))2

2σ2

(
α2

β + (1−α)2

(1−β)

) −log(
√

N)
)]

≤1,

(93)

which holds for all u ∈ U . Average both sides of the
inequality with respect to QU ∈ P(U), and subsequently per-
form change of measure from PT1:βN

P ′
TβN+1:N

PZM
1:N |T:N

QU

to PT1:βN
P ′

TβN+1:N
PZM

1:N |T:N
PU|ZM

1:N
. The resultant inequal-

ity, together with log(PT1:βN
(T1:βN )/P ′

T1:βN
(T1:βN )) =∑βN

i=1 log(PT (Ti)/P ′
T (Ti)), gives the exponential inequal-

ity (90).

The inequality (90) relates the difference between weighted
average per-task test loss and transfer meta-generalization
loss, Lt,g(U |T1:N , ZM

1:N ) − L′
g(U), to the mismatched infor-

mation density j(U, ZM
1:N) and the log-likelihood ratio

log(PT (Ti)/P ′
T (Ti)), that captures the meta-environment shift

in task distributions.

APPENDIX I
PROOF OF THEOREM 4.1

We first restate Theorem 4.1 as below.
Theorem I.1: For a fixed base learner PW |ZM ,U , let QU ∈

P(U) be an arbitrary hyper-prior distribution over the space
of hyper-parameters and QW |U=u ∈ P(W) be an arbitrary
prior distribution over the space of model parameters for
each u ∈ U and β ∈ (0, 1). Then, under Assumption 4.1
and Assumption 4.2, the following inequality holds uniformly
for any meta-learner PU|ZM

1:N
with probability at least 1 − δ,

δ ∈ (0, 1), over (T1:N , ZM
1:N ) ∼ PT1:N PZM

1:N |T1:N∣∣∣∣EP
U|ZM

1:N
[ΔL′(U |ZM

1:N )]
∣∣∣∣

≤
(

2σ2

N − 1

(
α2

β
+

(1 − α)2

(1 − β)

)(βN∑
i=1

log
PT (Ti)
P ′

T (Ti)

+ D(PU|ZM
1:N

||QU ) + log
2
√

N

δ

))0.5

+
α

βN

βN∑
i=1

(
2δ2

Ti

M − 1

(
D(PU|ZM

1:N
||QU )

+ EP
U|ZM

1:N
[D(PW |U,ZM

i
||QW |U )] + log

4βN
√

M

δ

))0.5

+
1 − α

(1 − β)N

N∑
i=βN+1

(
2δ2

Ti

M − 1

(
D(PU|ZM

1:N
||QU )

+ EP
U|ZM

1:N
[D(PW |U,ZM

i
||QW |U )]+log

4(1−β)N
√

M

δ

))0.5

.

(94)

Proof: To obtain the required PAC-Bayesian bound,
we use the decomposition (32). The idea is to separately
bound the two differences in (32) in high probability over
(T1:N , ZM

1:N ), and subsequently combine the bounds via union
bound.

To start, we bound the first difference in (32). Towards this,
we resort to the exponential inequality (90). Applying Jensen’s
inequality with respect to just PU|ZM

1:N
on (90) results in

EPT1:βN
P ′

TβN+1:N
P

ZM
1:N |T1:N

[
exp

(
−D(PU|ZM

1:N
||QU )

+
(N − 1)EP

U|ZM
1:N

[(Lt,g(U |T1:N , ZM
1:N) − L′

g(U))2]

2σ2

(
α2

β + (1−α)2

(1−β)

)

− log(
√

N) −
βN∑
i=1

log
(

PT (Ti)
P ′

T (Ti)

))]
≤ 1. (95)
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Take V = exp
(
(N − 1)EP

U|ZM
1:N

[(Lt,g(U |T1:N , ZM
1:N ) −

L′
g(U))2]/(2σ2(α2/β + (1 − α)2/(1 − β))) − log(

√
N) −∑βN

i=1 log(PT (Ti)/P ′
T (Ti)) − D(PU|ZM

1:N
||QU )

)
. Applying

Markov’s inequality of the form P[V ≥ 1
γ0

] ≤ γ0E[V ] ≤
γ0 then gives that with probability at least 1 − γ0 over
(ZM

1:N , T1:N) ∼ PT1:βN
P ′

TβN+1:N
PZM

1:N |T1:N
, we have V ≤ 1

γ0
.

Taking logarithm on both sides of the inequality, V ≤ 1
γ0

, then
results in

EP
U|ZM

1:N
[(Lt,g(U |T1:N , ZM

1:N) − L′
g(U))2]

≤ 2σ2

N − 1

(
α2

β
+

(1 − α)2

(1 − β)

)(
log

√
N

γ0

+
βN∑
i=1

log
(

PT (Ti)
P ′

T (Ti)

)
+ D(PU|ZM

1:N
||QU )

)
. (96)

Further, applying Jensen’s inequality to take the square
outside the expectation in the LHS of (96) results in the
following inequality(

EP
U|ZM

1:N
[(Lt,g(U |T1:N , ZM

1:N) − L′
g(U))]

)2

≤ 2σ2

N − 1

(
α2

β
+

(1 − α)2

(1 − β)

)(
log

√
N

γ0

+
βN∑
i=1

log
(

PT (Ti)
P ′

T (Ti)

)
+ D(PU|ZM

1:N
||QU )

)
, (97)

which in turn implies that with probability at least 1−γ0 over
(ZM

1:N , T1:N) ∼ PT1:βN
P ′

TβN+1:N
PZM

1:N |T1:N
, the following

inequality holds∣∣∣∣EP
U|ZM

1:N
[Lt,g(U |T1:N , ZM

1:N) − L′
g(U)]

∣∣∣∣
≤

(
2σ2

N−1

(
α2

β
+

(1−α)2

(1 − β)

)(
log

√
N

γ0
+

βN∑
i=1

log
(

PT (Ti)
P ′

T (Ti)

)

+ D(PU|ZM
1:N

||QU )
))0.5

. (98)

We now bound the second difference in (32), which can be
equivalently written as

EP
U|ZM

1:N

[
Lt,g(U |ZM

1:N , T1:N) − Lt(U |ZM
1:N)

]

= EP
U|ZM

1:N

[
α

βN

βN∑
i=1

(Lg(U |ZM
i , Ti) − Lt(U |ZM

i ))

+
1 − α

(1 − β)N

N∑
i=βN+1

(Lg(U |ZM
i , Ti) − Lt(U |ZM

i ))
]
. (99)

The idea then is to bound each of the terms
EP

U|ZM
1:N

[Lg(U |ZM
i , Ti) − Lt(U |ZM

i )] separately with

probability at least (1 − γi) over (ZM
1:N\i, Ti, Z

M
i ) ∼

PZM
1:N\i

PTiP
M
Z|Ti

for i = 1, . . . , βN and over (ZM
1:N\i, Ti,

ZM
i ) ∼ PZM

1:N\i
P ′

Ti
PM

Z|Ti
for i = βN + 1, . . . , N . Towards

this, we resort to the exponential inequality (85) and apply

Jensen’s inequality with respect to PU|ZM
1:N

PW |ZM
i ,U . This

results in

EP
ZM
1:N\i

EP M
Z|T=Ti

[
exp

(
− log(

√
M)

+
(M − 1)EP

U|ZM
1:N

P
W |ZM

i
,U

[(Lt(W |ZM
i ) − Lg(W |Ti))2]

2δ2
Ti

− EP
U|ZM

1:N
[D(PW |ZM

i ,U ||QW |U )] − D(PU|ZM
1:N

||QU )
)

≤ 1,

(100)

which holds for i = 1, . . . , N . Note that the above inequality
holds even after averaging both sides of the inequality with
respect to PTi (or P ′

Ti
). Let us denote the exponential terms

in (100) by V . Applying Markov’s inequality of the form
P[V ≥ 1

γi
] ≤ γiE[V ] ≤ γi then gives that with probability

at least 1 − γi over (ZM
1:N\i, Ti, Z

M
i ) ∼ PZM

1:N\i
PTiP

M
Z|Ti

for

i = 1, . . . , βN and over (ZM
1:N\i, Ti, Z

M
i ) ∼ PZM

1:N\i
P ′

Ti
PM

Z|Ti

for i = βN + 1, . . . , N , the following inequality holds

EP
U|ZM

1:N
P

W |ZM
i

,U

[
(Lt(W |ZM

i ) − Lg(W |Ti))2
]

≤
2δ2

Ti

M − 1

(
log

√
M

γi
+ EP

U|ZM
1:N

[D(PW |ZM
i ,U ||QW |U )]

+ D(PU|ZM
1:N

||QU )
)

. (101)

Applying Jensen’s inequality again, and taking square root
on both sides, (101) then implies that∣∣∣EP

U|ZM
1:N

P
W |ZM

i
,U

[Lt(W |ZM
i ) − Lg(W |Ti)]

∣∣∣
≤

(
2δ2

Ti

M − 1

(
log

√
M

γi
+ EP

U|ZM
1:N

[D(PW |ZM
i ,U ||QW |U )]

+ D(PU|ZM
1:N

||QU ))
))0.5

. (102)

Choosing γ0 = δ
2 in (98), and γi = δ

4βN for i = 1, . . . , βN

and γi = δ
4(1−β)N for i = βN +1, . . . , N in (102) to evaluate

(99), and combining the resulting bounds via union bound
yields the required PAC-Bayesian bound in (94).

A careful reader may observe that the exponential inequality
based approach adopted to obtain the PAC-Bayesian bound
(94) results in a minor technical error – the resultant bound
holds for a fixed meta-learner, and not uniformly over all meta-
learners. This issue arises since the underlying exponential
inequalities in (90) and (85) are obtained via a change of mea-
sure with respect to a fixed choice of the meta-learner PU|ZM

1:N
(see (93) and (89)). The inequalities are subsequently used to
obtain high probability bounds, which hold for the fixed meta-
learner, via Markov’s inequality. Instead, the PAC-Bayesian
bound in (94) can be made to hold uniformly over all meta-
learners PU|ZM

1:N
by first applying Markov inequality and then

performing change of measure. To clarify this, we illustrate
how the upper bound on the environment-level generalization
gap, the first difference in (32), can be reformulated to hold
uniformly over all meta-learners.
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To see this, we start from the sub-Gaussian inequality
in (93). Take

A = EQU

[
exp

(
(N − 1)(Lt,g(U |T1:N , ZM

1:N) − L′
g(U))2

2σ2

(
α2

β + (1−α)2

(1−β)

)

− log(
√

N) − log
PT1:βN

(T1:βN)
P ′

T1:βN
(T1:βN)

)]
,

and note that A is a function of the meta-training tasks T1:N

and the meta-training set ZM
1:N . From Markov’s inequality,

we then get that with probability at least 1 − γ0, γ0 ∈
(0, 1), over (T1:N , ZM

1:N), the following inequality holds: A ≤
E[A]/γ0, which in turn implies that A ≤ 1/γ0 due to
(93). Now, through a change of measure applied to term A,
we get that that with probability at least 1− γ0, the following
inequality holds uniformly over all PU|ZM

1:N
,

EP
U|ZM

1:N

[
exp

(
(N − 1)(Lt,g(U |T1:N , ZM

1:N ) − L′
g(U))2

2σ2

(
α2

β + (1−α)2

(1−β)

)

− log(
√

N) − log
PT1:βN

(T1:βN)
P ′

T1:βN
(T1:βN)

− log
PU|ZM

1:N
(U |ZM

1:N)

QU (U)

)]

≤ 1
γ0

. (103)

Applying Jensen’s inequality on (103) to take the expec-
tation inside the exponential, and subsequently taking log on
both sides of the inequality gets to (96). Proceeding as in
the proof, then gets to the upper bound (98), which now
holds uniformly over all meta-learners. The upper bound
on the contribution of the within-task generalization gap,
which corresponds to the second difference in (32), can be
similarly reformulated by first applying Markov inequality on
the random variable A, which is taken as the expectation of
the exponential terms in (88) with respect to the distribution
QW,U , and then performing change of measure.

We finally note that the uniformity of the PAC-Bayesian
bound over all meta-learners is used in our work to motivate
the derivation of the IMRM approach for transfer meta-
learning. Ignoring this constraint, the exponential inequality
based approach in fact yields the right PAC-Bayesian bound,
and as we show in Appendix K yields also high-probability
single-draw bounds.

APPENDIX J
PROOF OF COROLLARY 4.2

We restate the relaxed PAC-Bayesian bound in Corollary 4.2
first.

Corollary J.1: In the setting of Theorem 4.1, the follow-
ing inequality holds with probability at least 1 − δ over
(T1:N , ZM

1:N) ∼ PT1:N PZM
1:N |T1:N

for β ∈ (0, 1),

EP
U|ZM

1:N
[L′

g(U)]

≤ EP
U|ZM

1:N

[
Lt(U |ZM

1:N) +
α

βNM

βN∑
i=1

D(PW |ZM
i ,U ||QW |U )

+
1 − α

(1 − β)NM

N∑
i=βN+1

D(PW |ZM
i ,U ||QW |U )

]

+
(

1
N

+
1
M

)
D(PU|ZM

1:N
||QU ) + Ψ, (104)

where we have defined the quantity

Ψ =
σ2N

2(N − 1)

(
α2

β
+

(1 − α)2

1 − β

)
+

1
N

βN∑
i=1

log
PT (Ti)
P ′

T (Ti)

+
1
N

log
2
√

N

δ
+

α

βN

βN∑
i=1

δ2
Ti

M

2(M − 1)
+

α

M
log

4βN
√

M

δ

+
1 − α

(1 − β)N

N∑
i=βN+1

δ2
Ti

M

2(M − 1)

+
1 − α

M
log

4(1 − β)N
√

M

δ
. (105)

Proof: To obtain the required bound, we relax the square
root terms in (94) using the following relation: for any positive
scalars a, b > 0,

2
√

ab = min
λ>0

aλ +
b

λ
≤ aλ1 +

b

λ1
, (106)

which holds for any λ1 > 0. For the first square root
term, we use this relation with choice of λ1 = N , and
for the second and third square root terms, we apply the
relation with λ1 = M . The resulting relaxed bound takes
the form (104).

APPENDIX K
PROOF OF THEOREM 5.1

For ease of reading, we restate Theorem 5.1 here.
Theorem K.1: For a fixed base learner PW |ZM ,U , let QU ∈

P(U) be a hyper-prior distribution over the space of hyperpa-
rameters and QW |U=u ∈ P(W) be a prior distribution over
the space of model parameters for each u ∈ U and β ∈ (0, 1).
Then, under Assumption 4.1 and Assumption 4.2, the fol-
lowing inequality holds for any meta-learner PU|ZM

1:N
with

probability at least 1 − δ, δ ∈ (0, 1), over (T1:N , ZM
1:N , U) ∼

PT1:N PZM
1:N |T1:N

PU|ZM
1:N∣∣∣∣ΔL′(U |ZM

1:N )
∣∣∣∣

≤
(

2σ2

N − 1

(
α2

β
+

(1 − α)2

(1 − β)

)(βN∑
i=1

log
PT (Ti)
P ′

T (Ti)

+ j(U, ZM
1:N ) + log

2
√

N

δ

))0.5

+
α

βN

βN∑
i=1

(
2δ2

Ti

M − 1

(
j(U, ZM

1:N) + D(PW |U,ZM
i
||QW |U )

+ log
4βN

√
M

δ

))0.5

+
1 − α

(1 − β)N

N∑
i=βN+1

(
2δ2

Ti

M − 1

(
j(U, ZM

1:N)

+ D(PW |U,ZM
i
||QW |U ) + log

4(1 − β)N
√

M

δ

))0.5

.

(107)
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Proof: To obtain the required single-draw bound, we use
the decomposition (32). We start by bounding the first dif-
ference in (32) without the expectation over meta-training
algorithm. Towards this, we resort to the exponential inequality
(90). Take

V = exp

(
(N − 1)(Lt,g(u|T1:N , ZM

1:N) − L′
g(u))2

2σ2

(
α2

β + (1−α)2

(1−β)

)

− log(
√

N) −
βN∑
i=1

log
PT (Ti)
P ′

T (Ti)
− j(U, ZM

1:N )
)

. (108)

Applying Markov’s inequality of the form P[V ≥ 1
γ0

] ≤
γ0E[V ] ≤ γ0 then gives that with probability at least 1 −
γ0 over (T1:N , ZM

1:N , U) ∼ PT1:N PZM
1:N |T1:N

PU|ZM
1:N

we have
V ≤ 1

γ0
. Taking logarithm on both sides of the inequality,

V ≤ 1
γ0

, then results in

(Lt,g(u|T1:N , ZM
1:N) − L′

g(u))2

≤ 2σ2

N − 1

(
α2

β
+

(1 − α)2

(1 − β)

)(
log

√
N

γ0

+
βN∑
i=1

log
(

PT (Ti)
P ′

T (Ti)

)
+ j(U, ZM

1:N)
)

. (109)

This in turn implies that with probability at least 1 − γ0

over (T1:N , ZM
1:N , U) ∼ PT1:N PZM

1:N |T1:N
PU|ZM

1:N
, we have the

following inequality

∣∣∣Lt,g(u|T1:N , ZM
1:N) − L′

g(u)
∣∣∣

≤
(

2σ2

N − 1

(
α2

β
+

(1 − α)2

(1 − β)

)(
log

√
N

γ0

+
βN∑
i=1

log
(

PT (Ti)
P ′

T (Ti)

)
+ j(U, ZM

1:N)
))0.5

. (110)

We now bound the second difference in (32), where we have

Lt,g(U |ZM
1:N , T1:N ) − Lt(U |ZM

1:N)

=
α

βN

βN∑
i=1

(Lg(U |ZM
i , Ti) − Lt(U |ZM

i ))

+
1 − α

(1 − β)N

N∑
i=βN+1

(Lg(U |ZM
i , Ti) − Lt(U |ZM

i )). (111)

We now bound each of the terms Lg(U |ZM
i , Ti) −

Lt(U |ZM
i ) separately with probability at least (1 −

γi) over (ZM
1:N\i, Ti, Z

M
i , U) ∼ PZM

1:N\i
PTiP

M
Z|Ti

PU|ZM
1:N

for i = 1, . . . , βN and over (ZM
1:N\i, Ti, Z

M
i , U) ∼

PZM
1:N\i

P ′
Ti

PM
Z|Ti

PU|ZM
1:N

for i = βN + 1, . . . , N . Towards
this, we resort to the exponential inequality (85) and apply

Jensen’s inequality with respect to PW |ZM
i ,U . This results in

EP
ZM
1:N\i

EP M
Z|T=Ti

EP
U|ZM

1:N

[
exp

(
−j(U, ZM

1:N) − log(
√

M)

+
(M − 1)EP

W |ZM
i

,U
[(Lt(W |ZM

i ) − Lg(W |Ti))2]

2δ2
Ti

)

− D(PW |ZM
i ,U ||QW |U )

)]
≤ 1, (112)

which holds for i = 1, . . . , N . Note that the above inequality
holds even after averaging both sides of the inequality with
respect to PTi (or P ′

Ti
). Take V to be the exponential terms

in (112) and apply Markov’s inequality of the form P[V ≥
1
γi

] ≤ γiE[V ] ≤ γi. We thus get that with probability at least
(1−γi) over (ZM

1:N\i, Ti, Z
M
i , U) ∼ PZM

1:N\i
PTiP

M
Z|Ti

PU|ZM
1:N

for i = 1, . . . , βN and over (ZM
1:N\i, Ti, Z

M
i , U) ∼

PZM
1:N\i

P ′
Ti

PM
Z|Ti

PU|ZM
1:N

for i = βN+1, . . . , N , the following

inequality holds,

EP
W |ZM

i
,U

[(Lt(W |ZM
i ) − Lg(W |Ti))2]

≤
2δ2

Ti

M − 1

(
log

√
M

γi
+ D(PW |ZM

i ,U ||QW |U ) + j(U, ZM
1:N)

)
.

(113)

Applying Jensen’s inequality as in (96), results in the
following inequality

|Lt(U |ZM
i ) − Lg(U |ZM

i , Ti)|

≤

√
2δ2

Ti

M−1

(
log

√
M

γi
+D(PW |ZM

i ,U ||QW |U )+j(U, ZM
1:N)

)
.

(114)

Choosing γ0 = δ
2 in (110) and γi = δ

4βN for i = 1, . . . , βN

and γi = δ
4(1−β)N for i = βN + 1, . . . , N in (114), and

combining the bounds (110) and (114) via union bound then
yields the bound (107).
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