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Abstract

In this paper, we study a general non-autonomous model for bacterial dynamics in
rivers. The mathematical model is represented by a non-autonomous system of non-
linear ordinary differential equations. We show the existence of a bounded positive
invariant and attracting set. By using the Lyapunov function method, we establish
global stability of steady state solutions of the associated autonomous system. Sec-
ond, the existence of positive periodic solutions of the non-autonomous system is
proven using a continuation theorem based on coincidence degree theory.
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1 INTRODUCTION

Antibiotic resistant bacteria have been found to exist in rivers around the globe1,2. In many cases, their prevalence has been found
to be higher downstream of human activities such as hospitals, sewage treatment plants, or agricultural settings3,4,5,6. There are
therefore worries that antibiotic resistant genes may contaminate drinking water7,8 and, given that infectious diseases caused by
antibiotic resistant bacteria are among the most urgent global public health problems9, this is a concern.

Mathematical modeling can be used to understand the dynamics of antibiotic resistant bacteria in the water systems to make
predictions about potential ways to counter this problem. In this context, we refer to the paper10 where the authors have developed
a mathematical model of antibiotic resistant bacteria in a river. Their model takes the following form
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𝑑𝑅𝑠
𝑑𝑡

= −𝛼𝑅𝑠(𝑅𝐼 + 𝐿𝐼 ) +
𝛽𝑅𝐼
𝐿 + 1

+ 𝑟
(

1 − 𝐵
𝐾

)

𝑅𝑠,

𝑑𝑅𝐼
𝑑𝑡

= 𝛼𝑅𝑠(𝑅𝐼 + 𝐿𝐼 ) −
𝛽𝑅𝐼
𝐿 + 1

+ 𝑟
(

1 − 𝐵
𝐾

)

𝑅𝐼 ,

𝑑𝐿𝑠
𝑑𝑡

= 𝐹𝑠(𝑡) − 𝛾𝐿𝑠 − 𝛼𝐿𝑠(𝑅𝐼 + 𝐿𝐼 ) +
𝛽𝐿𝐼
𝐿 + 1

+ 𝑟
(

1 − 𝐵
𝐾

)

𝐿𝑠,

𝑑𝐿𝐼
𝑑𝑡

= 𝐹𝐼 (𝑡) − 𝛾𝐿𝐼 + 𝛼𝐿𝑠(𝑅𝐼 + 𝐿𝐼 ) −
𝛽𝐿𝐼
𝐿 + 1

+ 𝑟
(

1 − 𝐵
𝐾

)

𝐿𝐼 ,

𝐵 = 𝑅𝑠 + 𝑅𝐼 + 𝐿𝑠 + 𝐿𝐼 , 𝐿 = 𝐿𝑠 + 𝐿𝐼 .

(1)

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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where 𝛼, 𝛽, 𝛾 , 𝑟 and 𝐾 are positive constants. In the model (1), the authors consider two distinct classes of bacteria in the river:
those that are river bacteria, 𝑅, and those that are land bacteria, 𝐿. Both the river and land bacteria are further subdivided into
those that have the antibiotic resistant gene, called resistant,𝑅𝐼 ,𝐿𝐼 , and those that do not, called non-resistant or susceptible,𝑅𝑠,
𝐿𝑠. The subscripts are drawn from infectious disease modelling where 𝑆 denotes susceptible and 𝐼 infected; here the bacteria are
considered to be ”infected” with an antibiotic resistance gene. Many antibiotic resistance genes are contained on plasmids. These
are genetic elements that can be replicated and transferred between bacteria upon contact between two cells. This is captured
above with the rate parameter 𝛼 representing this transmission rate of an antibiotic resistant gene. Conversely, plasmids can be
spontaneously lost from the cell at rate 𝛽. 𝑟 is the specific growth rate of all types of cells (here it is assumed that all subsets
of bacteria grow at the same rate), that are subject to a shared carrying capacity, 𝐾 (meaning that the river can only sustain a
limited number of bacteria in total). To represent the fact that land bacteria are not in their natural environment in the rivers, an
additional death rate 𝛾 is imposed where 𝛾 > 𝑟.

Finally, 𝐹𝑠(𝑡) and 𝐹𝐼 (𝑡) are the rates of bacteria entering the river from the shore. These functions have been assumed to be
positive and continuous in ℝ+. In10, some numerical simulations are shown in order to illustrate the dynamics of the model
(1), although no mathematical analysis has been presented for general parameters. However, in the reference11, the author has
done a qualitative study of this model by first looking at its associated autonomous system, then reviewing the non autonomous
system where 𝐹𝑠(𝑡) and 𝐹𝐼 (𝑡) are periodic functions. In the autonomous case, the study showed the existence of three boundary

equilibria𝐸0(0, 0, 0, 0) and𝐸1(𝐾, 0, 0, 0), and a third one𝐸2

(

𝛽
𝛼
,𝐾 −

𝛽
𝛼
, 0, 0

)

if 𝛽 < 𝛼𝐾 . Moreover, the existence of a positive
periodic solution was proven when 𝐹𝑠(𝑡) et 𝐹𝐼 (𝑡) are periodic functions under the condition

1
𝑇

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡 < 𝛼𝐾, (2)

for additional details, readers are requested to consult the paper11.
The most common approach to modelling resistance transfer, is to adopt mass action kinetics as above (the term 𝛼𝑆𝐼 where

𝛼 is transmission rate and 𝑆 and 𝐼 denote the non-resistant and resistant bacteria, respectively)12,13,14,15. However, this means
that if the number of non-resistant bacteria increases, the number of bacteria that become resistant per unit of time increases
even for very small numbers of resistant bacteria, which is not necessarily realistic. Instead, a good illustration in the context
of epidemiological models has been given by Keeling and Rohani in16, where the contact between susceptible 𝑆 and infected
𝐼 is modelled by 𝑆𝐼

𝑆 + 𝐼
. This has been used to represent the transfer of an antibiotic resistance gene between bacteria in the

following works17,18,19,20.
The term −𝑟𝐵

𝐾
𝑅𝑠 (and the corresponding terms in the other equations) gathers intra and inter species competition pressure

in a single term. However, as land bacteria enter the river from the shore and we assume they are not adaptable to the river.
Therefore, the inter and intra species competitive pressure should not be considered to be the same (see21). More specifically,
the term −𝑟𝐵

𝐾
𝑅𝑆 should be replaced by

−𝑟

(

𝑅𝑆
𝐾𝑅𝑆

+
𝑅𝐼
𝐾𝑅𝐼

+
𝐿𝑆
𝐾𝐿𝑆

+
𝐿𝐼
𝐾𝐿𝐼

)

𝑅𝑠.

On the other hand, in22 it is shown that E. coli bacteria isolated from highly contaminated river water are more likely to contain
resistance genes than those from cleaner water. The authors of10 have captured this through the assumption that contamination
correlates with the presence of land bacteria and hence the loss rate of the resistance gene should be a decreasing function of
𝐿 (the total number of polluting bacteria), 𝑔(𝐿). This is not an unreasonable assumption: if the contamination is coming from,
for example, fecal bacteria in a nearby sewage plant, the presence of antibiotic resistant genes in those bacteria would suggest
also the possible presence of the relevant antibiotic. Resistance-loss is much less likely to occur in the presence of this stressor.
The specific function chosen in10 is 𝑔(𝐿) = 𝛽∕(𝐿+1). However, several functions are existing and similar to the above specific
function. Moreover, in our proposed model we consider the terms of 𝑔𝑅(𝐿) and 𝑔𝐿(𝐿) for the river and land bacteria loss rates
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respectively. Here, we propose an extension of model (1) that captures the four changes above as follows
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− 𝑔𝐿(𝐿)𝐿𝐼 + 𝑟

(

1 −
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−
𝐿𝐼
𝐾𝐿𝐼

)

𝐿𝐼 ,

𝐵 = 𝑅𝑠 + 𝑅𝐼 + 𝐿𝑠 + 𝐿𝐼 , 𝑅 = 𝑅𝑠 + 𝑅𝐼 , 𝐿 = 𝐿𝑠 + 𝐿𝐼 ,

(3)

Nevertheless, mathematical study needs some simplifications, in this paper we consider the following model
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𝑑𝑅𝑠
𝑑𝑡

= −𝛼
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+ 𝑔(𝐿)𝑅𝐼 + 𝑟
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𝑅𝑠,

𝑑𝑅𝐼
𝑑𝑡

= 𝛼
𝑅𝑠(𝑅𝐼 + 𝐿𝐼 )
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− 𝑔(𝐿)𝑅𝐼 + 𝑟

(

1 − 𝐵
𝐾

)

𝑅𝐼 ,

𝑑𝐿𝑠
𝑑𝑡

= 𝐹𝑠(𝑡) − 𝛾𝐿𝑠 − 𝛼
𝐿𝑠(𝑅𝐼 + 𝐿𝐼 )

𝐵
+ 𝑔(𝐿)𝐿𝐼 + 𝑟

(

1 − 𝐵
𝐾

)

𝐿𝑠,

𝑑𝐿𝐼
𝑑𝑡

= 𝐹𝐼 (𝑡) − 𝛾𝐿𝐼 + 𝛼
𝐿𝑠(𝑅𝐼 + 𝐿𝐼 )

𝐵
− 𝑔(𝐿)𝐿𝐼 + 𝑟

(

1 − 𝐵
𝐾

)

𝐿𝐼 ,

𝐵 = 𝑅𝑠 + 𝑅𝐼 + 𝐿𝑠 + 𝐿𝐼 , 𝑅 = 𝑅𝑠 + 𝑅𝐼 , 𝐿 = 𝐿𝑠 + 𝐿𝐼 ,

(4)

where 𝐹𝑠 and 𝐹𝐼 are continuous 𝑇 -periodic functions such that

0 ≤ 𝐹𝑠(𝑡) ≤ 𝑎𝑠 = max
𝑡∈ℝ+

𝐹𝑠(𝑡) (5)

and
0 ≤ 𝐹𝐼 (𝑡) ≤ 𝑎𝐼 = max

𝑡∈ℝ+
𝐹𝐼 (𝑡). (6)

These functions represent regular release of land bacteria into the river water, for example as might happen at set times of the
day downstream of a sewage treatment plant. It is assumed that all the parameters 𝛼, 𝛾 , 𝑟 and𝐾 are positive constants with 𝛾 > 𝑟.
In addition, we suppose that 𝑔 is a 1-function satisfying the following conditions:

(H1) 𝑔(𝐿) > 0 for all 𝐿 > 0,

(H2) 𝑔′(𝐿) ≤ 0 for all 𝐿 > 0,

(H3) lim
𝐿→+∞

𝑔(𝐿) = 0.

We denote by
ℝ4

+ =
{

(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) ∈ ℝ4, 𝑅𝑠 ≥ 0, 𝑅𝐼 ≥ 0, 𝐿𝑠 ≥ 0, 𝐿𝐼 ≥ 0
}

and
Int(ℝ4

+) =
{

(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) ∈ ℝ4, 𝑅𝑠 > 0, 𝑅𝐼 > 0, 𝐿𝑠 > 0, 𝐿𝐼 > 0
}

.

In this paper, we realize a qualitative study of the model (4) by first analyzing its associated autonomous system (i.e. 𝐹𝑠 = 𝐹𝐼 =
0), then investigating the non autonomous system. Specifically we show the existence of a positive periodic solution.
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In11, only sufficient conditions for global stability of equilibria have been given, whereas, in the present paper we have obtained
sufficient and necessary conditions for global stability by using suitable Lyapunov functions. In addition, the paper11 has proven
the existence of a positive periodic solution for 𝑔(𝐿) = 𝛽∕(𝐿 + 1), under the condition

1
𝑇

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡 < 𝛼𝐾,

this theoretical result has not been validated numerically. In this work, we establish the existence of a positive periodic solution
for every function 𝑔 satisfying (H1)-(H3), no further conditions are necessary for that, this by an homotopy conveniently chosen;
moreover, here we have obtained a numerical solution which is periodic.

Obtaining reliable parameter estimates in this field is a huge challenge (even more so in models of this kind where each
variable captures a spread of bacterial strains and resistance mechanisms), and so any progress that can be made for general
parameter sets is an important step. The rest of this paper is organized as follows, in Section 2 we show boundedness of solutions
and existence of a positively invariant attracting set. In Section 3, a mathematical analysis of the associated autonomous system
is provided by establishing the local and global stability of equilibria. Section 4 is devoted to study the existence of a periodic
positive solution of the non-autonomous system. In addition, we carry out numerical simulations to verify our theoretical results.
Some conclusions are given in the end and put into the context of the biology.

2 BOUNDEDNESS OF THE MODEL AND EXISTENCE OF A POSITIVELY INVARIANT
ATTRACTING SET

Let us denote by 𝐹 = (𝐹1, 𝐹2, 𝐹3, 𝐹4) the right-hand side of system (4). Obviously, 𝐹 ∈ 1(Int(ℝ4
+),ℝ

4
+), then from the

Cauchy-Lipschitz theorem the system admits a unique maximal solution in [0, 𝑇max), where 𝑇max > 0, for any associated Cauchy
problem23. In the literature of biological models, the solutions are typically bounded in Int(ℝ4

+). Hereafter, the existence of a
positively invariant attracting set is regarded.

To prove the positivity of solutions we use the following proposition24.

Proposition 1. Consider a system of differential equations in ℝ𝑛,

𝑥′ = 𝐹 (𝑡, 𝑥),

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡)), 𝐹 (𝑡, 𝑥) = (𝐹1(𝑡, 𝑥), 𝐹2(𝑡, 𝑥),… , 𝐹𝑛(𝑡, 𝑥)), where 𝐹 (𝑡, 𝑥) is defined for all 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛. Assume
that 𝐹 has the property that solutions of the initial value problems 𝑥(𝑡0) = 𝑥0 are unique for 𝑥0 ∈ [0,+∞)𝑛, 𝑡0 ≥ 0. Furthermore,
assume that, for all 𝑗 = 1,… , 𝑛, 𝑡 ≥ 0, we have

𝐹𝑗(𝑡, 𝑥) ≥ 0 whenever 𝑥 ∈ [0,+∞)𝑛, 𝑥𝑗 = 0, 𝑡 ≥ 0.

Then 𝑥(𝑡) ∈ [0,+∞)𝑛 for all 𝑡 ≥ 𝑡0 ≥ 0 for which it is defined, whenever 𝑥(𝑡0) ∈ [0,+∞)𝑛.

Theorem 1. Let  be the set defined by

 =
{

(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) ∈ Int(ℝ4
+), 𝑅𝑠 + 𝑅𝐼 ≤ 𝐾, 𝐿𝑠 + 𝐿𝐼 ≤

𝑎𝑠 + 𝑎𝐼
𝛾 − 𝑟

}

.

Then,

(a)  is positively invariant,

(b) for all (𝑅𝑠(0), 𝑅𝐼 (0), 𝐿𝑠(0), 𝐿𝐼 (0)) ∈ Int(ℝ4
+),

(𝑅𝑠(𝑡), 𝑅𝐼 (𝑡), 𝐿𝑠(𝑡), 𝐿𝐼 (𝑡)) →  as 𝑡→ +∞.

Proof. Let (𝑅𝑠(0), 𝑅𝐼 (0), 𝐿𝑠(0), 𝐿𝐼 (0)) ∈ . The positivity of the solution can be obtained directly from Proposition 1. It
remains to show that 𝑅𝑠 + 𝑅𝐼 ≤ 𝐾 and 𝐿𝑠 + 𝐿𝐼 ≤

𝑎𝑠 + 𝑎𝐼
𝛾 − 𝑟

. In fact, summing the first and second equations of (4), we get

𝑅′(𝑡) = 𝑟
(

1 − 𝐵
𝐾

)

𝑅.
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Since, 𝑅𝑠 > 0, 𝑅𝐼 > 0, 𝐿𝑠 > 0 and 𝐿𝐼 > 0, then
𝑑𝑅
𝑑𝑡

= 𝑟
(

1 − 𝐵
𝐾

)

𝑅 ≤ 𝑟
(

1 − 𝑅
𝐾

)

𝑅.

Thereupon 𝑅(𝑡) ≤ 𝑥(𝑡), where 𝑥(𝑡) is the solution of
𝑑𝑥
𝑑𝑡

= 𝑟
(

1 − 𝑥
𝐾

)

𝑥, 𝑥(0) = 𝑅𝑠(0) + 𝑅𝐼 (0),

as 𝑥(0) ≤ 𝐾 , then 𝑥(𝑡) ≤ 𝐾 , which implies that 𝑅(𝑡) ≤ 𝐾 . In the same manner we can see that 𝐿(𝑡) ≤
𝑎𝑠 + 𝑎𝐼
𝛾 − 𝑟

.

We proceed to demonstrate the second part of Theorem 1. Let the initial condition (𝑅𝑠(0), 𝑅𝐼 (0), 𝐿𝑠(0), 𝐿𝐼 (0)) ∈ Int(ℝ4
+).

As before,
𝑑𝑅
𝑑𝑡

≤ 𝑟
(

1 − 𝑅
𝐾

)

𝑅, 𝑅(0) = 𝑅𝑠(0) + 𝑅𝐼 (0)

then from a standard comparison theorem
𝑅(𝑡) ≤ 𝐾𝑒𝑟𝑡

𝑒𝑟𝑡 + 𝐾−𝑅(0)
𝑅(0)

.

Hence,
lim sup
𝑡→+∞

𝑅(𝑡) ≤ 𝐾. (7)

Likewise, 𝐿(𝑡) satisfies
𝑑𝐿
𝑑𝑡

= 𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡) − 𝛾𝐿 + 𝑟
(

1 − 𝐵
𝐾

)

𝐿, 𝐿(0) = 𝐿𝑠(0) + 𝐿𝐼 (0)

which yields

𝐿(𝑡) ≤
(

𝐿(0) −
𝑎𝑠 + 𝑎𝐼
𝛾 − 𝑟

)

𝑒−(𝛾−𝑟) +
𝑎𝑠 + 𝑎𝐼
𝛾 − 𝑟

.

Since 𝛾 > 𝑟, we have
lim sup
𝑡→+∞

𝐿(𝑡) ≤
𝑎𝑠 + 𝑎𝐼
𝛾 − 𝑟

, (8)

and the proof is complete.

3 QUALITATIVE STUDY OF THE AUTONOMOUS SYSTEM

One important question is whether the bacterial resistance persists in the river once pollution stops. Mathematically, the
qualitative study of the associated autonomous system (𝐹𝑠(𝑡) = 𝐹𝐼 (𝑡) = 0) is an answer to this question:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑅𝑠
𝑑𝑡

= −
𝛼𝑅𝑠(𝑅𝐼 + 𝐿𝐼 )

𝐵
+ 𝑔(𝐿)𝑅𝐼 + 𝑟

(

1 − 𝐵
𝐾

)

𝑅𝑠,

𝑑𝑅𝐼
𝑑𝑡

= 𝛼
𝑅𝑠(𝑅𝐼 + 𝐿𝐼 )

𝐵
− 𝑔(𝐿)𝑅𝐼 + 𝑟

(

1 − 𝐵
𝐾

)

𝑅𝐼 ,

𝑑𝐿𝑠
𝑑𝑡

= −𝛾𝐿𝑠 − 𝛼
𝐿𝑠(𝑅𝐼 + 𝐿𝐼 )

𝐵
+ 𝑔(𝐿)𝐿𝐼 + 𝑟

(

1 − 𝐵
𝐾

)

𝐿𝑠,

𝑑𝐿𝐼
𝑑𝑡

= −𝛾𝐿𝐼 + 𝛼
𝐿𝑠(𝑅𝐼 + 𝐿𝐼 )

𝐵
− 𝑔(𝐿)𝐿𝐼 + 𝑟

(

1 − 𝐵
𝐾

)

𝐿𝐼 ,

𝐵 = 𝑅𝑠 + 𝑅𝐼 + 𝐿𝑠 + 𝐿𝐼 , 𝑅 = 𝑅𝑠 + 𝑅𝐼 , 𝐿 = 𝐿𝑠 + 𝐿𝐼 .

(9)

In this section, we discuss mainly the global stability of positive equilibria of system (9).

3.1 Steady states and their existence
System (9) possesses the following three equilibria:

(i) The trivial equilibrium 𝐸0(0, 0, 0, 0).
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(ii) The resistant free steady state 𝐸1(𝐾, 0, 0, 0).

(iii) The resistant steady state 𝐸2

(

𝑔(0)𝐾
𝛼

,𝐾 −
𝑔(0)𝐾
𝛼

, 0, 0
)

which exists for 𝛼 > 𝑔(0).

Biologically, 𝐸0(0, 0, 0, 0) means that all bacteria are eliminated from the river. Furthermore, the stability of 𝐸1 means the
disappearance of resistant bacteria. However, the stability of 𝐸2 signifies that resistant bacteria persist. In all cases, the land
bacteria are eliminated from the river when unreplenished in this autonomous system.

Rivers, like everything else on earth are full of bacteria. Mathematically, this corresponds to the instability of 𝐸0: positive
perturbations away from this equilibrium will result in bacterial regrowth.

Proposition 2. The equilibrium 𝐸0 is unstable.

Proof. Firstly, from (8) one sees immediately that

lim
𝑡→+∞

𝐿(𝑡) = 0.

Accordingly, for an arbitrary 𝜀 > 0, there corresponds a 𝑡 > 0 such that for each 𝑡 ≥ 𝑡, we have 𝐿(𝑡) ≤ 𝜀. Hence, for all 𝑡 ≥ 𝑡 the
function 𝑅 = 𝑅𝑠 + 𝑅𝐼 satisfies

𝑅′(𝑡) = 𝑟
(

1 − 𝑅 + 𝐿
𝐾

)

𝑅

≥ 𝑟
(

1 − 𝑅 + 𝜀
𝐾

)

𝑅

≥ 𝑟
(

1 − 𝜀
𝐾

)

⎛

⎜

⎜

⎜

⎝

1 − 𝑅

𝐾
(

1 − 𝜀
𝐾

)

⎞

⎟

⎟

⎟

⎠

𝑅.

In this way, for all 𝑡 ≥ 𝑡 we have 𝑅(𝑡) ≥ 𝑅̄(𝑡) where 𝑅̄ is the solution of

𝑅̄′(𝑡) = 𝑟
(

1 − 𝜀
𝐾

)

⎛

⎜

⎜

⎜

⎝

1 − 𝑅̄

𝐾
(

1 − 𝜀
𝐾

)

⎞

⎟

⎟

⎟

⎠

𝑅̄, 𝑅̄(𝑡) = 𝑅(𝑡).

This yields

lim inf
𝑡→+∞

𝑅(𝑡) ≥ 𝐾 − 𝜀.

Since 𝜀 had been set arbitrarily, we obtain lim inf
𝑡→+∞

𝑅(𝑡) ≥ 𝐾 . The instability of 𝐸0 corresponds to the permanence of river
bacteria.

3.2 Dynamical behavior: global stability
In this part, we establish the global stability of the equilibrium points 𝐸1 and 𝐸2. To this end, we use the Lyapunov function
method.

Theorem 2. The equilibrium 𝐸1 is globally asymptotically stable iff 𝛼 < 𝑔(0).

Proof. Let us show the global stability of 𝐸1. To do this consider

𝑉1(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) = 𝑅𝑠 −𝐾 −𝐾 ln
(

𝑅𝑠
𝐾

)

+ 𝑅𝐼 + 𝐿𝑠 + 𝐿𝐼 . (10)
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This function is defined and continuous on Int(ℝ4
+). Moreover, 𝑉1(𝐾, 0, 0, 0) = 0 and for any (𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) ≠ (𝐾, 0, 0, 0),

𝑉1(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) > 0. The derivative of 𝑉1 along solutions of the system (9) is
𝑑𝑉1
𝑑𝑡

= −
𝛼(𝑅𝑠 −𝐾)(𝑅𝐼 + 𝐿𝐼 )

𝐵
+
𝑅𝑠 −𝐾
𝑅𝑠

𝑔(𝐿)𝑅𝐼 −
𝑟
𝐾
(𝑅𝑠 −𝐾)2 − 𝑟

𝐾
(𝑅𝑠 −𝐾)𝑅𝐼 −

𝑟
𝐾
(𝑅𝑠 −𝐾)𝐿 + 𝛼

𝑅𝑠(𝑅𝐼 + 𝐿𝐼 )
𝐵

−𝑔(𝐿)𝑅𝐼 −
𝑟
𝐾
(𝑅𝑠 −𝐾)𝑅𝐼 −

𝑟
𝐾
𝑅2
𝐼 −

𝑟
𝐾
𝐿𝑅𝐼 − 𝛾𝐿 − 𝑟

𝐾
(𝑅𝑠 −𝐾)𝐿 − 𝑟

𝐾
𝐿𝑅𝐼 −

𝑟
𝐾
𝐿2

= − 𝑟
𝐾
(𝑅𝑠 −𝐾 + 𝑅𝐼 + 𝐿)2 − 𝛾𝐿 +

𝛼𝐾(𝑅𝐼 + 𝐿𝐼 )
𝐵

−
𝐾𝑔(𝐿)𝑅𝐼

𝑅𝑠
.

From the proof of Proposition 2, for an arbitrary 𝜀 > 0, there exists a 𝑡 > 0 such that for each 𝑡 ≥ 𝑡, we have 𝐿(𝑡) ≤ 𝜀.
Since 𝑔(0) > 𝛼 and 𝑔 is decreasing, it follow that for 𝜀 sufficiently small

𝛼 < 𝑔(𝐿) ≤ 𝑔(𝜀) ≤ 𝑔(0)

and
𝑑𝑉1
𝑑𝑡

(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) ≤ − 𝑟
𝐾
(𝑅𝑠 −𝐾 + 𝑅𝐼 + 𝐿)2 − 𝛾𝐿 −

𝐾𝑅𝐼
𝑅𝑠

(𝑔(0) − 𝛼).

Consequently,
𝑑𝑉1
𝑑𝑡

(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) = 0 if and only if (𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) = (𝐾, 0, 0, 0). Thus, 𝑉1(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) satisfies
Lyapunov’s asymptotic stability theorem25, which is our claim.

Theorem 3. The equilibrium 𝐸2 is globally asymptotically stable iff 𝛼 > 𝑔(0).

Proof. Let us show the global stability of 𝐸2 by using the following Lyapunov function

𝑉2(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) = 𝑅𝑠 − 𝑅∗
𝑠 − 𝑅

∗
𝑠 ln

(

𝑅𝑠
𝑅∗
𝑠

)

+ 𝑅𝐼 − 𝑅∗
𝐼 − 𝑅

∗
𝐼 ln

(

𝑅𝐼
𝑅∗
𝐼

)

+ 𝐿𝑠 + 𝐿𝐼 , (11)

where 𝑅∗
𝑠 =

𝑔(0)𝐾
𝛼

and 𝑅∗
𝐼 = 𝐾 −

𝑔(0)𝐾
𝛼

. We have 𝑉2(𝑅∗
𝑠 , 𝑅

∗
𝐼 , 0, 0) = 0. Moreover, an easy computation shows that

𝑑𝑉2
𝑑𝑡

= − 𝑟
𝐾
(𝑅𝑠 + 𝑅𝐼 + 𝐿 −𝐾)2 − 𝛾𝐿 +

𝑔(0)𝐾(𝑅𝐼 + 𝐿𝐼 )
𝐵

−
𝑔(0)𝑔(𝐿)𝑅𝐼𝐾

𝛼𝑅𝑠

−
𝛼𝐾𝑅𝑠(𝑅𝐼 + 𝐿𝐼 )

𝐵𝑅𝐼
+
𝑔(0)𝐾𝑅𝑠(𝑅𝐼 + 𝐿𝐼 )

𝑅𝐼𝐵
+𝐾𝑔(𝐿) −

𝐾𝑔(0)𝑔(𝐿)
𝛼

≤ − 𝑟
𝐾
(𝑅𝑠 + 𝑅𝐼 + 𝐿 −𝐾)2 − 𝛾𝐿 +

𝑔(0)𝐾
𝛼

(𝛼 − 𝑔(𝐿)) +
𝐾𝑅𝑠
𝐵

(𝑔(0) − 𝛼) +
𝐾𝑔(𝐿)
𝛼

(

𝛼 −
𝑔(0)𝑅𝑠
𝐵

)

.

Analysis similar to that in the proof of Theorem 2 gives
𝑑𝑉2
𝑑𝑡

≤ − 𝑟
𝐾
(𝑅𝑠 + 𝑅𝐼 + 𝐿 −𝐾)2 − 𝛾𝐿 − 𝐾

𝛼𝑅𝑠𝐵
(𝛼𝑅𝑠 − 𝑔(0)𝐵)2 ≤ 0.

Therefore,
𝑑𝑉2
𝑑𝑡

(𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) = 0 if and only if 𝐵 = 𝐾 , 𝐿 = 0 and

𝑅𝑠 =
𝑔(0)𝐵
𝛼

=
𝑔(0)𝐾
𝛼

,

that means (𝑅𝑠, 𝑅𝐼 , 𝐿𝑠, 𝐿𝐼 ) = (𝑅∗
𝑠 , 𝑅

∗
𝐼 , 0, 0). According to the Lyapunov’s asymptotic stability theorem25, we obtain the desired

conclusion.

Figures 1 and 2 show the dynamics of resistant and susceptible bacteria in the river. Fig. 1 represents the global asymptotic
stability of 𝐸1 once 𝛼 < 𝑔(0); this case occurs when the maximum loss rate of the antibiotic resistance gene is larger than
the transmission rate. On the other hand, Figs. 2 –4 show that 𝐸2 is globally asymptotically stable when 𝛼 > 𝑔(0), this case
appears when the transmission rate of the antibiotic-resistant gene is strong compared to the loss rate of this gene. It can be seen
that whether resistant or susceptible bacteria dominate in 𝐸2 depends on the value of 2𝑔(0) − 𝛼: positive values (i.e. where the
loss rate is significantly higher than transmission) yield higher levels of susceptible bacteria, negative values of resistant bacteria
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FIGURE 1 Choosing 𝛼 = 3, 𝛾 = 2, 𝑟 = 1, 𝐾 = 100000 and 𝑔(𝐿) = 4
√

𝐿+1
, we have convergence to 𝐸1.
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FIGURE 2 Choosing 𝛼 = 5, 𝛾 = 2, 𝑟 = 1, 𝐾 = 100000 and 𝑔(𝐿) = 4
√

𝐿+1
, we have convergence to 𝐸2.

and when equal to zero the two types of bacteria are equal in number. Each of these scenarios is depicted in Figs. 2 –4 . The
parameters and the form of 𝑔(𝐿) are chosen for illustrative purposes only.

Another important issue related to the non-existence of nontrivial periodic solutions of the autonomous system. It is a simple
matter to prove the non-existence using the Dulac’s criteria. This follows by the same method as in11.

4 EXISTENCE OF PERIODIC SOLUTIONS OF NON-AUTONOMOUS SYSTEM

A positive periodic solution in the non-autonomous system plays a similar role to a stable equilibrium in the autonomous
system. In this section, we are concerned with the existence of positive periodic solutions of the non-autonomous system (4). To
achieve this, we use the coincidence degree theory; specifically the continuation theorem26; readers are encouraged to review
the methodology in11,27,28.

Let 𝑋 and 𝑌 be two Banach spaces, 𝐿 ∶ 𝐷𝑜𝑚𝐿 ⊂ 𝑋 ←→ 𝑌 be a linear mapping and 𝑁 ∶ 𝑋 ←→ 𝑌 be a continuous mapping.
If 𝐿 is Fredholm mapping of index zero, then there exist two continuous projectors 𝑃 ∶ 𝑋 ←→ 𝑋 and 𝑄 ∶ 𝑌 ←→ 𝑌 such that
Im𝑃 = ker 𝐿, ker𝑄 =Im𝐿 =Im (𝐼 − 𝑄) and 𝑋 = ker 𝐿 ⊕ ker 𝑃 ,𝑌 = Im𝐿 ⊕ Im𝑄. As a result, the restriction of 𝐿 on
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FIGURE 3 Choosing 𝛼 = 8, 𝛾 = 2, 𝑟 = 1, 𝐾 = 100000 and 𝑔(𝐿) = 4
√

𝐿+1
, we have convergence to 𝐸2.
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FIGURE 4 Choosing 𝛼 = 9, 𝛾 = 2, 𝑟 = 1, 𝐾 = 100000 and 𝑔(𝐿) = 4
√

𝐿+1
, we have convergence to 𝐸2.

𝐷𝑜𝑚𝐿 ∩ ker 𝑃 defined as 𝐿|𝐷𝑜𝑚𝐿∩ker 𝑃 ∶ (𝐼 − 𝑃 )𝑋 ←→ Im𝐿 is invertible and its inverse is noted by 𝐾𝑃 . If Ω is an open subset
of 𝑋, then 𝑁 is called 𝐿-compact on Ω̄ if 𝑄𝑁(Ω) is bounded and 𝐾𝑃 (𝐼 −𝑄)𝑁 ∶ Ω ←→ 𝑋 is compact. As Im𝑄 is isomorphic
to ker 𝐿 there exists an isomorphism 𝐽 ∶ Im𝑄 ←→ ker 𝐿.

Theorem 4. (Mawhin’s continuation theorem26) Let Ω ⊂ 𝑋 be an open bounded set. Let 𝐿 be a Fredholm mapping of index
zero and 𝑁 is 𝐿-compact on 𝑋. If the following conditions hold

1. for all 𝜆 ∈ (0, 1), 𝑥 ∈ 𝜕Ω ∩𝐷𝑜𝑚𝐿, 𝐿𝑥 ≠ 𝜆𝑁𝑥,

2. for all 𝑥 ∈ 𝜕Ω ∩ ker 𝐿, 𝑄𝑁𝑥 ≠ 0,

3. deg{𝐽𝑄𝑁,Ω ∩ ker 𝐿, 0} ≠ 0,

then the equation 𝐿𝑥 = 𝑁𝑥 has at least one solution in 𝐷𝑜𝑚𝐿 ∩ Ω.

Our main aim is to write the system (4) in the form 𝐿𝑥 = 𝑁𝑥, with 𝐿 a Fredholm mapping of index zero and 𝑁 being
𝐿-compact and select a suitable open set Ω such that the three conditions of the continuation theorem are satisfied.
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First of all, since we look for positive solutions, the following change of variables is considered

𝑅𝑠(𝑡) = 𝑒𝑥1(𝑡), 𝑅𝐼 (𝑡) = 𝑒𝑥2(𝑡), 𝐿𝑠(𝑡) = 𝑒𝑥3(𝑡), 𝐿𝐼 (𝑡) = 𝑒𝑥4(𝑡). (12)

Hence, the system (4) can be written as follows

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑥′1(𝑡) = −
𝛼(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥2−𝑥1𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

,

𝑥′2(𝑡) =
𝛼𝑒𝑥1−𝑥2(𝑒𝑥2(𝑡) + 𝑒𝑥4)

𝜔
− 𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

,

𝑥′3(𝑡) = 𝑒−𝑥3𝐹𝑠(𝑡) − 𝛾 −
𝛼(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥4−𝑥3𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

,

𝑥′4(𝑡) = 𝑒−𝑥4𝐹𝐼 (𝑡) − 𝛾 +
𝛼𝑒𝑥3−𝑥4(𝑒𝑥2 + 𝑒𝑥4)

𝜔
− 𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

,

𝜔 = 𝑒𝑥1 + 𝑒𝑥2 + 𝑒𝑥3 + 𝑒𝑥4 .

(13)

Let us denote by 𝑋 the set

𝑋 = 𝑌 = {𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡))𝑇 ∈ (ℝ+,ℝ4) ∶ 𝑥(𝑡 + 𝑇 ) = 𝑥(𝑡), 𝑡 ≥ 0}

with the following norm

‖𝑥‖ = ‖(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡))𝑇 ‖ =
4
∑

𝑖=1
max
𝑡∈[0,𝑇 ]

|𝑥𝑖(𝑡)|,

where | ⋅ | is the absolute value. Thereupon, (𝑋, ‖ ⋅ ‖) and (𝑌 , ‖ ⋅ ‖) are Banach spaces. We consider the mapping 𝐿 defined as

𝐿 ∶ 𝐷𝑜𝑚𝐿→ 𝑋, 𝐿(𝑥(𝑡)) = 𝑥′(𝑡) = (𝑥′1(𝑡), 𝑥
′
2(𝑡), 𝑥

′
3(𝑡), 𝑥

′
4(𝑡))

𝑇 ,

where 𝐷𝑜𝑚𝐿 = {𝑥(𝑡) ∈ 1(ℝ+,ℝ4) ∶ 𝑥(𝑡+ 𝑇 ) = 𝑥(𝑡), 𝑡 ≥ 0} ⊂ 𝑋. 𝐿 is Fredholm mapping of index zero (see27). One can see
that its inverse 𝐾𝑝 ∶ Im𝐿→ 𝐷𝑜𝑚𝐿 ∩𝐾𝑒𝑟𝑃 is given by

𝐾𝑝𝑥(𝑡) =

𝑡

∫
0

𝑥(𝑠)𝑑𝑠 − 1
𝑇

𝑇

∫
0

𝑡

∫
0

𝑥(𝑠)𝑑𝑠 𝑑𝑡.

Let 𝑁 ∶ 𝑋 → 𝑋 be the mapping given by

𝑁𝑥(𝑡) = (𝛿1(𝑥(𝑡), 𝑡), 𝛿2(𝑥(𝑡), 𝑡), 𝛿3(𝑥(𝑡), 𝑡), 𝛿4(𝑥(𝑡), 𝑡))𝑇 ,

where
𝛿1(𝑥(𝑡), 𝑡) = −

𝛼(𝑒𝑥2 + 𝑒𝑥4)
𝜔

+ 𝑒𝑥2−𝑥1𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟
(

1 − 𝜔
𝐾

)

,

𝛿2(𝑥(𝑡), 𝑡) =
𝛼𝑒𝑥1−𝑥2(𝑒𝑥2(𝑡) + 𝑒𝑥4)

𝜔
− 𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

,

𝛿3(𝑥(𝑡), 𝑡) = 𝑒−𝑥3𝐹𝑠(𝑡) − 𝛾 −
𝛼(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥4−𝑥3𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

,

𝛿4(𝑥(𝑡), 𝑡) = 𝑒−𝑥4𝐹𝐼 (𝑡) − 𝛾 +
𝛼𝑒𝑥3−𝑥4(𝑒𝑥2 + 𝑒𝑥4)

𝜔
− 𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

.

𝑁 is 𝐿-compact under Ω for any open bounded set Ω ⊂ 𝑋. On one side, 𝑄𝑁 ∶ 𝑋 → 𝑋 is 𝑄𝑁𝑥(𝑡) = (𝑞1(𝑡), 𝑞2(𝑡), 𝑞3(𝑡), 𝑞4(𝑡))𝑇 ,

where 𝑞𝑖(𝑡) =
𝑇

∫
0

𝛿𝑖(𝑥(𝑡), 𝑡)𝑑𝑡, for 𝑖 = 1…4. In addition, 𝐾𝑝(𝐼 −𝑄)𝑁 ∶ 𝑋 → 𝑋 is written in the form

𝐾𝑝(𝐼 −𝑄)𝑁𝑥(𝑡) = (𝜓1(𝑥(𝑡), 𝑡), 𝜓2(𝑥(𝑡), 𝑡), 𝜓3(𝑥(𝑡), 𝑡), 𝜓4(𝑥(𝑡), 𝑡))𝑇 ,
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with

𝜓(𝑥(𝑡), 𝑡) =

𝑡

∫
0

𝛿𝑖(𝑥(𝑠), 𝑠)𝑑𝑠 −
1
𝑇

𝑇

∫
0

𝑡

∫
0

𝛿𝑖(𝑥(𝑠), 𝑠)𝑑𝑠𝑑𝑡 −
( 𝑡
𝑇

− 1
2

)

𝑇

∫
0

𝛿𝑖(𝑥(𝑠), 𝑠)𝑑𝑠,

for 𝑖 = 1,… , 4. Since 𝑄𝑁 and 𝐾𝑝(𝐼 − 𝑄)𝑁 are compositions of continuous functions, then they are continuous on 𝑋.
Furthermore, by using Arzela-Ascoli theorem29, the mapping

𝐾𝑝(𝐼 −𝑄)𝑁 ∶ Ω → 𝑋

is compact for any open bounded Ω ⊂ 𝑋 28. Finally, 𝑄𝑁(Ω) is bounded and we conclude that 𝑁 is 𝐿-compact under Ω for any
open bounded set Ω ⊂ 𝑋.

We have successfully written our system in the form 𝐿𝑥 = 𝑁𝑥 where 𝐿 is a Fredholm mapping of index zero and 𝑁 is
𝐿-compact in a Banach space (𝑋, ‖⋅‖). We are ready to prove the existence of a periodic solution using the continuation theorem.

Theorem 5. Let 𝐹𝑠 and 𝐹𝐼 be a 𝑇 -periodic functions, then the system (9) has at least one positive 𝑇 -periodic solution.

Proof. The proof is divided into several steps.

Step 1:
This part consists of the construction of an appropriate open Ω ⊂ 𝑋 for which the equation 𝐿𝑥 = 𝜆𝑁𝑥 does not have solutions
on 𝜕Ω, for each 𝜆 ∈ (0, 1). 𝐿𝑥 = 𝜆𝑁𝑥 is equivalent to the following system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑥′1(𝑡) = 𝜆
[

−
𝛼(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥2−𝑥1𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

]

,

𝑥′2(𝑡) = 𝜆
[

𝛼𝑒𝑥1−𝑥2(𝑒𝑥2(𝑡) + 𝑒𝑥4)
𝜔

− 𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟
(

1 − 𝜔
𝐾

)

]

,

𝑥′3(𝑡) = 𝜆
[

𝑒−𝑥3𝐹𝑠(𝑡) − 𝛾 −
𝛼(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥4−𝑥3𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

]

,

𝑥′4(𝑡) = 𝜆
[

𝑒−𝑥4𝐹𝐼 (𝑡) − 𝛾 +
𝛼𝑒𝑥3−𝑥4(𝑒𝑥2 + 𝑒𝑥4)

𝜔
− 𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

]

,

𝜔(𝑡) = 𝑒𝑥1(𝑡) + 𝑒𝑥2(𝑡) + 𝑒𝑥3(𝑡) + 𝑒𝑥4(𝑡).

(14)

Moreover, we multiply the first equation of (14) by 𝑒𝑥1(𝑡), the second by 𝑒𝑥2(𝑡), the third by 𝑒𝑥3(𝑡) and the fourth by 𝑒𝑥4(𝑡). This
leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑒𝑥1𝑥′1(𝑡) = 𝜆
[

−
𝛼𝑒𝑥1(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥1

(

1 − 𝜔
𝐾

)

]

,

𝑒𝑥2𝑥′2(𝑡) = 𝜆
[

𝛼𝑒𝑥1(𝑒𝑥2(𝑡) + 𝑒𝑥4)
𝜔

− 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥2
(

1 − 𝜔
𝐾

)

]

,

𝑒𝑥3𝑥′3(𝑡) = 𝜆
[

𝐹𝑠(𝑡) − 𝛾𝑒𝑥3 −
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥3

(

1 − 𝜔
𝐾

)

]

,

𝑒𝑥4𝑥′4(𝑡) = 𝜆
[

𝐹𝐼 (𝑡) − 𝛾𝑒𝑥4 +
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
− 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥4

(

1 − 𝜔
𝐾

)

]

.
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Now, we integrate both sides of the above system from 0 to 𝑇 with respect to 𝑡 to get the equations
𝑇

∫
0

[

−
𝛼𝑒𝑥1(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥1

(

1 − 𝜔
𝐾

)

]

𝑑𝑡 = 0, (15)

𝑇

∫
0

[

𝛼𝑒𝑥1(𝑒𝑥2(𝑡) + 𝑒𝑥4)
𝜔

− 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥2
(

1 − 𝜔
𝐾

)

]

𝑑𝑡 = 0, (16)

𝑇

∫
0

[

𝐹𝑠(𝑡) − 𝛾𝑒𝑥3 −
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥3

(

1 − 𝜔
𝐾

)

]

𝑑𝑡 = 0, (17)

𝑇

∫
0

[

𝐹𝐼 (𝑡) − 𝛾𝑒𝑥4 +
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
− 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥4

(

1 − 𝜔
𝐾

)

]

𝑑𝑡 = 0. (18)

By summing (15) and (16), we obtain

𝑟

𝑇

∫
0

(𝑒𝑥1(𝑡) + 𝑒𝑥2(𝑡))
(

1 −
𝜔(𝑡)
𝐾

)

𝑑𝑡 = 0. (19)

Consequently, by the mean value theorem30, there exists 𝜇 ∈ (0, 𝑇 ) such that

𝑟
(

1 −
𝜔(𝜇)
𝐾

)

𝑇

∫
0

(𝑒𝑥1(𝑡) + 𝑒𝑥2(𝑡))𝑑𝑡 = 0,

which implies that 𝜔(𝜇) = 𝐾 , then 𝑒𝑥𝑖(𝜇) < 𝐾 , for 𝑖 = 1,… , 4, i.e. 𝑥𝑖(𝜇) < ln𝐾 . Hence, min
𝑡∈[0,𝑇 ]

𝑥𝑖(𝑡) < ln𝐾, for 𝑖 = 1,… , 4. On
the other hand, the sum of (17) and (18) yields

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡 − 𝛾

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡 + 𝑟

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)
(

1 − 𝜔
𝐾

)

= 0. (20)

Thus,
𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡 − (𝛾 − 𝑟)

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡 = 𝑟

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)𝜔
𝐾
> 0.

As 𝛾 > 𝑟, we have
𝑇

∫
0

(𝑒𝑥3(𝑡) + 𝑒𝑥4(𝑡))𝑑𝑡 < 1
𝛾 − 𝑟

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡. (21)

From (19), it follows

𝐾

𝑇

∫
0

(𝑒𝑥1 + 𝑒𝑥2)𝑑𝑡 =

𝑇

∫
0

(𝑒𝑥1 + 𝑒𝑥2)2𝑑𝑡 +

𝑇

∫
0

(𝑒𝑥1 + 𝑒𝑥2)(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡,

thereupon
𝑇

∫
0

(𝑒𝑥1 + 𝑒𝑥2)2𝑑𝑡 < 𝐾

𝑇

∫
0

(𝑒𝑥1 + 𝑒𝑥2)𝑑𝑡.

By applying the inequality of Cauchy-Swartz31, we get

⎛

⎜

⎜

⎝

𝑇

∫
0

(𝑒𝑥1 + 𝑒𝑥2)2𝑑𝑡
⎞

⎟

⎟

⎠

1
2

<
√

𝑇𝐾. (22)
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Moreover, from (20)
𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡 = (𝛾 − 𝑟)

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡 + 𝑟
𝐾

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)(𝑒𝑥1 + 𝑒𝑥2)𝑑𝑡 + 𝑟
𝐾

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)2𝑑𝑡,

then

𝑟
𝐾

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)2𝑑𝑡 <

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡.

Therefore,

⎛

⎜

⎜

⎝

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)2𝑑𝑡
⎞

⎟

⎟

⎠

1
2

<
√

𝐾
𝑟

⎛

⎜

⎜

⎝

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡
⎞

⎟

⎟

⎠

1
2

. (23)

Now, we recall that

𝑥′1(𝑡) = 𝜆
[

−
𝛼(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥2−𝑥1𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟

(

1 − 𝜔
𝐾

)

]

.

Hence, from (21) and (22) we have
𝑇

∫
0

𝑒𝑥2−𝑥1𝑔(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡 =

𝑇

∫
0

𝛼(𝑒𝑥2 + 𝑒𝑥4)
𝜔

𝑑𝑡 − 𝑟

𝑇

∫
0

(

1 − 𝜔
𝐾

)

𝑑𝑡

≤ 𝛼𝑇 + 𝑟
𝐾

𝑇

∫
0

(𝑒𝑥1 + 𝑒𝑥2)𝑑𝑡 + 𝑟
𝐾

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡

≤ 𝛼𝑇 + 𝑟
𝐾

√

𝑇
⎛

⎜

⎜

⎝

𝑇

∫
0

(𝑒𝑥1 + 𝑒𝑥2)2𝑑𝑡
⎞

⎟

⎟

⎠

1
2

+ 𝑟
𝐾

𝑇

∫
0

(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡

≤ 𝛼𝑇 + 𝑟𝑇 + 𝑟
𝐾(𝛾 − 𝑟)

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡 =𝑀1.

Similarly,
𝑇

∫
0

𝑒𝑥4−𝑥3𝑔(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡 = −

𝑇

∫
0

𝑒𝑥3𝐹𝑠(𝑡)𝑑𝑡 + 𝛾𝑇 +

𝑇

∫
0

𝛼(𝑒𝑥2 + 𝑒𝑥4)
𝜔

𝑑𝑡 − 𝑟

𝑇

∫
0

(

1 − 𝜔
𝐾

)

𝑑𝑡

≤ 𝛾𝑇 +𝑀1 =𝑀2.

On the other hand, since 𝑔 is a decreasing function on ℝ+, we obtain
𝑇

∫
0

𝛼𝑒𝑥1−𝑥2(𝑒𝑥2 + 𝑒𝑥4)
𝜔

𝑑𝑡 =

𝑇

∫
0

𝑔(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡 − 𝑟

𝑇

∫
0

(

1 − 𝜔
𝐾

)

𝑑𝑡

≤ 𝑔(0)𝑇 + 𝑟𝑇 + 𝑟
𝐾(𝛾 − 𝑟)

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡 =𝑀3.

Likewise,
𝑇

∫
0

𝛼𝑒𝑥3−𝑥4(𝑒𝑥2 + 𝑒𝑥4)
𝜔

𝑑𝑡 = −

𝑇

∫
0

𝑒−𝑥4𝐹𝐼 (𝑡)𝑑𝑡 + 𝛾𝑇 +

𝑇

∫
0

𝑔(𝑒𝑥3 + 𝑒𝑥4)𝑑𝑡 − 𝑟

𝑇

∫
0

(

1 − 𝜔
𝐾

)

𝑑𝑡

≤ 𝛾𝑇 +𝑀3 =𝑀4.
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Hereafter, since (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡))𝑇 ∈ 𝑋, then the functions 𝑥𝑖 are continuous bounded on [0, 𝑇 ] and they have maximum
and minimum values, we denote by 𝑥𝑖(𝜂𝑖) = max

𝑡∈[0,𝑇 ]
𝑥𝑖(𝑡) and 𝑥𝑖(𝜉𝑖) = min

𝑡∈[0,𝑇 ]
𝑥𝑖(𝑡). We see that

𝑇

∫
0

[

𝐹𝑠(𝑡) + 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4)
]

𝑑𝑡 =

𝑇

∫
0

𝛾𝑒𝑥3𝑑𝑡 +

𝑇

∫
0

𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)
𝜔

𝑑𝑡 −

𝑇

∫
0

𝑟𝑒𝑥3
(

1 − 𝜔
𝐾

)

𝑑𝑡.

As a result,
𝑇

∫
0

𝐹𝑠(𝑡)𝑑𝑡 ≤ 𝛾𝑇 𝑒𝑥3(𝜂3) + 𝛼𝑇 𝑒𝑥3(𝜂3) + 𝑟𝑇 𝑒𝑥3(𝜂3) + 𝑟𝑒𝑥3(𝜂3)

𝐾(𝛾 − 𝑟)

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡.

Hence,

𝑒𝑥3(𝜂3) ≥

𝑇

∫
0

𝐹𝑠(𝑡)𝑑𝑡

(𝛾 + 𝛼 + 𝑟)𝑇 + 𝑟
𝐾(𝛾 − 𝑟)

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡

= 𝐶3.

Similar arguments apply to give

𝑒𝑥4(𝜂4) ≥

𝑇

∫
0

𝐹𝐼 (𝑡)𝑑𝑡

(𝛾 + 𝑔(0) + 𝑟)𝑇 + 𝑟
𝐾(𝛾 − 𝑟)

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡

= 𝐶4.

Moreover, using a simple demonstration by reductio ad absurdum, we show the existence of 𝐶1 > 0 and 𝐶2 > 0 such that
𝑒𝑥1(𝜂1) > 𝐶1 and 𝑒𝑥2(𝜂2) > 𝐶2. Now the first equation of (14) gives

𝑇

∫
0

|𝑥′1(𝑡)|𝑑𝑡 ≤ 𝜆
⎡

⎢

⎢

⎣

𝑇

∫
0

𝛼(𝑒𝑥2 + 𝑒𝑥4)
𝜔

+ 𝑒𝑥2−𝑥1𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟
(

1 + 𝜔
𝐾

)
⎤

⎥

⎥

⎦

𝑑𝑡.

According to the above estimations, it follows that
𝑇

∫
0

|𝑥′1(𝑡)|𝑑𝑡 ≤ 2𝑀1. (24)

Similarly, 0𝑇 |𝑥′2(𝑡)|𝑑𝑡 ≤ 2𝑀2,
𝑇

∫
0

|𝑥3(𝑡)|𝑑𝑡 ≤ 2𝑀3 and
𝑇

∫
0

|𝑥′4(𝑡)|𝑑𝑡 ≤ 2𝑀4. Thus, for 𝑡 ∈ [0, 𝑇 ] we have

𝑥𝑖(𝑡) = 𝑥𝑖(𝜉𝑖) +

𝑡

∫
𝜉𝑖

𝑥′𝑖(𝑠)𝑑𝑠 ≤ 𝑥𝑖(𝜉𝑖) +

𝑇

∫
0

|𝑥′𝑖(𝑠)|𝑑𝑠 < ln𝐾 + 2𝑀𝑖,

for 𝑖 = 1,… , 4. Furthermore,

𝑥𝑖(𝑡) = 𝑥𝑖(𝜂𝑖) +

𝑡

∫
𝜂𝑖

𝑥′𝑖(𝑠)𝑑𝑠 ≥ 𝑥𝑖(𝜂𝑖) −

𝑇

∫
0

|𝑥′𝑖(𝑠)|𝑑𝑠 > ln(𝐶𝑖) − 2𝑀𝑖,

for 𝑖 = 1,… , 4. It may be concluded that

max
𝑡∈[0,𝑇 ]

|𝑥𝑖(𝑡)| < max{| ln𝐾 + 2𝑀𝑖|, | ln(𝐶𝑖) − 2𝑀𝑖|} = 𝑅𝑖, 𝑖 = 1,… , 4.
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Step 2:
Let (𝑥1, 𝑥2, 𝑥3, 𝑥4)𝑇 ∈ ker 𝐿 = ℝ4 be a solution of 𝑄𝑁𝑥 = 0, this means that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−
𝛼𝑒𝑥1(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥1

(

1 − 𝜔
𝐾

)

= 0,

𝛼𝑒𝑥1(𝑒𝑥2(𝑡) + 𝑒𝑥4)
𝜔

− 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥2
(

1 − 𝜔
𝐾

)

= 0,

𝑇

∫
0

𝐹𝑠(𝑡)𝑑𝑡 − 𝑇 𝛾𝑒𝑥3 − 𝑇
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑇 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑇 𝑟𝑒𝑥3

(

1 − 𝜔
𝐾

)

= 0,

𝑇

∫
0

𝐹𝐼 (𝑡)𝑑𝑡 − 𝑇 𝛾𝑒𝑥4 + 𝑇
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
− 𝑇 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑇 𝑟𝑒𝑥4

(

1 − 𝜔
𝐾

)

= 0.

(25)

Now, we take 𝑅0 > 0 large enough such that any solution 𝑥∗ = (𝑥∗1, 𝑥
∗
2, 𝑥

∗
3, 𝑥

∗
4) of the algebraic system (25) satisfies ‖𝑥∗‖ < 𝑅0.

Step 3:
The task is now to find deg{𝐽𝑄𝑁,Ω ∩ ker 𝐿, 0} where 𝐽 is the isomorphism 𝐽 ∶ Im𝑄→ ker 𝐿 such that 𝐽 (𝑥) = 𝑥. We solve
the equation 𝐽𝑄𝑁𝑥 = 0, for 𝑥 ∈ Ω ∩ ker 𝐿, which is equivalent to the algebraic system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−
𝛼𝑒𝑥1(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥1

(

1 − 𝜔
𝐾

)

= 0,

𝛼𝑒𝑥1(𝑒𝑥2(𝑡) + 𝑒𝑥4)
𝜔

− 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑟𝑒𝑥2
(

1 − 𝜔
𝐾

)

= 0,

𝑇

∫
0

𝐹𝑠(𝑡)𝑑𝑡 − 𝑇 𝛾𝑒𝑥3 − 𝑇
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑇 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑇 𝑟𝑒𝑥3

(

1 − 𝜔
𝐾

)

= 0,

𝑇

∫
0

𝐹𝐼 (𝑡)𝑑𝑡 − 𝑇 𝛾𝑒𝑥4 + 𝑇
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
− 𝑇 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) + 𝑇 𝑟𝑒𝑥4

(

1 − 𝜔
𝐾

)

= 0.

(26)

To this aim, we consider an homotopy 𝐻 ∶ 𝐷𝑜𝑚𝐿 × [0, 1] → 𝑋 defined by 𝐻(𝑥, 𝜇) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑟𝑒𝑥1
(

1 − 𝑒𝑥1
𝐾

)

𝑟𝑒𝑥2
(

1 − 𝑒𝑥2
𝐾

)

𝑇

∫
0

𝐹𝑠(𝑡)𝑑𝑡 − 𝑇 𝛾𝑒𝑥3 + 𝑟𝑒𝑥3
(

1 − 𝑒𝑥1
𝐾

)

𝑇

∫
0

𝐹𝐼 (𝑡)𝑑𝑡 − 𝑇 𝛾𝑒𝑥4 + 𝑟𝑒𝑥4
(

1 − 𝑒𝑥2
𝐾

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ 𝜇

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
𝛼𝑒𝑥1(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) −

𝑟𝑒𝑥1 (𝑒𝑥1 + 𝑒𝑥3 + 𝑒𝑥4)
𝐾

𝛼𝑒𝑥1(𝑒𝑥2(𝑡) + 𝑒𝑥4)
𝜔

− 𝑒𝑥2𝑔(𝑒𝑥3 + 𝑒𝑥4) −
𝑟𝑒𝑥2 (𝑒𝑥1 + 𝑒𝑥3 + 𝑒𝑥4)

𝐾

−𝑇
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
+ 𝑇 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) −

𝑟𝑇 𝑒𝑥3 (𝑒𝑥1 + 𝑒𝑥3 + 𝑒𝑥4)
𝐾

𝑇
𝛼𝑒𝑥3(𝑒𝑥2 + 𝑒𝑥4)

𝜔
− 𝑇 𝑒𝑥4𝑔(𝑒𝑥3 + 𝑒𝑥4) −

𝑟𝑇 𝑒𝑥3 (𝑒𝑥1 + 𝑒𝑥3 + 𝑒𝑥4)
𝐾

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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It is easily seen that the following algebraic system

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑟𝑒𝑥1
(

1 − 𝑒𝑥1
𝐾

)

= 0,

𝑟𝑒𝑥2
(

1 − 𝑒𝑥2
𝐾

)

= 0,
𝑇

∫
0

𝐹𝑠(𝑡)𝑑𝑡 − 𝑇 𝛾𝑒𝑥3 + 𝑟𝑒𝑥3
(

1 − 𝑒𝑥1
𝐾

)

= 0,

𝑇

∫
0

𝐹𝐼 (𝑡)𝑑𝑡 − 𝑇 𝛾𝑒𝑥4 + 𝑟𝑒𝑥4
(

1 − 𝑒𝑥2
𝐾

)

= 0,

has a unique positive solution given by

𝑒𝑥1 = 𝐾, 𝑒𝑥2 = 𝐾, 𝑒𝑥3 = 1
𝛾𝑇

𝑇

∫
0

𝐹𝑠(𝑡)𝑑𝑡, 𝑒𝑥4 = 1
𝛾𝑇

𝑇

∫
0

𝐹𝐼 (𝑡)𝑑𝑡. (27)

Let us denote

𝑅5 = 2𝐾 + 1
𝛾𝑇

𝑇

∫
0

(𝐹𝑠(𝑡) + 𝐹𝐼 (𝑡))𝑑𝑡

and 𝑅 =
5
∑

𝑖=0
𝑅𝑖. Therefore, by choosing Ω defined as

Ω =
{

𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)𝑇 ∈ 𝑋 ∶ ‖𝑥‖ < 𝑅
}

,

then the first two conditions of the continuation theorem are fulfilled and the solution (27) belongs to Ω. Further, since the degree
is invariant among homotopy, then

deg{𝐽𝑄𝑁,Ω ∩ ker 𝐿, 0} = deg{𝐻(⋅, 1),Ω ∩ ker 𝐿, 0}
= deg{𝐻(⋅, 0),Ω ∩ ker 𝐿, 0} = 1 ≠ 0,

and the proof is complete.

At the end of this section, we present some numerical simulations to illustrate the results. By choosing 𝐹𝑠(𝑡) = 5000 +
2500 cos (𝜋𝑡∕10) sin (𝜋𝑡∕10), 𝐹𝐼 (𝑡) = 5200 + 2600 cos (𝜋𝑡∕10) sin (𝜋𝑡∕10) and 𝑔(𝐿) = 100

√

𝐿+1
, we obtain the dynamics in Fig.

5 (again, parameters are chosen for illustrative purposes only).

5 DISCUSSION

In the present paper, we investigate a model describing the dynamics of resistant and non-resistant bacteria in polluted rivers. Our
model extends previous works realized by10,11. The main modification here is the nonlinear transmission rate of the antibiotic
resistant gene, and the generalization of the rate of loss of this gene. Our model is defined by a non-autonomous system of four
differential equations.

As with many models of this kind, certain aspects of the environment are naturally over-simplified. For example, there are
of course many different strains of bacteria that would in reality have different growth, death, transmission and loss rates.
Nevertheless, reducing the model to these four variables enables important headway to be made on understanding the general
dynamics of river bacteria without the need for model parametrization from inevitably noisy data.

Firstly, we establish the existence of a positively invariant attracting set, which confirms that populations survive and there is
a natural restriction to growth as a consequence of limited resources as captured in the logistic growth term.

Next, we study the associated autonomous system (i.e. 𝐹𝑠 = 𝐹𝐼 = 0) in order to understand bacterial resistance phenomena
under non-polluted conditions. The global asymptotic stability of the resistant free equilibrium 𝐸1(𝐾, 0, 0, 0) and the resistant
equilibrium𝐸2

(

𝑅∗
𝑠 , 𝑅

∗
𝐼 , 0, 0

)

is given by constructing Lyapunov functions. From a biological point of view, it can be noted that:
(i) if the loss rate of the antibiotic-resistant gene is high compared to its transmission rate, then the resistant bacteria will be
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FIGURE 5 Choosing 𝛼 = 1, 𝛾 = 7, 𝑟 = 3, 𝐾 = 100000 and 𝑅𝑠(0) = 67200, 𝑅𝐼 (0) = 19400, 𝐿𝑠(0) = 7500, 𝐿𝐼 (0) = 6700, we
have a periodic positive solution of (4).

eliminated in the long run, i.e., the resistant bacteria renew the population of non-resistant bacteria via loss of the gene. (ii) If the
transmission rate of the antibiotic-resistant gene is strong as compared to the loss rate of this gene, then the resistant and non-
resistant bacteria eventually persist alongside each other, and if this difference is sufficiently high (𝛼 > 2𝑔(0)), resistant bacteria
could even outnumber susceptible bacteria (though this is a somewhat unrealistic outcome). In scenario (ii), even preventing new
resistant bacteria from entering the river would be insufficient to eradicate the resistance gene from the environment. Whether
the acquisition rate or loss rate of the antibiotic resistant gene is higher is likely to be determined by the environment in which the
bacteria reside: maintenance of the antibiotic resistance gene typically requires energy and so the bacteria may shed this gene at
a higher rate as an energy saving mechanism if they are not in the vicinity of antibiotic. Thus in areas immediately downstream
of, say, a hospital (where antibiotic residue is more likely to enter the river) may be more likely to give rise to resistant bacteria
persisting than elsewhere in the river.

Finally, the non-autonomous system is analyzed, in the case where 𝐹𝑠(𝑡) and 𝐹𝐼 (𝑡) are periodic functions. In fact, the existence
of at least one periodic solution is established. Biologically, this means that if the pollutants are being deposited into the river
intensively and regularly, then pollutant bacteria remain in the river and promote antibiotic resistance. In our future work, we
will try to show the stability of a unique periodic solution by constructing suitable Lyapunov functionals.
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