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SUMMARY

Oncogenic transcription factors such as RUNX1/
ETO, which is generated by the chromosomal
translocation t(8;21), subvert normal blood cell
development by impairing differentiation and driving
malignant self-renewal. Here, we use digital foot-
printing and chromatin immunoprecipitation se-
quencing (ChIP-seq) to identify the core RUNX1/
ETO-responsive transcriptional network of t(8;21)
cells. We show that the transcriptional program
underlying leukemic propagation is regulated by a
dynamic equilibrium between RUNX1/ETO and
RUNX1 complexes, which bind to identical DNA sites
in a mutually exclusive fashion. Perturbation of this
equilibrium in t(8;21) cells by RUNX1/ETO depletion
leads to a global redistribution of transcription factor
complexes within preexisting open chromatin, re-
sulting in the formation of a transcriptional network
that drives myeloid differentiation. Our work demon-
strates on a genome-wide level that the extent of
impaired myeloid differentiation in t(8;21) is con-
trolled by the dynamic balance between RUNX1/
ETO and RUNX1 activities through the repression of
transcription factors that drive differentiation.
INTRODUCTION

Lineage-specific cell differentiation is controlled by the estab-

lishment of specific gene-expression patterns in normal cells,

and interference with this process underpins oncogenesis.

Hematopoiesis is one of the best-understood developmental

pathways and involves dynamic alterations in transcriptional

programs, which regulate progression along the differentiation
1974 Cell Reports 8, 1974–1988, September 25, 2014 ª2014 The Au
hierarchy (Pimanda and Göttgens, 2010). Individual cellular dif-

ferentiation states are defined by transcriptional networks

composed of combinations of transcription factors that bind to

specific sets of cis-regulatory elements (Davidson, 2010). There-

fore, experimental analysis of the binding activities of multiple

factors has served as a means of identifying crucial regulators

for a specific cell type (DeVilbiss et al., 2014; Tijssen et al.,

2011). However, normal differentiation is impaired in cancers,

leading cells to adopt a new malignant identity. Unique insights

into processes that control development toward both normal

and perturbed differentiation states can be gained from a

detailed examination of the mechanisms utilized by leukemic

transcription factors such as PML/RARA, MLL fusion proteins,

and RUNX1/ETO. These factors reprogram the epigenome and

thereby block the hierarchical succession of normal transcrip-

tional networks.

Leukemias are characterized by good experimental accessi-

bility and, compared with many carcinomas, relatively high

genetic stability, which makes them very amenable to investiga-

tions of general as well as specific mechanisms of oncogenesis.

Acute myeloid leukemia (AML) is the second most common leu-

kemia and is a heterogeneous disease with impaired myeloid

differentiation (Valk et al., 2004). The hallmarks of AML are mul-

tiple somatic mutations, including genetic rearrangements that

affect signal transduction and gene expression. This includes

mutations in genes encoding DNA methylases, chromatin mod-

ifiers, and transcription factors. Many such mutations affect

transcription factors that are crucial for the development of he-

matopoietic stem cells or for terminal myeloid differentiation,

such as RUNX1 and C/EBPa, respectively (Gaidzik et al.,

2011; Michaud et al., 2002; Pabst et al., 2001b; Snaddon

et al., 2003). However, the molecular details of how suchmutant

transcription factors cause alterations of the epigenome are still

insufficiently understood. In addition, so far no experiments

have defined the core transcriptional network of a specific

type of AML and dissected the role of mutated transcription fac-

tors within this network.
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One of the best-characterized chromosomal rearrangements

found in AML is the t(8;21) translocation, which accounts for

approximately 10% of all AMLs. This translocation fuses the

DNA-binding domain of the hematopoietic master regulator

RUNX1 to almost the entire ETO protein, which is an adaptor

protein for histone deacetylase (HDAC) complexes (Miyoshi

et al., 1993). The resulting RUNX1/ETO fusion protein lacks the

transactivation domain of RUNX1, resulting in major differences

in the biological activities of the two proteins. RUNX1 normally

recruits transcriptional activators and binds to DNA as a hetero-

dimer with core-binding factor b (CBFb). The RUNX1/ETO fusion

protein also interacts with CBFb but functions as a RUNX1/

ETO tetramer (Liu et al., 2006), and like ETO itself, it also inter-

acts with NCOR and SIN3A corepressors (Amann et al., 2001).

Consequently, this chromosomal rearrangement converts a

transcriptional activator into a repressor. However, there is evi-

dence that RUNX1 also interacts with HDACs via SIN3A and

can act as a repressor (Reed-Inderbitzin et al., 2006; Taniuchi

et al., 2002). Proteomic and chromatin immunoprecipitation

(ChIP) analyses in t(8;21) cell lines have demonstrated the asso-

ciation of RUNX1/ETO with multiple hematopoietic regulators

known to be involved in the regulation of hematopoietic stem

cell genes (Wilson et al., 2010). The RUNX1/ETO complex

consists of the E box binding transcription factors HEB and

LYL1 and the bridging factors LMO2 and LDB1. In chromatin,

this complex interacts with the ETS family members FLI1 and

ERG, and these interactions are required for the stability of the

complex and its leukemogenicity (Martens et al., 2012; Sun

et al., 2013).

Genome-wide analyses in t(8;21) cell lines and in patients via

ChIP sequencing (ChIP-seq) identified thousands of RUNX1/

ETO-binding sites (Ben-Ami et al., 2013; Martens et al., 2012;

Ptasinska et al., 2012; Saeed et al., 2012), but the role of specific

binding sites within the AML-specific transcriptional network is

unclear. All t(8;21) AML cells retain an intact copy of RUNX1,

which is required for cell survival—a feature that has also been

observed in other CBF leukemias (Ben-Ami et al., 2013; Goyama

et al., 2013). RUNX1 and RUNX1/ETO each drive the expression

of alternate subsets of genes (Ben-Ami et al., 2013). However,

60% of the RUNX1/ETO sites are shared with RUNX1 (Ptasinska

et al., 2012), and whether there is a direct dynamic competition

between RUNX1/ETO and RUNX1 for the same genomic sites

remains to be investigated.

The differentiation of t(8;21) cells is blocked at an early myeloid

progenitor stage and so far the core transcriptional program un-

derlying this block has been elusive. Changes in RUNX1/ETO

expression in t(8;21) AML cells are associated with both up-

and downregulated genes, and individual RUNX1/ETO-bound

genomic sites recruit both histone acetyltransferases (HATs)

and HDACs (Follows et al., 2003; Ptasinska et al., 2012; Sun

et al., 2013; Wang et al., 2011). However, we previously showed

that the genome-wide loss of RUNX1/ETO binding correlates

with increased histone H3 lysine 9 (H3K9) acetylation (Ptasinska

et al., 2012). In addition, RUNX1/ETO depletion is associated

with the upregulation of C/EBPa, a driver of myeloid and, in

particular, granulocytic differentiation (Zhang et al., 1997). More-

over, RUNX1/ETO has been shown to sequester C/EBPa from its

murine promoter, thereby interfering with C/EBPa expression
Cell Re
(Pabst et al., 2001a). RUNX1/ETO knockdown causes release

of the differentiation block, resulting in a gene-expression

pattern that resembles that of granulocytes andmonocytes (Pta-

sinska et al., 2012). Taken together, these results suggest that

RUNX1/ETO-mediated reprogramming of the epigenome in-

volves a complex and so far unexplored interplay of different

transcription-factor and chromatin-modifying cofactor activities.

To date, we have gained little insight into the nature of this

reprogrammed network and the sequential order of factors

required to restore normal myeloid cell functions.

In this study, we addressed these issues by investigating the

dynamic changes in global transcription-factor-binding patterns

that occur following depletion of RUNX1/ETO. To that end, we

combined ChIP-seq for multiple factors, DNaseI footprinting,

and transcriptome analysis to identify the core transcriptional

network of t(8;21) AML cells, and then characterized changes

in these networks upon RUNX1/ETO knockdown. These ana-

lyses revealed a dynamic equilibrium between RUNX1/ETO

and RUNX1 complexes competing for identical genomic sites.

Results from sequential ChIP (re-ChIP) show that the two com-

plexes have similar accessory-factor compositions but differ in

their preference for the recruitment of coactivators and core-

pressors. Using a digital DNaseI footprinting approach, we found

that both t(8;21)-positive cell lines (Kasumi-1 and SKNO-1) and

patient-derived primary AML cells with the t(8;21) translocation

(patient cells) share the same pattern of binding-site occupancy.

Within this core transcriptional network, RUNX1/ETO-bound loci

are predominantly associated with transcriptional repression.

Furthermore, loss of RUNX1/ETO establishes a differentiation-

associated transcriptional network dominated by de novo bind-

ing of C/EBPa resulting from the upregulation of CEBPA gene

expression. Our results demonstrate that the block in myeloid

differentiation in t(8;21) AML results from the dynamic interfer-

ence of RUNX1/ETO with cis-regulatory elements that normally

are destined to change transcription-factor assemblies during

myeloid differentiation, notably those that increase binding of

RUNX1 and C/EBPa.

RESULTS

Transcription-Factor Occupancy Patterns Are Highly
Comparable between t(8;21) Cell Lines and Patient Cells
To define the RUNX1/ETO-responsive core transcriptional

network and monitor dynamic changes associated with alter-

ations in RUNX1/ETO status, we utilized Kasumi-1 cells, which

represent a well characterized and widely used model system

for t(8;21) AML (Ben-Ami et al., 2013;Martens et al., 2012; Ptasin-

ska et al., 2012; Sun et al., 2013). We measured the binding of

multiple transcription factors in these cells using genome-wide

ChIP-seq and performed perturbation experiments by transiently

knocking down RUNX1/ETO expression. We then monitored the

consequences using ChIP-seq and RNA sequencing (RNA-seq)

analyses (Heidenreich et al., 2003; Ptasinska et al., 2012; Table

S1). We used antibodies against RUNX1, the ETO moiety of

RUNX1/ETO, LMO2 as a member of the RUNX1/ETO complex,

RNA-Polymerase II, and acetylated histone H3 for ChIP. To

obtain a more complete picture of the composition of RUNX1

and RUNX1/ETO-associated transcription-factor complexes
ports 8, 1974–1988, September 25, 2014 ª2014 The Authors 1975



without RUNX1/ETO knockdown, we also analyzed publicly

available data for the E box protein HEB (Martens et al., 2012;

Ptasinska et al., 2012). In order to follow additional alterations

in the epigenome after RUNX1/ETO knockdown, we also

measured the binding of PU.1 and C/EBPa, which are both

required for myeloid differentiation (Scott et al., 1994; Zhang

et al., 1997). We identified high-confidence transcription-factor

binding-site peaks by integrating ChIP data with DNaseI-seq

data before and after RUNX1/ETO depletion, and considered

only those peaks that were located within DNaseI hypersensitive

sites (DHSs).

RUNX1/ETO exists as a complex with other transcription

factors (Sun et al., 2013). Consistent with these findings, we

observed a colocalization of RUNX1/ETO, RUNX1, HEB,

LMO2, C/EBPa, and/or PU.1 binding at many DHSs in Kasumi-

1 cells, as exemplified by the LMO2 locus (Figure 1A). Closer ex-

amination of the genome-wide occupancy patterns of LMO2 and

HEB revealed that a substantial overlap existed among LMO2,

HEB, and RUNX1/ETO binding sites (Figure S1A). Although there

was some overlap with the other factors, the PU.1 and C/EBPa

binding sites did not closely cluster as a group with those for

the RUNX1/ETO complexes in Kasumi-1.

We next sought to determine whether the RUNX1/ETO and

RUNX1 binding patterns identified in Kasumi-1 cells were shared

with patient cells. First, we performed a DHS analysis on patient

cells and normal CD34+ hematopoietic stem and precursor cells

(CD34+ cells) derived from the peripheral blood of healthy do-

nors. This fraction is enriched for stem and multipotent progen-

itor cells. DHSmapping was complemented by RUNX1/ETO and

RUNX1 ChIP analysis. However, the large quantity of material

required for this approach precluded analysis of patient cells.

Therefore, to determine which subsets of DHSs from patient

cells overlap with sites that recruit RUNX1 and RUNX1/ETO in

the cell line and in CD34+ cells, we first generated a scatter dia-

gram of the joint DHS signal of patient cells (Ptasinska et al.,

2012) compared with normal CD34+ cells (Figure S1B). We

then projected the genomic coordinates from the RUNX1/ETO

and RUNX1 ChIP experiments onto these sequences. These di-

agrams clearly show that the RUNX1- and RUNX1/ETO-bound

sequences from Kasumi-1 cells projected onto the DHS peaks

from patient cells, whereas RUNX1-bound sequences from

CD34+ cells projected onto the DHS peaks from the CD34+

cells.

To further confirm the similarity between t(8;21) cell lines and

patient cells, and to test whether we could overcome the need

to conduct multiple ChIP-seq experiments, we generated addi-

tional higher-read-depth DNaseI data from two t(8;21) patients

and developed a digital footprinting algorithm (Wellington). This

high-resolution approach takes the chromatin structure sur-

rounding transcription-factor motifs that are protected from

DNaseI digestion into account and thus evaluates the genome-

wide transcription-factor occupancy with high accuracy (Piper

et al., 2013). DNaseI footprinting data obtained from one t(8;21)

patient were compared with ChIP data for regions bound by

RUNX1/ETO, RUNX1, HEB, and LMO2 in Kasumi-1 cells

(13,584 peaks in total). This comparison demonstrated a high

concordance between transcription-factor binding in Kasumi-1

cells and motif occupancy in patient cells, as defined by prefer-
1976 Cell Reports 8, 1974–1988, September 25, 2014 ª2014 The Au
ential protection against DNaseI digestion (Figure S1C). This is

exemplified by the DNaseI footprints found at the NFE2 locus

(Figure 1B, gray areas), which in both patient samples reflect

the pattern of binding of RUNX1/ETO, HEB, LMO2, PU.1, and

RUNX1 in Kasumi-1 cells. These sites also form a DHS in normal

CD34+ cells and are bound by RUNX1 in these cells, as deter-

mined by ChIP (Figure 1B, top).

In contrast to RUNX1, which interacts with a multiplicity of fac-

tors in different cell types (Scheitz and Tumbar, 2013; van Riel

et al., 2012), RUNX1/ETO preferentially binds to DNA elements

containing RUNX, ETS, and E box motifs, thus reflecting the

composition of the RUNX1/ETO complex (Sun et al., 2013). To

examine whether our footprinting analysis was able to confirm

this preference of colocalizing motifs in patient cells, we con-

ducted an unbiased pairwise clustering analysis of footprinted

motifs in regions bound by RUNX1/ETO. This analysis demon-

strated that motifs bound by RUNX1/ETO in Kasumi-1 cells

strongly clustered with ETS (PU.1 and ERG) and E box (SCL,

LYL, and HEB) motifs that are footprinted in patient cells (Fig-

ure 1C). We found a similar clustering pattern using sequences

from the Kasumi-1 ChIP-seq experiments (Figure S1D), although

it was less defined due to the larger peak sizes in this experi-

mental context. In conclusion, RUNX1/ETO-positive Kasumi-1

cells show similar transcription-factor motif occupancy patterns,

confirming that at this level of accuracy, digital footprinting

provides a viable method for investigating transcription-factor

binding-site occupancy and preferential interaction in patient

cells.

RUNX1/ETO and RUNX1-Containing Complexes
Compete for the Same Genomic Sites
We previously showed that more than 60% of RUNX1/ETO bind-

ing sites are shared with RUNX1 in the bulk population of cells

(Ptasinska et al., 2012), with many of the footprinted sites con-

tainingmultiple TGYGGTRUNX1-bindingmotifs (e.g., Figure 1B).

Therefore, we conducted re-ChIP experiments in Kasumi-1 cells

to test at known RUNX1/ETO binding sites whether the two fac-

tors co-occupy single sites or whether binding is mutually exclu-

sive at such sites. In addition, we examined which other factors

were shared between RUNX1 and RUNX1/ETO complexes.

RUNX1 and RUNX1/ETO both colocalize with LMO2, HEB, and

LYL1 in the Kasumi-1 cell population (Figures 1A, 2A, and

S2A). However, binding of RUNX1 and RUNX1/ETO to their

target sites was mutually exclusive, even at elements containing

multiple RUNX motifs, such as the NFE2 locus (Figures 1B, 2B,

2C, and S2B).

BothRUNX1/ETOandRUNX1havebeen shown to interactwith

HDACs and the HAT p300 (also known as EP300) (Amann et al.,

2001; Kitabayashi et al., 1998; Levanon et al., 1998; Reed-Inder-

bitzin et al., 2006; Wang et al., 2011). Using paralled re-ChIP

experiments,we show that RUNX1-bound elements had a prefer-

ence for binding the coactivator p300, whereas RUNX1/ETO-

occupied elements preferentially bound the corepressor HDAC2

(Figures 2D–2F). We further confirmed this preferential binding

and the strong association between RUNX1 and p300 by per-

forming manual ChIP and ChIP-sequencing experiments after

knockdown of RUNX1/ETO (Figure 3). These experiments

demonstrated (1) that the loss of RUNX1/ETO binding led to an
thors



Figure 1. Transcription-Factor Occupancy Patterns Are Similar between RUNX1/ETO-Expressing Cell Lines and Patient Cells

(A) UCSC genome browser screenshot showing the binding patterns of RUNX1/ETO, RUNX1, HEB, LMO2, C/EBPa, PU.1, DHS, H3K9Ac, andRNA-Polymerase II

(POLII), as well as input reads and conservation among vertebrates at the LMO2 locus as aligned reads.

(B) UCSC genome browser screenshot of ChIP-seq and DHS data aligned with digital footprints at the NFE2 locus within a DHS shared between two t(8;21)

patients and purified normal CD34+ cells (top). It also shows the binding pattern of RUNX1 in CD34+ cells and RUNX1/ETO, RUNX1, HEB, LMO2, and PU.1 in

Kasumi-1 cells as determined by ChIP. Footprint probabilities as calculated byWellington are indicated as gray columns below the lines. The bottom indicates the

location of occupied RUNX, ETS, and C/EBP motifs.

(C) Occupied RUNX, E box, and ETS motifs in patient cells cluster within DHS sites that colocalize with RUNX1/ETO binding in Kasumi-1 cells. The heatmap

shows hierarchical clustering of footprinted motif co-occurrences by Z score within RUNX1/ETO peaks, indicating transcription factor co-occupancy. Footprint

probabilities within RUNX1/ETO-bound peaks were calculated using DNaseI-seq data from t(8;21) patient 1. The motif search was done within RUNX1/ETO

footprint coordinates. Red and blue colors indicate statistically over- and underrepresented motif co-occurrences, respectively. For a more detailed explanation,

see the legend of Figure S1 and the Supplemental Experimental Procedures.

Cell Reports 8, 1974–1988, September 25, 2014 ª2014 The Authors 1977



Figure 2. RUNX1 and RUNX1/ETO Complexes Differentially Interact with Coactivator and Corepressor Complexes, and Binding to the Same

Sites Is Mutually Exclusive

(A–E) Multiple RUNX1/ETO binding sequences and control sequences (IVL, Chr18) were selected and validated for factor binding by a first round of ChIP followed

by a second round with a different antibody or with just beads as indicated. All of the chosen binding sites contain several RUNX1 motifs (data not shown).

(A) LMO2 associates with both RUNX1 and RUNX1/ETO.

(B and C) RUNX1 and RUNX1/ETO binding is mutually exclusive. Control ChIPs were performed with the same antibody.

(D) EP300 associates with RUNX1, but not RUNX1/ETO.

(E and F) RUNX1 preferentially binds p300, whereas RUNX1/ETO preferentially associates with HDAC2. For additional amplicons, see Figure S2B. qPCR data

represent the mean ± SD of at least three independent experiments.
increase in RUNX1 binding at the same sites, and (2) there was an

increased recruitment of p300 without a concomitant increase in

the expression of these factors (Figures 3 and S3A), providing

an explanation for the increased histone H3 lysine 9 acetylation

at such sites that we observed previously (Figure S3B; Ptasinska

et al., 2012). In contrast, knockdown of RUNX1/ETO led to a

reduction of HDAC2 binding to these target sites (Figure 3C).

Taken together, these data show that RUNX1/ETO and RUNX1

(1) compete for the same genomic sites and (2) colocalize with

the same transcription factors but have distinct preferences for

histone-modifying cofactors, with RUNX1 associated complexes

preferring to interact with p300 and RUNX1/ETO complexes

preferring to recruit HDACs, including HDAC2.
1978 Cell Reports 8, 1974–1988, September 25, 2014 ª2014 The Au
The Core Transcriptional Network Bound by RUNX1/
ETO Is Predominantly AssociatedwithRepressedGenes
We next analyzed our ChIP-seq data sets to identify the core

transcriptional network that characterizes the cellular identity

of t(8;21) cells by determining overrepresented combinatorial

binding patterns for the transcription factors RUNX1/ETO,

C/EBPa, HEB, LMO2, PU.1, and RUNX1 (Tijssen et al., 2011).

ChIP sequences in RUNX1/ETO-positive cells were enriched

for just 11 of the 63 possible different binding patterns, which

included six significantly enriched combinatorial patterns con-

taining RUNX1/ETO and five patterns that did not (Figure 4A,

marked by asterisks). Two possible binding patterns (111010

and 110011) were not observed. We then associated such
thors



Figure 3. Dynamic Alterations in Cofactor Binding upon RUNX1/ETO Knockdown
(A) Western blot detecting RUNX1/ETO, RUNX1, C/EBPa, LMO2, PU.1, p300, HDAC2, LYL1, LDB1, and HEB protein in Kasumi-1 cells treated for 48 hr with

mismatch control siRNA (siMM) and with RUNX1/ETO siRNA (siRE). GAPDH served as the loading control.

(B) UCSC genome browser screenshot of the NFE2 locus showing changes in the RNA expression and binding pattern of p300, RUNX1/ETO (R/E), RUNX1, and

DHS upon RUNX/ETO knockdown in Kasumi-1 cells.

(C) Increase of p300 binding and decrease of HDAC2 binding upon RUNX1/ETO knockdown.

(D) Global changes of p300 binding peaks shared between RUNX1/ETO and RUNX, peaks exclusively bound by RUNX1, and PU.1 peaks not associated with

RUNX1/ETO or RUNX1 binding. qPCR data represent the mean ± SD of three to five independent experiments. For other control analyses, see Figure S3B.
elements with the nearest genes and performed a gene set

enrichment analysis (GSEA) using gene-expression data sets

derived from a time course of RUNX1/ETO knockdown in two

different t(8;21) cell lines (Figures S4A and S4B; Ptasinska

et al., 2012). In addition, we compared these gene signatures

with a RNA-seq-based gene-expression data set derived from

a 4-day RUNX1/ETO knockdown in Kasumi-1 cells (Figures 4B

and S4C). This analysis demonstrated that all overrepresented
Cell Re
RUNX1/ETO-containing binding patterns were associated with

the upregulation of gene expression upon knockdown (Figure 4B,

red asterisks), whereas loci that do not bind RUNX1/ETO were

enriched in genes that were downregulated after RUNX1/ETO

knockdown (green asterisks). The very same genes behaved

similarly when assayed after knockdown of RUNX1/ETO in

patient cells, confirming the similarity between cell lines and pri-

mary cells (Figure 4C).
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Figure 4. Specific Transcription-Factor Binding Patterns in t(8;21) Cells Correlate with the Response to RUNX1/ETO Knockdown

Genes bound by RUNX1/ETO are preferentially upregulated, whereas genes not bound by RUNX1/ETO are preferentially downregulated.

(A) Analysis of combinatorial binding identifies prevalent patterns in Kasumi-1 cells. The numbers of peaks are shown on the left of the heatmap for 61 factor-

binding combinations (red: bound, scored as 1; blue: not bound, scored as 0 with the order of factors as depicted on top of the heatmap). Z scores on the right

indicate the significance of deviation between observed and expected instances for all 61 combinatorial binding patterns. We identified 11 overrepresented

binding patterns, which we analyzed further when each was associated with more than 100 genes. GSEA of selected large groups of genes (indicated by arrows)

shows a highly significant enrichment of genes upregulated (upper left) or downregulated (lower left) after 4 days of RUNX1/ETO knockdown.

(B) Heatmap showing the RNA-seq overall fold change in Kasumi-1 cells 4 days after RUNX1/ETO knockdown.

(C) GSEA plots showing enrichment for up- or downregulated genes associated with dominant binding patterns in patient cells subjected to RUNX1/ETO

knockdown, demonstrating that changes in gene expression were concordant between Kasumi-1 and patient cells after RUNX1/ETO knockdown. Note that in

patient cells, RUNX1/ETO was only depleted for 48 hr and it takes about 4 days for the majority of genes to be downregulated (Ptasinska et al., 2012), thus

explaining the lower p value seen with downregulated genes.

See also Figure S4.
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Using the different overrepresented binding patterns, we con-

structed an interacting transcriptional network (Figure S4D).

Most genes were regulated by a single binding pattern (node),

and only some of these genes were associated with cis elements

that bound different factor combinations (depicted as located

between nodes). This specific binding pattern is of biological

relevance because the genes that occupied the different

network nodes clustered by overlapping but distinct Gene

Ontology (GO) terms and KEGG pathways (Figures S4D and

S4F; Table S2), indicating that they perform different functions.

For example, cis-regulatory elements that bind RUNX1/ETO

and all other factors (pattern 111111) are associated with genes

involved in myeloid differentiation and hematopoiesis (Fig-

ure S4E; Table S2). Among the genes without RUNX1/ETO bind-

ing (pattern 011111) that were downregulated after RUNX1/ETO

knockdown, we found the transcription factor genes ERG and

ETV6 (TEL1) (Figure S4F; Table S2), both of which are important

for stem cell function and maintenance (Taoudi et al., 2011;

Wang et al., 1998) but also have been implicated in AML (Diffner

et al., 2013). ERG has also been shown to be important for sta-

bilization of the RUNX1/ETO complex (Martens et al., 2012).

Another downregulated transcription factor gene was MEF2C,

which encodes a transcription factor that modulates myeloid

fate and has oncogenic activity when overexpressed (Schwieger

et al., 2009).

In summary, our analysis of the RUNX1/ETO-responsive core

transcriptional network in t(8;21) cells highlights the predomi-

nantly repressive role of RUNX1/ETO within this network. More-

over, our analysis identified distinct classes of genes, with

repressed genes involved in myeloid differentiation and active

genes forming part of the stem cell signature.

Knockdown of RUNX1/ETO Leads to a Dynamic
Reorganization of Transcription-Factor Binding
We next examined how the t(8;21) core transcriptional network

changed 2 days after RUNX1/ETO depletion. Depletion had no

immediate influence on the expression levels of any of the other

factors studied above, with the notable exception of C/EBPa

(Figure 3A). Nevertheless, loss of RUNX1/ETO had a profound

effect on the binding of these transcription factors (Figure S5A).

As exemplified by the CEBPE locus, depletion led to increased

RUNX1 occupancy at several thousand sites, confirming that

RUNX1/ETO and RUNX1 binding are in equilibrium (Figures 5A,

top left, 5B, S5B, and S5C). Furthermore, increased RUNX1 oc-

cupancy, including RUNX1 sites that were not previously bound

by RUNX1/ETO, was associated with a strong increase in p300

binding (Figure 3D). In contrast, more than 3,000 LMO2 binding

sites were lost, mainly outside the regions bound by RUNX1/

ETO and RUNX1 (Figures 5A, bottom-right panel, and S5C).

Furthermore, whereas 80% of all PU.1 binding sites remained

unchanged, the number of sites bound by C/EBPa increased

4-fold. Interestingly, 65%of all C/EBPa de novo sites colocalized

with PU.1 (Figures 5A, top left, S5B, and S5D). In agreement with

these results, C/EBPa binding sites clustered more strongly with

both RUNX1 and PU.1 sites upon depletion of RUNX1/ETO

(Figure S5E).

The changes in RUNX1 and C/EBPa binding, however, were

not reflected by major global changes in DHS patterns. The
Cell Re
comparison of DHS profiles before and after 2 days of RUNX1/

ETO knockdown revealed that the majority of DHSs were un-

changed (Figure 5C). Both C/EBPa and RUNX1 mainly associ-

ated with DHSs that were already present before RUNX1/ETO

depletion. Only 20% of sites showed increased DNaseI sensi-

tivity or arose de novo following RUNX1/ETO knockdown coin-

ciding with de novo RUNX1 and C/EBPa binding (Figures S5F

and S5G).

In summary, knockdown of RUNX1/ETO led to immediate

genome-wide alterations in transcription-factor binding after

48 hr. Although a small fraction of binding sites arose de novo,

this reprogramming occurred predominantly within preexisting

transcription-factor assemblies.

The Dynamic Reorganization of the Leukemic
Transcriptional Network after RUNX1/ETO Depletion
Is Driven by C/EBPa
Many transcription factors upregulate the expression of their

own gene, with PU.1 (SPI1) being a prominent example (Leddin

et al., 2011; Staber et al., 2013). However, of all the transcription

factors examined, only C/EBPa was found to be significantly

increased after RUNX1/ETO depletion (Figure 3A). Similarly to

PU.1, C/EBPa upregulates its own expression in murine cells,

and it was previously suggested that RUNX1/ETO interferes

with C/EBPa expression by sequestering it from its promoter

and thereby suppressing autoactivation (Pabst et al., 2001a).

Our data demonstrate binding of C/EBPa to an element about

40 kb downstream of its own gene, a site that is also occupied

by RUNX1/ETO, suggesting a more direct mechanism of repres-

sion (Ptasinska et al., 2012). C/EBPa is absolutely essential for

terminal myeloid differentiation (Zhang et al., 1997) and occupies

a large number of binding sites in mature macrophages (Heinz

et al., 2010). However, CEBPA is not the only direct target

gene of the CEBP family that responds to RUNX1/ETO: CEBPE

and CEBPD are upregulated as well (Ptasinska et al., 2012),

indicating that these factors may be part of a wider network of

C/EBP proteins that control myeloid gene expression.

To test whether increased expression of C/EBPawas crucially

involved in shifting the transcriptional network after RUNX1/ETO

depletion, we defined overrepresented binding patterns for

C/EBPa, PU.1, RUNX1, and LMO2 after RUNX1/ETO knock-

down. Loss of RUNX1/ETO resulted in the formation of a tran-

scriptional network dominated by C/EBPa-containing binding

patterns, all of which were predominantly associated with upre-

gulated genes in RUNX1/ETO-depleted Kasumi-1 and patient

cells (Figures 6A–6C, S6A, and S6B; Table S3). Different patterns

were again indicative of different classes of genes in terms of

both GO and pathway analyses, with differentiation and signal

transduction pathways being prominently featured (Figures

S6C, S6D, and S7A). However, increased C/EBPa binding was

also observed with a subset of genes that were downregulated

(Figure 6D). Previous studies have shown that in addition to

C/EBPa’s role in driving myeloid differentiation, low levels of

C/EBPa are required for stem cell maintenance, as upregulation

of C/EBPa represses genes required for stem-cell self-renewal

(Zhang et al., 2004, 2013). Therefore, we identified genes that

(1) were downregulated after RUNX1/ETO knockdown and (2)

showed increased C/EBPa binding (a total of 145 genes met
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Figure 5. Knockdown of RUNX1/ETO Leads to a Reorganization of Transcription-Factor Assemblies within Preexisting Open Chromatin

Regions

(A) Three-way Venn diagrams showing the overlap between RUNX1/ETO and RUNX1 (top left), CEBPa (top right), LMO2 (bottom left), and PU.1 (bottom right) in

Kasumi-1 cells treated for 48 hr with control (siMM) and with RUNX1/ETO siRNA (siRE).

(B) UCSC genome browser screenshot showing the binding pattern of the indicated factors at the CEBPE locus in Kasumi-1 cells treated for 48 hr with control

siRNA (siMM) and with RUNX1/ETO siRNA (siRE).

(C) Binding of de novo (siRE unique), common, and lost (siMM unique) transcription factors (C/EBPa (top) and RUNX1 (bottom) to regions of increased (DHS up),

unchanged (DHS invariant), or reduced DNaseI hypersensitivity.

See also Figure S5.
the latter criterion; Figure 6D). This category included stem cell

genes such as ERG and CD34 (Figures S6F and S6G), as well

as a large number of genes encoding for signaling molecules

that are involved in regulating proliferation and differentiation,

such as DUSP6 or PTK2 (Figure S6G).

We next evaluated whether C/EBPawas required for the upre-

gulation of repressed RUNX1/ETO target genes. For this pur-

pose, we depleted RUNX1/ETO with and without a concomitant
1982 Cell Reports 8, 1974–1988, September 25, 2014 ª2014 The Au
C/EBPa knockdown. Knockdown of RUNX1/ETO led to a 2-fold

increase in C/EBPa expression (Figures 3A, 7A, and 7B) and in-

creases in expression of the direct RUNX1/ETO target genes,

includingMS4A3,NKG7, andRNASE2, which all show increased

C/EBPa binding upon RUNX1/ETO depletion (Figures 7C and

7D; data not shown). Codepletion of C/EBPa diminished the in-

duction of the three target genes in both Kasumi-1 and SKNO-1

cells (Figures 7D and S7B–S7D). These data indicate that
thors



Figure 6. Transcriptional Network after RUNX1/ETO Depletion Is Enriched for C/EBPa Target Genes

(A) The transcription-factor binding state for CEBPa, LMO2, PU.1, and RUNX1 after RUNX1/ETO knockdown is characterized by an overrepresentation of four

dominant occupancy patterns. The number of peaks for all 15 factor combinations is shown on the left of the heatmap (red: bound, scored as 1; blue: not bound,

scored as 0). Z scores on the right indicate the significance of deviation between observed and expected instances for all 15 binding patterns. Left: GSEAs of

genes associated with the two most enriched dominant occupancy patterns (indicated by arrows) show highly significant enrichment of upregulated genes after

RUNX1/ETO knockdown.

(B) Genes associated with specific occupancy patterns that significantly change expression asmeasured by RNA-seq 4 days after RUNX1/ETO knockdown. The

heatmap shows the RNA-seq overall fold change in Kasumi-1 cells 4 days after RUNX1/ETO knockdown.

(C) GSEAs showing that genes associated with dominant occupancy patterns that are upregulated in Kasumi-1 cells behave similarly in patient cells.

(D) Venn diagram depicting the number of genes bound by C/EBPa that are downregulated after RUNX1/ETO knockdown and show increased C/EBPa binding.

See also Figure S6.
derepression of C/EBPa caused by RUNX1/ETO depletion is

required for the full upregulation of a number of RUNX1/ETO

target genes. However, we cannot rule out a similar function

for other C/EBP members and in particular C/EBPd and C/

EBPε, which are both upregulated upon RUNX1/ETO knock-

down (Figure 5B and data not shown). Nevertheless, our data

confirm that C/EBPa plays an important role in orchestrating a

transcriptional network that drives myeloid differentiation down-

stream of the original RUNX1/ETO network (Figure 7E).

DISCUSSION

The study presented here shows that expression of the on-

cogenic transcription factor RUNX1/ETO interferes with the hier-

archical succession of transcriptional networks required for

myeloid differentiation. Binding of RUNX1/ETO to key regulatory

elements inhibits the expression of genes that drive differentia-

tion. Moreover, we show that the establishment of a stable
Cell Re
leukemic state not only depends on a static interaction of tran-

scription factor complexes but also contains a dynamic com-

petitive component as its key feature. We demonstrate that the

transcriptional network controlled by RUNX1/ETO depends on

a dynamic equilibrium between RUNX1/ETO and RUNX1 com-

plexes, whose binding to their target sites is mutually exclusive.

Although these complexes share the factors LMO2, HEB, and

LYL1, they differ in their preferences for histone modifiers.

RUNX1 can also act as a repressor (Levanon et al., 1998;

Reed-Inderbitzin et al., 2006; Taniuchi et al., 2002), but in this

factor context it preferentially recruits the HAT p300, whereas

RUNX1/ETO recruits histone deacetylases, including HDAC2.

RUNX1/ETO shares almost three-quarters of its binding sites

with RUNX1, suggesting that the equilibrium between these

two complexes results in a finely tunedmodulation of expression

for a wide range of genes. Thus, the leukemic phenotype re-

quires the downmodulation of genes associated with differen-

tiation, but may not tolerate their complete suppression.
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Figure 7. Loss of RUNX1/ETO Triggers C/EBPa-Driven Reorganization of the Leukemic Transcriptional Network

(A)RUNX1/ETO andCEBPAmRNA expression levels in Kasumi-1 cells 72 hr after electroporation with the indicated siRNAs. siRE, RUNX1/ETO siRNA; siCEBPA,

C/EBPa siRNA; siMM, mismatch control siRNA. Results represent the mean ± SEM of five independent experiments. *p < 0.05; ns, not significant by paired

Student’s t test.

(B) Western blot indicating RUNX1/ETO and C/EBPa protein expression levels in single- and double-knockdown cells as indicated. An antibody against H3 was

used as control. Mock, no siRNA.

(C) mRNA levels of MS4A3, NKG7, and RNASE2 72 hr after electroporation with the indicated siRNAs. Results represent the mean ± SEM of five independent

experiments. *p < 0.05, **p < 0.01 by paired Student’s t test.

(D) UCSC genome browser screenshot showing the binding pattern of RUNX1/ETO, C/EBPa, and DHSs at the MS4A3 locus in Kasumi-1 cells treated for 48 hr

with mismatch control siRNA (siMM) and with RUNX1/ETO siRNA (siRE).

(E) Model of RUNX1/ETO-mediated control of leukemic transcription. The competitive equilibrium in locus occupation between RUNX1/ETO and RUNX1

complexes drives leukemic self-renewal. Depletion of RUNX1/ETO increases the levels and DNA binding of its direct target gene, C/EBPa, which together with

other differentiation genes reinstalls a transcriptional program that promotes myeloid differentiation.

See also Figure S7.
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Consequently, perturbation of this equilibrium by depletion of

RUNX1/ETO leads to loss of self-renewal, whereas knockdown

of RUNX1 severely impairs viability (Ben-Ami et al., 2013; Dunne

et al., 2006; Martinez et al., 2004; Martinez Soria et al., 2009).

Currently, we do not know whether the different complexes exist

independently or are in a rapid exchange. Evidence for both

mechanisms exists; for example, in a previous study (Sun

et al., 2013), neither p300 nor HDACs could be purified together

with the RUNX1/ETO complex from t(8;21) cells using high strin-

gency conditions. However, immunohistochemistry has demon-

strated that RUNX1 and RUNX1/ETO are targeted to different

subnuclear compartments (McNeil et al., 1999), a scenario that

would be difficult to reconcile with a rapid exchange of factors

binding to the same region of chromatin. Whatever the mecha-

nism, it is likely that a mutually exclusive binding pattern can

be found in other CBF leukemias. A similar colocalization with

RUNX1 and its mutated counterpart has also been seen in

AML with inversion 16 carrying the CBFB-MYH11 fusion protein

(Mandoli et al., 2014), and furthermore, this type of AML is also

dependent on the presence of an active copy of RUNX1 (Ben-

Ami et al., 2013).

It was recently shown that aberrant RUNX1 expression is

required for the maintenance of epithelial cancers (Scheitz

et al., 2012). Moreover, RUNX1 plays a tumor-suppressive role

by interacting with estrogen receptor a, and ERa-positive breast

cancer patients carry mutations that disrupt these interactions

(Chimge and Frenkel, 2013; Stender et al., 2010), highlighting

increasing evidence that this factor and its deregulation or

mutation are at the heart of multiple pathological processes.

Moreover, alternative splicing of RUNX1 leads to a C-terminally

truncated isoform known as AML1a, which lacks the transactiva-

tion domain and promotes self-renewal of hematopoietic stem

cells (Tsuzuki and Seto, 2012).We previously showed that during

blood cell development, RUNX1 binding reshapes the epigenetic

landscape by attracting other factors to its binding sites, and that

this factor relocation is reversible (Lichtinger et al., 2012). There-

fore, a dynamic equilibrium between different RUNX1 isoforms

and other factors may also be relevant for cancers outside of

the hematopoietic system.

A second important finding of our study is that the destruction

of the RUNX1/ETO network establishes a transcription network

dominated by the combinatorial binding of PU.1, RUNX1, and,

in particular, C/EBPa (Figure 7E). Once RUNX1/ETO is depleted,

C/EBPa expression levels increase and this factor then occupies

a large number of binding sites, demonstrating at the genome-

wide level that (1) C/EBPa is a major driver of myeloid differenti-

ation and (2) the differentiation block in AML is partly caused by

C/EBPa downregulation. The latter observation is consistent

with the fact that a large number of AMLs involve mutations of

C/EBPa (Preudhomme et al., 2002). However, the majority of

binding sites are found in regions of previously accessible chro-

matin, indicating that (1) RUNX1/ETO targets binding sites that

are destined for differentiation-driven factor exchange, and (2)

shortly after its upregulation, C/EBPa resumes its original bind-

ing behavior and reorganizes existing transcription factor as-

semblies to drive myelopoiesis. These results tie in with the

finding that PU.1 binding was largely invariant before and after

RUNX1/ETO depletion. Although previous overexpression ex-
Cell Re
periments indicated that RUNX1/ETO inactivated PU.1 (Vangala

et al., 2003), our data indicate that, at least during the time win-

dow of 2 days, the PU.1 cistrome is largely unperturbed by the

presence or absence of RUNX1/ETO and forms a platform

upon which other factors dynamically assemble (Natoli et al.,

2011).

In summary, our work sheds light on global mechanisms of the

differentiation block in t(8;21) AML, which is of conceptual rele-

vance for other types of AML and even other cancers. Many

AML types are characterized by mutations in C/EBPa and

RUNX1, which would impact many of the binding sites described

here. The dynamic equilibrium between a mutated transcription

factor and its wild-type counterpart allows a rapid reversion from

a transcriptional program promoting malignant self-renewal to a

differentiation program. Such dynamic behavior is likely to be the

molecular cause of the good prognosis of t(8;21) AML and may

also be a major angle for therapeutic intervention in other types

of AML without mutations in other hematopoietic regulators.

EXPERIMENTAL PROCEDURES

More detailed descriptions of the materials and methods used in this work can

be found in the Supplemental Experimental Procedures.

Human Patient Cells and Cell Lines

Patient material was obtained with approval from the NHS Research Ethics

Committees (Leeds Teaching Hospitals NHS Trust and Newcastle upon

Tyne Hospitals NHS Foundation Trust). Kasumi-1 cells were obtained from

the DSMZ cell line repository (http://www.dsmz.de/) and were cultured in

RPMI1640 containing 10% fetal calf serum (FCS). SKNO-1 cells were main-

tained in RPMI1640 supplemented with 20% FCS and 7 ng/ml granulocyte-

macrophage colony-stimulating factor.

siRNA Transfections

Kasumi-1 and SKNO-1 cells were transfected with 200 nM siRNA using a

Fischer EPI 3500 electroporator (Fischer) as described previously (Ptasinska

et al., 2012). The following siRNAs were used: RUNX1/ETO siRNA (sense,

CCUCGAAAUCGUACUGAGAAG; antisense, UCUCAGUACGAUUUCGAGG

UU), mismatch control siRNA (sense, CCUCGAAUUCGUUCUGAGAAG; anti-

sense, UC UCAGAACGAAUUCGAGGUU); and C/EBPa siRNA (sense, CCG

GAGUUAUGACAAGCUUUC; antisense, AAGCUUGUCAUAACUCCGGUC).

Real-Time RT-PCR

RNA extraction and quantitative real-time RT-PCR were performed as

described previously (Ptasinska et al., 2012). Primers are listed in Table S4.

Western Blotting

Kasumi-1 cells were lysed in RIPA buffer 2 days after electroporation. The

following antibodies were used for western blot analysis: C/EBPa, ab15048

(Abcam); ETO, SC-9737 (Santa Cruz Biotechnology); GAPDH, ab8245

(Abcam); HDAC2, ab7029 (Abcam); HEB, SC-357 (Santa Cruz); LDB1, SC-

11198 (Santa Cruz); LMO2, AF2726 (R&D Systems); LYL1, SC-374164 (Santa

Cruz); PU.1, SC-352 (Santa Cruz); p300, SC-585 (Santa Cruz); and RUNX1,

PC285 (Millipore).

ChIP

ChIP assays were performed as described previously (Ptasinska et al., 2012).

Nuclei were essentially prepared as described previously (Lefevre et al., 2003).

The following antibodies were used: C/EBPa, SC-61 (Santa Cruz Biotech-

nology); ETO (C terminus specific), SC-9737 (Santa Cruz); HDAC2, SC-6296

(Santa Cruz); HEB, SC-357 (Santa Cruz); LMO2, AF2726 (R&D Systems);

LYL1, SC-374164 (Santa Cruz); PU.1, SC-352 (Santa Cruz); p300, SC-585

(Santa Cruz); RUNX1 (C terminus specific), ab23980 (Abcam) or IgG rabbit

12-370 (Millipore); IgG goat, SC-2346 (Santa Cruz); and IgG mouse,
ports 8, 1974–1988, September 25, 2014 ª2014 The Authors 1985

http://www.dsmz.de/


SC-2025 (Santa Cruz). Precipitated material was subjected to library prepara-

tion and run on an Illumina Hiseq 2000 sequencer.

RNA-Seq

RNA samples from three independent biological replicates were pro-

cessed using the Tru-seq RNA Sample Prep Kit v2 (Illumina) according

to the manufacturer’s protocol. Libraries were run in 43 multiplex on an

Illumina Hiseq 2000 sequencer generating �90 million paired-end reads

per sample.

Re-ChIP

Re-ChIP was carried out as described above with minor modifications.

Following the final ChIP wash, chromatin complexes were eluted twice in

50 ml of ChIP elution buffer (100 mM NaHCO3, 1% SDS, PIC) for 15 min at

room temperature with shaking. Eluates were combined and diluted 20 times

with ChIP dilution buffer, followed by a 5 hr incubation with the second primary

antibody or IgG. After elution with 100 mM NaHCO3, 1% SDS for 30 min at

room temperature, the re-ChIP products were analyzed by quantitative PCR

(qPCR). Fold-enrichment values were calculated relative to a negative control

region of the genome. Primers are listed in Table S4.

DHS Mapping

Genome-wide DHSs were mapped as described previously (Leddin et al.,

2011).

Library Generation and Sequencing

Libraries of DNA fragments from ChIP or DNase I treatment were prepared

from 10 ng of DNA according to standard procedures. ETO, RUNX1, C/

EBPa, PU.1, LMO2 ChIP, and Kasumi-1 DNase I libraries were sequenced

on an Illumina Genome Analyzer GAIIx using 36 bp single-end reads. For

patients 1 and 2, DNase I (491 and 342 million reads, respectively) and control

patient libraries (Table S1) were sequenced on an Illumina HiSeq using 50 bp

single-end reads.
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