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Decreased grey matter 
volumes in unaffected mothers 
of individuals with autism spectrum 
disorder reflect the broader autism 
endophenotype
Kyung‑min An1,2*, Takashi Ikeda1,2, Tetsu Hirosawa1,2, Ken Yaoi1,2, Yuko Yoshimura1,2,3, 
Chiaki Hasegawa1, Sanae Tanaka1,2, Daisuke N. Saito1,2* & Mitsuru Kikuchi1,2,4

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an early onset and a strong 
genetic origin. Unaffected relatives may present similar but subthreshold characteristics of ASD. This 
broader autism phenotype is especially prevalent in the parents of individuals with ASD, suggesting 
that it has heritable factors. Although previous studies have demonstrated brain morphometry 
differences in ASD, they are poorly understood in parents of individuals with ASD. Here, we estimated 
grey matter volume in 45 mothers of children with ASD (mASD) and 46 age-, sex-, and handedness-
matched controls using whole-brain voxel-based morphometry analysis. The mASD group had smaller 
grey matter volume in the right middle temporal gyrus, temporoparietal junction, cerebellum, and 
parahippocampal gyrus compared with the control group. Furthermore, we analysed the correlations 
of these brain volumes with ASD behavioural characteristics using autism spectrum quotient (AQ) and 
systemizing quotient (SQ) scores, which measure general autistic traits and the drive to systemize. 
Smaller volumes in the middle temporal gyrus and temporoparietal junction correlated with higher 
SQ scores, and smaller volumes in the cerebellum and parahippocampal gyrus correlated with higher 
AQ scores. Our findings suggest that atypical grey matter volumes in mASD may represent one of the 
neurostructural endophenotypes of ASD.

Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder that is characterized by social 
and communication deficits, restricted interests, and repetitive behaviours1. ASD may develop as a result of com-
plex interactions between genetic vulnerability and environmental factors during critical neurodevelopmental 
periods2. Although the exact cause of ASD remains unclear, ASD is one of the most heritable major neurodevel-
opmental disorders3,4. A recent meta-analysis reported its heritability as between 61 and 91%, suggesting that 
ASD has a substantial genetic component5.

According to genetic epidemiological data, relatives of individuals with ASD express subclinical autism-like 
personality traits6,7. When Kanner and Asperger described autism, they reported that parents of individuals 
with ASD have autistic traits, such as mild obsessiveness, late speech onset, and problems relating to the outside 
world8,9. Most previous studies have reported that relatives of individuals with ASD experience more impaired 
communication, rigid behaviour, mentalizing deficits10–16, and general autistic traits17,18 than the general popula-
tion. In relatives of individuals with ASD, autistic traits have been observed not only in behavioural and cognitive 
aspects, but also in dysregulated neurochemical features, such as whole blood serotonin levels19, reelin levels20, 
and amino acid metabolism21.

It has been suggested that these types of subthreshold autistic traits are part of the broader autism phenotype 
(BAP)22. BAP traits are more prevalent in first-degree relatives of ASD probands compared with other groups, 
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which supports the assumption of the genetic heritability of ASD23,24. By studying the parents of individuals with 
ASD, it may be possible to further understand the different endophenotypes (also called intermediate pheno-
types) of ASD25,26. An endophenotype is a heritable and quantitative trait that is intermediary between disease 
symptoms and the genes associated with the disease27.

Regarding brain structure and function in ASD, previous neuroimaging studies have reported that indi-
viduals with ASD show abnormalities in many brain regions, including the superior temporal sulcus, middle 
temporal gyrus (MTG), temporoparietal junction (TPJ), fusiform gyrus, amygdala, anterior cingulate cortex, 
medial prefrontal cortex, inferior frontal gyrus, hippocampus, parahippocampal gyrus, corpus callosum, and 
cerebellum28–34. Although atypical brain structures in ASD have frequently been reported, the brain structures 
of parents of individuals with ASD are poorly understood and findings remain controversial25,26,35,36. Rojas et al. 
reported that the parents of individuals with ASD showed greater left hippocampal volume than a control group36. 
Peterson et al. found that the parents of individuals with ASD had increased volumes in some brain areas, includ-
ing the superior temporal gyri, inferior and middle frontal gyri, superior parietal lobule, and anterior cingulate, 
as well as decreased volume in the left anterior cerebellar hemisphere35. In contrast, Palmen et al. reported no 
significant differences in brain structure of parents of individuals with ASD compared with a control group26. 
The discrepant findings between previous studies on the parents of individuals with ASD may be the result of 
different analytical methods (e.g. manual tracing, automatic tracing, or whole-brain voxel-based morphometry 
[VBM]), subject numbers (which is related to statistical power), or sex distribution of subjects.

In the present study, we applied whole-brain VBM analysis to 45 mothers of children with ASD (mASD) and 
46 age-, sex-, and handedness-matched controls. We compared grey matter (GM) volume between the mASD 
and control groups to investigate the heritable aspects of brain structure and the neuroendophenotypes of ASD. 
We hypothesized that the mASD group would show some of the atypical brain structure patterns that have 
been previously reported in individuals with ASD. Furthermore, we aimed to determine whether brain volume 
abnormalities in mASD are correlated with scores on the autism spectrum quotient (AQ) and the systemizing 
quotient (SQ), which measure general autistic traits and the drive to systemize37,38.

Methods
Participants.  We recruited 46 healthy mothers of children with ASD (mASD group) and 48 age-matched 
healthy mothers of typically developing children (control group). Owing to low data quality, we excluded the 
data of one participant from the mASD group and the data of two participants from the control group. We ana-
lysed the data of 45 healthy mothers of children with ASD for the mASD group (mean age = 38.33 years, standard 
deviation [SD] = 4.33). We confirmed the diagnoses of the children with ASD using the Diagnostic and Statistical 
Manual of Mental Disorders Fifth Edition (DSM-V) criteria1, the Diagnostic Interview for Social and Com-
munication Disorders39, and/or the Autism Diagnostic Observational Schedule–Generic40. All diagnoses were 
confirmed by local psychiatrists and clinical speech therapists. We used data from 46 age-matched healthy moth-
ers of typically developing children for the control group (mean age = 38.78 years, SD = 3.98). All participants 
were recruited from public nursery schools in Kanazawa city, Kanazawa University Hospital, and prefectural 
hospitals in Toyama. Parents who reported difficulties in daily life because of their own intelligence level, or who 
were being treated for any mental illness, were excluded from this study. None of the participants had received 
an official diagnosis of autism. All participants provided full written informed consent to participate in the study, 
and the procedures were approved by the ethics committee of Kanazawa University Hospital. All methods were 
performed in accordance with the Kanazawa University Hospital Ethics Committee guidelines and regulations.

The Edinburgh Handedness Inventory41 revealed that most participants were right-handed, except for one 
left-handed and one ambidextrous participant per group. We matched the groups on age, sex, and handedness 
to reduce potential confounding factors.

To evaluate the autistic-like behavioural features of the two groups, we used the AQ, which measures autistic 
traits38, and the SQ, which measures the drive to systemize37. Both assessments are self-report questionnaires. 
Total AQ scores can range from 0 to 50; a higher AQ score indicates that the individual has more ‘autistic-like’ 
behaviours. Total SQ scores can range from 0 to 80; a higher SQ score corresponds to a greater drive to systemize 
and is a behavioural characteristic of ASD. Additional participant details are shown in Table 1.

Magnetic resonance imaging (MRI) acquisition.  Structural MRI scans were acquired using a 1.5 T MRI 
scanner (SIGNA Explorer, GE Healthcare, Chicago, IL, USA) with a T1-weighted Fast SPGR sequence using the 
following parameters: repetition time = 8.364 ms, echo time = 3.424 ms, flip angle = 12°, field of view = 260 mm, 
matrix size = 512 × 512 pixels, slice thickness = 1 mm, and 176 transaxial images.

VBM analysis.  VBM was performed using the Computational Anatomical Toolbox 12 (CAT12; Structural 
Brain Mapping Group, Jena University Hospital, Jena, Germany) implemented in Statistical Parametric Mapping 
12 (SPM12; Wellcome Trust Centre for Neuroimaging, London, UK).

T1-weighted anatomical images were corrected for bias-field inhomogeneities, and were then segmented 
into GM, white matter (WM), and cerebrospinal fluid (CSF)42. The total GM, WM, and CSF volume was cal-
culated as the total intracranial volume (TIV). Each tissue class was spatially normalized into the DARTEL 
template in Montreal Neurological Institute space, which is derived from 555 healthy subjects aged between 20 
and 80 years from the IXI-database43. The segmentation process was further extended by accounting for partial 
volume estimations44. We tested data quality and sample homogeneity using Mahalanobis distance algorithms 
implemented in CAT12. Mahalanobis distance combines weighted overall image quality, which is a measure of 
noise and other image artefacts (e.g. motion) before preprocessing, and mean correlation, which is a measure of 
the data homogeneity after preprocessing. We excluded the data of one participant from the mASD group and 
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the data of two participants from the control group, because the Mahalanobis distance was larger than 2 SDs for 
these data. For further analysis, we used data from 45 mASD group participants and 46 control group partici-
pants. The preprocessed scans were smoothed using a Gaussian kernel of 6 mm (full width at half maximum).

Statistical analysis.  We compared absolute volumes of GM structures using modulated images. To analyse 
the GM differences between the mASD and control groups, we performed voxel-wise two-sample t-tests using 
the general linear model implemented in SPM12, which uses Gaussian random field theory. We used the covari-
ates of total GM and age as potential confounders in the general linear model.

The clusters were considered significant at P < 0.05 after correcting for false discovery rate (FDR) comparisons 
(with initial peak-level thresholding at P < 0.001 and clusters > 200 voxels). Automated anatomical labelling was 
used to label the significant clusters45.

The volumes of the significant clusters were extracted, and Spearman’s rho test was conducted with AQ and 
SQ scores using the Statistical Package for Social Sciences (SPSS, Version 25). For all statistical analyses, we used 
an alpha level of 0.05 with FDR multiple corrections.

Ethics approval and consent to participate.  This study was approved by the ethics committee of 
Kanazawa University Hospital. After receiving a complete explanation of the study, all participants provided full 
written informed consent.

Results
For autistic-like behavioural features, there was no significant difference in AQ and SQ scores between the two 
groups with FDR correction (AQ scores: t(89) =  − 1.734, P = 0.086; SQ scores: t(89) =  − 2.109, P = 0.039).

The VBM analysis demonstrated that GM volumes in several brain regions were smaller in the mASD group 
relative to the control group. Two clusters showed statistically significant differences between the mASD and 
control groups (Fig. 1).

We observed the first significant cluster in the right MTG (88.42%) and OUTSIDE (9.60%) regions (Table 2). 
The anatomical label “OUTSIDE” indicates that this part of the region is outside the brain parcellation. This clus-
ter comprised the posterior part of the MTG and stretched into the parietal side. According to a previous study 
on brain anatomy of the TPJ46, the parietal part of this cluster can be defined as the brain region at or outside 
the posterior and inferior edge of the TPJ. The mASD group had smaller GM volume in this cluster compared 
with the control group (t(89) = 4.330, P = 0.000) (Fig. 2a,b). Furthermore, the mASD group also had smaller GM 
volume in the second cluster (t(89) = 3.528, P = 0.001) (Fig. 3a,b). The second cluster was labelled as the right 
cerebellum (85.71%) and the parahippocampal gyrus (9.07%) (Table 2). There were no significant increases in 
GM volume in the mASD group relative to the control group.

We also identified correlations between the significant GM volume clusters and behavioural traits, using 
Spearman’s rho test. AQ scores were negatively correlated with the second cluster (ρ =  − 0.252, P = 0.016) (Fig. 3c). 
However, they were not correlated with the first cluster (P > 0.05). In contrast, SQ scores were negatively cor-
related with the first cluster (ρ =  − 0.249, P = 0.017) (Fig. 2c), but were not correlated with the second cluster 
(P > 0.05).

Discussion
ASD is one of the most heritable major neurodevelopmental disorders. Unaffected relatives of individuals with 
ASD, and especially the parents of individuals with ASD, have been widely reported to have subclinical forms of 
behavioural and neurobiological patterns that are characteristic of ASD. This feature of the parents of individuals 

Table 1.   Participant characteristics. Means ± standard deviations and accompanying statistics (two-sided 
t-tests) for participant characteristics. There were no significant differences in age, AQ score, or SQ score 
between the control and mASD groups (two-sample t-tests with FDR multiple corrections). TIVs were 
significantly different between the control and mASD groups. *P < 0.05. AQ autism spectrum quotient, mASD 
mothers of individuals with autism spectrum disorder, SQ systemizing quotient, TIV total intracranial volume, 
TGM total grey matter volume, TWM total white matter volume, CSF cerebrospinal fluid, FDR false discovery 
rate.

Characteristics Controls (n = 46) mASD (n = 45) t P

Age in years 38.78 ± 3.98 38.33 ± 4.33 0.516 0.607

Handedness (right/left/ambidextrous) 44/1/1 43/1/1

AQ 14.74 ± 6.74 17.31 ± 7.40  − 1.734 0.086

SQ 10.98 ± 5.75 14.60 ± 10.02  − 2.109 0.039

TIV 1396.44 ± 88.17 1355.37 ± 92.19 2.172 0.033*

TGM 619.62 ± 37.97 606.73 ± 37.79 1.623 0.108

TWM 486.82 ± 42.48 464.50 ± 39.75 2.587 0.011*

CSF 289.47 ± 40.04 283.62 ± 49.27 0.623 0.535
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with ASD has been termed the BAP. However, the brain structural features of parents of individuals with ASD 
are poorly understood and findings remain controversial.

In the present study, we observed the phenomenon of BAP through the subthreshold autistic-like behavioural 
features of mASD. We found qualitative differences in AQ and SQ scores between the mASD and control groups, 
although these were not significant when corrected for multiple comparisons. These findings suggest that parents 
of children with ASD have subclinical elevations in ASD traits.

To investigate the brain structural features of parents of individuals with ASD, we used VBM to examine 
brain GM volume in 45 unaffected mASD and 46 age-, sex-, and handedness-matched controls. We identified 
smaller GM volume in the MTG, TPJ, cerebellum, and parahippocampal gyrus in the mASD group. Moreover, 
we found that the volume of the significant MTG and TPJ cluster was negatively correlated with SQ scores, which 
assess the autistic drive to analyse or construct systems. Additionally, the volume of the significant cerebellum 
and parahippocampal gyrus cluster was negatively correlated with AQ scores, which measure autistic traits.

Figure 1.   Grey matter volume differences between the mASD and control groups. (a) Areas of decreased grey 
matter volume in the mASD group, compared with the control group, from the voxel-wise two-sample t-test. 
All clusters shown in the results survived thresholding at P < 0.05 after FDR correction. (b) Two clusters were 
significantly smaller in the mASD group. Numbers denote MNI coordinates. The colour intensity represents 
t-statistic values at the voxel level. The results are visualized on standard normalized T1-weighted images 
in selected slices and displayed in accordance with neurological convention (i.e. right hemisphere on the 
right). mASD mothers of individuals with autism spectrum disorder, FDR false discovery rate, MNI Montreal 
Neurological Institute.
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The MTG is associated with language, emotion, and social cognition (i.e. theory of mind or mentalization)47–50 
and may be related to dysfunctions in mentalization and social processing in ASD51–56. Structural and functional 
imaging studies have shown that the MTG is atypical in individuals with ASD, but findings remain controver-
sial. A previous study reported that an ASD group showed decreased GM volume in the MTG, similar to our 
findings that the mASD group had smaller MTG volume57. In contrast, several previous meta-analytic studies 

Table 2.   Brain regions with significant volume differences between the mASD and control groups. Only 
clusters with qFDR < 0.05 and their maximum peak voxels are presented; only AAL-defined regions 
comprising ≥ 5% of a cluster are listed. The “OUTSIDE” anatomical label indicates a part of the region outside 
the parcellation. AAL automated anatomical labelling, MNI Montreal Neurological Institute, mASD mothers of 
individuals with autism spectrum disorder, qFDR false discovery rate q-value.

Cluster size qFDR

Peak MNI coordinates in mm

Brain regions (AAL)x y z

mASD < control

354 0.014 42  − 69 8
Temporal_Mid_R (88.42%)

OUTSIDE (9.60%)

364 0.014 18  − 41  − 24

Cerebellum_4_5_R (54.67%)

Cerebellum_3_R (31.04%)

ParaHippocampal_R (9.07%)

mASD > control

None

Figure 2.   Grey matter volume differences between the mASD and control groups in the first cluster. (a) The 
first significant cluster was observed in the right middle temporal gyrus. (b) Grey matter volume of the cluster 
was significantly different between the mASD and control groups (t(89) = 4.330, P = 0.000). (c) Scatter plot 
showing negative correlation between the grey matter extraction of the cluster and SQ scores for all subjects. The 
grey matter volume of the cluster was negatively correlated with SQ scores (ρ =  − 0.249, P = 0.017). ***P < 0.001. 
GM grey matter, mASD mothers of individuals with autism spectrum disorder, SQ systemizing quotient.
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found that an ASD group had increased GM volume in the MTG58,59. Other meta-analytic studies have reported 
both increased and decreased GM volume in the MTG in ASD participants60,61. Regarding brain connectivity, 
individuals with ASD have hypoconnectivity of the posterior part of the MTG, indicating an association between 
the MTG and social cognition62,63.

The TPJ is a multimodal association area that receives and integrates input from the thalamus and multiple 
sensory modalities. Abnormalities in the higher-order integration area have been associated with lack of a 
mentalizing ability (i.e. theory of mind)64,65. The TPJ may play an important role in mentalizing, and mental-
izing deficits are considered a key characteristic of ASD66–70. Moreover, TPJ abnormalities are one of the most 
consistent findings of brain structure71,72 and function67,73 in ASD.

The MTG and TPJ have often been implicated as aspects of the social brain, along with the superior tempo-
ral sulcus, fusiform gyrus, amygdala, anterior cingulate cortex, medial prefrontal cortex, and inferior frontal 
gyrus28,29,74,75. Abnormalities in the social brain regions have been widely suggested to result in poor social 
interactions in individuals with ASD30,31,73,76–78.

In the present study, smaller GM volumes within the MTG and TPJ correlated with higher SQ scores. The 
SQ assesses the drive to systemize, analyse, control, and construct rule-based systems, and all these features are 
involved in ASD37. Systemizing characteristics may mean that an individual is more interested in objects and/
or rule-based systems than in social communication37,79. We thus speculate that a stronger drive to systemize 
is correlated with a smaller volume in social brain areas such as the MTG and TPJ. We suggest that the atypical 
GM volume of these social parts of the brain (i.e. the MTG and TPJ) may represent a potential neuroendophe-
notype of ASD.

We also identified a smaller volume in the cerebellum and parahippocampal gyrus of the mASD group. 
Although the cerebellum accounts for only 10% of the brain’s volume, it contains over half of all brain neurons80. 
The cerebellum plays an integrative role in the brain and connects many brain regions32,81–84. The cerebellum 
receives sensory information and conveys outputs to influence motor function through the cerebello-thalamo-
cortical loops84–86. The cerebello-thalamocortical loops also have interconnections with the cerebral cortices and 
contribute to cognitive processing, including visuospatial perception, auditory processing, executive functions, 

Figure 3.   Grey matter volume differences between the mASD and control groups in the second cluster. (a) The 
second significant cluster was observed in the right cerebellum and parahippocampal gyrus. (b) Grey matter 
volume of the cluster was significantly different between the mASD and control groups (t(89) = 3.528, P = 0.001). 
(c) Scatter plot showing negative correlation between the grey matter extraction of the cluster and AQ scores 
for all subjects. The grey matter volume of the cluster was negatively correlated with AQ scores (ρ =  − 0.252, 
P = 0.016). **P < 0.01. GM grey matter, mASD mothers of individuals with autism spectrum disorder, AQ autism 
spectrum quotient.
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and language skills81,83,84,86,87. The cerebellum is also linked to the frontal cortex88 and is involved in high-order 
cognitive functions82,83. Together, these findings indicate that the cerebellum is associated not only with motor 
coordination, but also with various forms of cognitive processing81,89,90.

Cerebellar abnormalities have been reported in individuals with ASD from early life through to 
adulthood33,34,91–94. Several previous studies on brain structure in ASD have reported decreased GM volume in the 
cerebellum in ASD groups, similar to our findings for the mASD group58,59. However, some meta-analytic studies 
have found that ASD groups showed decreased as well as increased GM volume in the cerebellum60,95. Recently, 
cerebellar neuropathology has gained attention as a means of explaining the characteristics of ASD32,87,96. Cerebel-
lar abnormalities may be related to some ASD characteristics, such as a high rate of motor dysfunction, atypical 
sensory responsiveness, and impaired communication97–99.

The parahippocampal gyrus is an important pathway to the hippocampus and mediates convergent neo-
cortical information for memory representations100. Functional MRI studies have shown that the right anterior 
parahippocampal gyrus is involved in the interactions between memory and emotion101, and may contribute to 
involuntary reactions associated with contextual fear memory that result in avoidance behaviour102. Previous 
brain structure studies have reported that individuals with ASD have abnormal patterns in the parahippocampal 
gyrus34,103,104. Furthermore, a reduction in parahippocampal GM volume may be related to the tendency to ignore 
dangers in individuals with ASD104.

In the present study, smaller GM volumes within the cerebellum and parahippocampal gyrus were related to 
higher levels of autistic traits. The cerebellum and parahippocampal gyrus play a role in receiving information 
from the cerebral cortex, and contribute to influencing emotional processing and various types of cognitive 
processing. We speculate that abnormalities in these brain areas may result in an atypical mediating pattern for 
emotional and cognitive processing in ASD. The small GM volumes in these brain regions might be related to 
subclinical ASD behavioural features, and may reflect a heritable neurobiological feature of ASD.

Our findings did not replicate the results of previous structural MRI studies of parents of individuals with 
ASD. There have been three such studies and they have reported inconsistent findings26,35,36. Rojas et al. meas-
ured volume in the hippocampus and amygdala in ASD individuals, the parents of individuals with ASD, and 
control subjects using manual-tracing techniques36. Both ASD individuals and parents of individuals with ASD 
had increased left hippocampal volume compared with the control group. In contrast, Palmen et al. used a semi-
automatic procedure to compare the volume of the total brain, cortical lobes, cerebral GM and WM, cerebellum, 
and ventricles in the parents of individuals with ASD and a control group26. They found no significant differ-
ences in brain volume between the two groups. Peterson et al. used a VBM-based approach to compare regional 
GM volumes between a relatively small number of subjects (23 parents of individuals with ASD and 23 control 
subjects; 15 mothers and 8 fathers per group)35. They reported that the parents of individuals with ASD had 
increased volumes of the superior temporal gyri, inferior and middle frontal gyri, superior parietal lobule, and 
anterior cingulate, as well as decreased left anterior cerebellar hemisphere volume. The discrepancies between 
these three studies may result from both different analytical methods (manual-tracing technique, semi-automatic 
technique, or VBM methods) and participant characteristics (the number or sex of subjects).

Limitations.  In the present study, we examined the GM volume in mothers of children with ASD, to exclude 
any potential confounding factors related to sex. To increase the generalizability of our findings, additional 
studies should include data from the fathers of children with ASD. In addition, further studies are required to 
investigate the relationship between brain imaging and gene expression, to provide more solid evidence for BAP 
neuroendophenotypes. We used AQ and SQ scores to assess autistic-like behavioural features of the participants. 
A study limitation is that these are self-report measures. We found that a considerable part of the first cluster 
was outside the anatomy parcellations (i.e. outside the brain) and the second cluster spans biologically distinct 
structures. These results may have been affected by motion, although we checked for noise and discarded noisy 
data using the Mahalanobis distance algorithm. It is necessary to confirm the present results using motion detec-
tion techniques in the future study.

Conclusions
Previous findings on brain structure in individuals with ASD and their parents are controversial. In the present 
study, we calculated GM volume in mASD and control groups using the whole-brain VBM method. We found 
that compared with the control group, the mASD group had smaller GM volumes in the MTG, TPJ, cerebellum, 
and parahippocampal gyrus. Our findings provide evidence to clarify controversial findings regarding inter-
mediate neurobiological patterns observed in relatives of individuals with ASD, which we hope will ultimately 
help elucidate the underlying neurobiology of ASD. We suggest that these brain regions represent heritable brain 
structural features of ASD.

Data availability
The datasets generated and/or analysed during the current study are not publicly available as they contain infor-
mation that could compromise the privacy of research participants but are available from the corresponding 
author on reasonable request.
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