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Energy Landscapes and Global Optimization of Self-Assembling
Cyclic Peptides
Mark T. Oakley and Roy L. Johnston*

School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

ABSTRACT: Self-assembled cyclic peptide nanotubes have attracted much
attention because of their antimicrobial properties. Here, we present
calculations on the formation of cyclic peptide dimers using basin-hopping
and discrete path sampling. We present an analysis of the basin-hopping move
sets that most efficiently explore the conformations of cyclic peptides. Group
rotation moves, in which sections of the ring are rotated as a rigid body, are the
most effective for cyclic peptides containing up to 20 residues. For cyclic
peptide dimers, we find that a combination of group rotation intramolecular
moves and rigid body intermolecular moves performs well. Discrete path sampling calculations on the cyclic peptide dimers show
significant differences in the dimerization of hexa- and octapeptides.

1. INTRODUCTION
Self-assembly is the process by which small molecules aggregate
to form large, ordered structures. Some head-to-tail cyclic
peptides are known to self-assemble to form nanotubes.1−5

Self-assembling cyclic peptide nanotubes have attracted
attention for their possible biomedical uses, including activity
against bacteria.6,7 Cyclic peptide nanotubes have been
observed to form across lipid bilayers.3,8,9 The hydrogen-
bonding arrangement of cyclic peptide nanotubes is similar to
that seen in amyloid fibrils, and it has been shown that cyclic
peptides can disrupt amyloid formation.10 Cyclic peptide−
polymer conjugates have potential uses as self-assembling
materials.11,12

Self-assembling cyclic peptides have sequences comprising
alternating D- and L-peptide residues because this arrangement
places the side-chains equatorial to the peptide rings with the
peptide groups aligned axially to hydrogen bond to other cyclic
peptides. Cyclic octapeptides are the most widely studied
because they have the highest tendency to form nanotubes.1−4

However, dimerization of cyclic hexapeptides has been
observed,13 and nanotubes of larger cyclic peptides are
known.9,14 Nanotubes with antiparallel hydrogen bonding
arrangements are more stable than those with parallel hydrogen
bonds.15

Several molecular dynamics (MD) investigations have been
undertaken to model the properties of cyclic peptide
nanotubes. The formation of dimers has been modeled with
MD.16 The composition of cyclic peptides has a substantial
effect on the stability and flexibility of their nanotubes.17

Longer nanotubes are more stable than shorter nanotubes.18,19

MD has been used to study the motion of water20 and other
small molecules21 through cyclic peptide nanotubes. Cyclic
peptide−polymer conjugates have also been studied with
MD.12 All-atom MD is very computationally demanding, and
modeling the formation of nanotubes is prohibitively expensive.
For this reason, coarse-grained models have been used to study
the aggregation of cyclic peptides in lipid bilayers, and

nanotubes have been shown to form across22,23 or along24

the membrane, depending on the peptide sequence.
Here, we take a different approach and consider only the

stationary points on the energy landscape. The solvent is
treated implicitly, which substantially reduces the computa-
tional resources required. Locating minima on the energy
landscape then becomes a global optimization problem that is
split into two parts: searching the conformations of individual
cyclic peptides and assembly of cyclic peptide aggregates.
Several methods are available to search the conformations of

small flexible molecules. Those that have been used on cyclic
peptides include distance geometry methods,25 Monte Carlo,26

LowMode molecular dynamics,27 iterative stochastic search,28

dihedral angle sampling29 and diffusion equation evolutionary
programming simulated annealing.30 Optimization of clusters of
flexible molecules is a more difficult problem. An evolutionary
algorithm has been used to optimize the dimer of kanamycin
A.31,32 Basin-hopping has been used to optimize the small
aggregates of the amyloid-β peptide.33,34 Here, we use the
basin-hopping algorithm35 to locate the minima on the cyclic
peptide potential energy surfaces.
To understand the conformations of molecules fully we need

to know both the minima and the transition states linking them.
Discrete path sampling36−38 is an efficient method for exploring
energy landscapes and we have previously used it to study the
conformations of peptides.39,40 Here, we present energy
landscapes for the peptide dimers from discrete path sampling
calculations.

2. METHODS

The energies of all structures were evaluated using the AMBER
FF03 force field.41,42 The effect of solvent was included with
the Generalized Born implicit solvation model.43 Calculations
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were performed in water (εr = 80) or in a low-dielectric solvent
(εr = 2) to model a membrane environment.
Global optimization of single cyclic peptides and dimers was

performed using the basin-hopping algorithm35 as implemented
in GMIN.44 In this algorithm, structural deformations are
followed by a gradient-driven quench to a local minimum
before a Monte Carlo acceptance test. Thus, all attempted
moves are between local minima on the potential energy
surface. For efficient searching, the moves must be sufficiently
large to escape the basin of attraction of the initial local
minimum. However, moves that enter basins that are not
physically accessible should be avoided. Inversion of the
chirality of the Cα atoms is not possible in experiment and
has a barrier of about 70 kcal mol−1 in the Amber force field.45

Therefore, any moves that lead to structures where the chirality
of one or more Cα atoms are inverted are rejected.
We consider three types of intramolecular move: atom

displacements, MD moves, and group rotations. A series of
basin-hopping optimizations were performed to benchmark
each move class. For cyclic peptides comprising 10 or fewer
peptide residues, the global minimum structures are found by
all searches after fairly short basin-hopping runs. In these cases,
the performance was measured in terms of the mean time to
the first encounter of the global minimum from 100
independent searches. For larger cyclic peptides, the conforma-
tional spaces are too large for us to be confident that the lowest
minima we find are the global minima. In these cases, basin-
hopping runs were run for 10 000 Monte Carlo steps and the
performance was measured in terms of the lowest energies
found at the end of each run. The initial structures for all of
these searches were taken from a molecular dynamics
simulation at 1600 K with snapshots taken every 10 ps.
The parameters used for all move classes were optimized by

performing sets of 10 searches with different values of the
parameters for peptides containing up to 10 residues. These
initial 10 searches are included in the set of 100 searches used
to calculate the mean first encounter time. Unless noted, the
same search parameters are used for all of the cyclic peptides
studied here.
The atom displacement moves (STEP keyword) involve

displacement of all the Cartesian coordinates of all atoms by a
up to 1.5 Å. In the MD moves (AMBERMDSTEPS keyword),
short MD runs of 1000 steps are performed to escape the
basins of attraction of local minima. These runs are performed
at high temperature of 1600 K to allow the move to rapidly
surmount large barriers, such as those between cis and trans
isomers. In the group rotation moves (GROUPROTATION
keyword), two atoms in the peptide backbone are selected and
all atoms between them are rotated around the axis defined by
those two atoms (Figure 1).46 Four types of group rotation are
used (Table 1): cis−trans, peptide, dipeptide, and tripeptide
moves. Cis−trans and peptide moves are attempted for all
cyclic peptides. Dipeptide moves are attempted for cyclic
peptides with six or more residues. The performance of
tripeptide moves is evaluated for cyclic peptides comprising 12
or more residues. The magnitudes of all group rotation moves
are in the range ±180°. The probability of selecting a group for
group rotation is defined so that each basin-hopping step
comprises on average 1/3 cis−trans moves, three peptide moves
and, where appropriate, one of each of the larger moves.
A combined set of intramolecular and intermolecular moves

is needed to search the structures of dimers, and we consider
two classes of move. MD moves use a short, high-temperature

MD run to perform both the intra- and intermolecular moves.
We also use a combination of group rotation intramolecular
moves and rigid-body47 intermolecular moves. For both types
of move, a hybrid minimization scheme is used (Figure 2). The
second step is particularly important when using MD moves
because the two cyclic peptides can drift apart during the MD
run.

We evaluate the move sets on two types of cyclic peptides.
Cyclic oligoglycines do not have any side chains and allow us to
study the effect of the moves on the peptide backbones. We
have not studied the dimerization of these peptides because
they are not known to form nanotubes. Cyclic peptides with
alternating D-Ala and L-Ala residues were selected as
representative cyclic D-, L-peptides. Other peptide sequences
form more stable nanotubes,17 but alanine was selected to
reduce the effort of modeling the peptide side chains.
The energy landscapes of some of the cyclic peptides and

dimers were explored with discrete path sampling,36−38 as
implemented in PATHSAMPLE.48 The databases of stationary
points were seeded with minima from the basin-hopping
calculations. Pathways between minima were found using
OPTIM,49 with candidate transition states found by doubly
nudged elastic band calculations50 and refined with hybrid
eigenvector following.51−53 Pairs of minima were initially
selected for connection by the missing connections algorithm54

and later using the UNTRAP method to remove artificial
frustration.55 The resulting databases of stationary points are
visualized as disconnectivity graphs.56,57 Stationary points that
are permutation-inversion isomers are grouped together in

Figure 1. Atoms involved in a dipeptide group rotation move. The axis
is defined by two Cα atoms (yellow). All of the intermediate atoms
(purple) are rotated around this axis. Some hydrogen atoms are
omitted for clarity.

Table 1. Atoms Involved in the Each Type of Group
Rotation Move

move ends

cis−trans Cα,i Ni+1

peptide Cα,i Cα,i+1

dipeptide Cα,i Cα,i+2

tripeptide Cα,i Cα,i+3

Figure 2. Basin-hopping scheme with hybrid minimization.
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these disconnectivity graphs. All disconnectivity graphs show
the free energy surface at 298 K. The free energies of all
stationary points are calculated using the harmonic super-
position approximation.58,59

We use the pattern of hydrogen bonds as a metric to measure
the parallel or antiparallel alignment of these dimers. Hydrogen
bonds in the dimers were counted using the definition from the
Dictionary of Secondary Structure Prediction.60 Intermolecular
hydrogen bonds were then assigned as parallel or antiparallel
based on the angles between the two vectors joining the Cα

atoms on either side of the peptide groups involved. The
alignment is defined as npar−nantipar.

3. RESULTS
3.1. Intramolecular Moves. We have tested the perform-

ance of basin-hopping moves on a series of cyclic oligoglycines.
For consistency with previous studies,39,40 all basin-hopping
searches on single cyclic peptides were performed using water
as a solvent. We have previously shown that the global
minimum for cyclo-(Gly4) has all four peptide groups aligned
axially, with no intramolecular hydrogen bonds (Figure 3a).39

The global minima for all of the larger cyclic oligoglycines
exhibit several intramolecular hydrogen bonds (Figure 3).

For all four of the cyclic oligoglycines, the group rotation
moves give the most efficient optimization in terms of the CPU
time and the number of energy evaluations (Table 2). For n ≤
8, the MD moves require a similar number of quenches to the
group rotation moves but need more CPU time because of the
overhead of performing the short MD run. When n = 10,
molecular dynamics moves perform poorly and visit the

second-lowest structure several times before locating the global
minimum. The displacement moves require a similar amount of
CPU time to MD moves when n ≤ 8.
We have also tested the performance of basin-hopping on a

series of cyclic peptides with alternating D-Ala and L-Ala
residues. We have previously shown that the global minimum
of cyclo-((D-Ala-L-Ala)2) includes one peptide in a cis
conformation (Figure 4a).39 The global minima for all of the
larger cyclo-((D-Ala-L-Ala)n) have all of their peptide bonds in
trans conformations (Figure 4).

The performance of the displacement moves is poor for
these molecules. Cartesian displacements that are sufficiently
large to step between basins on the potential energy surface
also lead to the inversion of at least one of the chiral centers in
about 45% of the attempted moves. For comparison, MD
moves never lead to inversion of chiral centers and group
rotation moves invert in 5−10% of attempts. In most cases, the
group rotation moves give the most efficient optimization. The
MD moves locate the global minimum of cyclo-((D-Ala-L-
Ala)4) (Figure 4c) very rapidly (Table 3). However, this seems
to be a particularly easy global minimum to locate because the
mean first encounter times with all move types are faster than
the corresponding times for cyclo-((D-Ala-L-Ala)3).
Basin-hopping optimization has also been performed on

several larger cyclic peptides comprising up to 20 residues
(table 4). For these molecules, we only consider the MD and
group rotation moves because of the poor performance of the
displacement moves in the previous calculations. The perform-
ance was assessed in terms of the mean energy of the lowest
structure found in each basin-hopping run and the lowest
energy found across all basin-hopping runs. For all of the cyclic
peptides, the lowest minimum found using group rotation
moves up to and including the dipeptide move is more stable
than the lowest found with molecular dynamics moves. By both
measures, group rotation with dipeptide moves out-performs
MD moves for all cyclic oligoglycines. The inclusion of
tripeptide moves makes only a small difference to the lowest
energies for the smaller rings but gives a substantial
improvement for cyclo-(Gly20). The CPU time taken for each
Monte Carlo step is also substantially longer for the MD
moves.
The energy landscape of cyclo-((D-Ala-L-Ala)3) is funnelled,

with small downhill barriers separating all local minima from
the global minimum (Figure 5). The conformation with the
lowest free energy in water is similar to that seen in cyclic
peptide nanotubes. In nonpolar solvent, the lowest free energy
structure exhibits some intramolecular hydrogen bonding. In
cyclo-((D-Ala-L-Ala)3), conformers containing cis peptides are
particularly unstable and are at least 8.8 kcal mol−1 above the
global minimum in water and 10.3 kcal mol−1 higher in

Figure 3. Global minima of cyclo-(Glyn) in water.

Table 2. Mean Times to the First Encounter of the Global
Minimum for 100 Basin-Hopping Runs on Cyclic
Oligoglycines

mean first encounter time

molecule move
energy

evaluations minimizations
CPU time

(s)

cyclo-(Gly4) displacement 1.8 × 104 99 2.6
MD 3.7 × 104 32 4.7
GR 3.2 × 103 18 0.45

cyclo-(Gly6) displacement 2.6 × 104 90 7.9
MD 2.7 × 104 21 6.8
GR 1.3 × 104 51 3.8

cyclo-(Gly8) displacement 3.0 × 105 680 140
MD 2.9 × 105 190 120
GR 8.8 × 104 260 40

cyclo-(Gly10) displacement 5.2 × 105 1000 370
MD 3.0 × 106 1700 1900
GR 1.8 × 105 420 120

Figure 4. Global minima of cyclo-((D-Ala-L-Ala)n) in water.
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nonpolar solvent. This represents a substantial destabilization
of the cis isomers, which are about 4 kcal mol−1 above the trans
isomers in acyclic peptides and unstrained cyclic peptides.40

The free energy landscape of cyclo-((D-Ala-L-Ala)4) is also
funnelled (Figure 6). The lowest free energy structures in both
solvents have some intramolecular hydrogen bonds. Cis
isomers are destabilized to a lesser extent than in cyclo-((D-
Ala-L-Ala)3) but are still at least 6.3 kcal mol−1 above the lowest
all-trans structures.
3.2. Self-assembly. Cyclic peptides with repeating D- and

L-residues show a tendency for self-assembly, and we focus on
these in this section. The global potential energy minimum for

the dimer of cyclo-((D-Ala-L-Ala)3) is a parallel nanotube with
six intermolecular hydrogen bonds (Figure 7a). The antiparallel
nanotube structure (Figure 7b) lies 9 kcal mol−1 above this.
The parallel structure is also the global free energy minimum,
with the antiparallel structure less stable by 2.8 kcal mol−1 . In
both cases, the peptide groups are tilted away from the optimal
alignment for nanotube growth, which is consistent with the
dimer being the largest aggregate that has been observed in
experiments on cyclic hexapeptides.2,13 The free energy
landscape of the cyclo-((D-Ala-L-Ala)3) dimer shows two
funnels that correspond to parallel and antiparallel structures

Table 3. Mean Times to the First Encounter of the Global Minimum in 100 Basin-Hopping Runs on Cyclic Oligo-D-,L-alanines

mean first encounter time

molecule move energy evaluations minimizations CPU time (s)

cyclo-((D-Ala-L-Ala)2) displacement 4.5 × 104 180 11
MD 1.6 × 104 13 3.7
GR 1.1 × 104 44 2.7

cyclo-((D-Ala-L-Ala)3) displacement 1.9 × 106 5200 1000
MD 1.5 × 106 1100 670
GR 1.2 × 105 300 67

cyclo-((D-Ala-L-Ala)4) displacement 1.2 × 106 2600 1100
MD 6.2 × 104 39 48
GR 6.9 × 104 130 63

cyclo-((D-Ala-L-Ala)5) displacement 6.4 × 106 12000 8100
MD 6.6 × 106 3900 7700
GR 3.3 × 105 530 430

Table 4. Lowest Energies Found in 20 × 10 000 Step Basin-Hopping Runs on Cyclic Peptides with 12 or More Residues

molecule move mean lowest energy lowest energy mean CPU time (s)

cyclo-(Gly12) MD −10.076 −10.370 2.1 × 104

GR (dipeptide) −10.514 −10.514 5.8 × 103

GR (tripeptide) −10.436 −10.514 7.3 × 103

cyclo-(Gly14) MD −15.066 −15.983 3.1 × 104

GR (dipeptide) −15.770 −16.540 8.0 × 103

GR (tripeptide) −15.795 −16.540 1.0 × 104

cyclo-(Gly16) MD −17.997 −19.140 4.7 × 104

GR (dipeptide) −19.552 −21.067 1.1 × 104

GR (tripeptide) −19.007 −21.174 1.5 × 104

cyclo-(Gly18) MD −22.833 −24.282 5.8 × 104

GR (dipeptide) −21.548 −26.437 1.9 × 104

GR (tripeptide) −23.480 −24.674 1.9 × 104

cyclo-(Gly20) MD −25.779 −27.779 6.8 × 104

GR (dipeptide) −25.788 −29.236 2.5 × 104

GR (tripeptide) −27.465 −29.471 2.5 × 104

cyclo-((D-Ala-L-Ala)6) MD −12.207 −13.252 4.3 × 104

GR (dipeptide) −13.243 −13.252 1.3 × 104

GR (tripeptide) −13.252 −13.252 1.6 × 104

cyclo-((D-Ala-L-Ala)7) MD −17.690 −18.637 5.9 × 104

GR (dipeptide) −18.380 −18.637 1.9 × 104

GR (tripeptide) −18.291 −18.637 2.5 × 104

cyclo-((D-Ala-L-Ala)8) MD −25.577 −26.480 8.5 × 104

GR (dipeptide) −26.638 −26.814 2.6 × 104

GR (tripeptide) −26.438 −26.814 3.4 × 104

cyclo-((D-Ala-L-Ala)9) MD −29.764 −31.668 1.1 × 105

GR (dipeptide) −30.590 −31.668 3.3 × 104

GR (tripeptide) −30.540 −31.668 4.3 × 103

cyclo-((D-Ala-L-Ala)10) MD −35.782 −37.079 1.2 × 105

GR (dipeptide) −35.578 −38.493 4.3 × 104

GR (tripeptide) −35.470 −38.434 5.6 × 104
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(Figure 7). The barrier for the parallel to antiparallel conversion
is 12.8 kcal mol−1.
For cyclo-((D-Ala-L-Ala)4), the global potential energy

minimum does not resemble a nanotube and has both
intermolecular and intramolecular hydrogen bonds (Figure

7a). Perfect antiparallel and parallel structures are 10.8 and 27.1
kcal mol−1 less stable, respectively.
The disconnectivity graph of the cyclo-((D-Ala-L-Ala)4)

dimer (Figure 8) comprises three main funnels that become

mutually accessible about 12 kcal mol−1 above the global
minimum. The funnel containing the global minimum contains
several structures with both inter- and intramolecular hydrogen
bonds. The next deepest funnel contains the antiparallel
nanotube and is competitive with the global minimum, with the
lowest structures 0.4 kcal mol−1 above the global free energy
minimum. The third funnel contains parallel structures and has
minima at least 1.4 kcal mol−1 higher than the global free
energy minimum. Note that several distorted structures are
lower in energy than the perfect nanotubes in both of these
funnels.
We have tested the performance of MD and group rotation

moves by measuring the mean time to the first encounter of the
global potential energy minimum over 50 basin-hopping runs
(Table 5). For the cyclo-((D-Ala-L-Ala)3) dimer, both move sets
require a similar number of quenches to locate the global
minimum. However, for cyclo-((D-Ala-L-Ala)4), MD moves
require substantially more quenches to locate the global
minimum. For both cyclic peptide dimers, the computational
overheads of the MD moves lead to each attempted move
taking 2−3 times as much CPU time as the group rotation
moves.

Figure 5. Disconnectivity graphs showing the free energy landscape of
cyclo-((D-Ala-L-Ala)3) at 298 K in water (left) and nonpolar solvent
(right).

Figure 6. Disconnectivity graphs showing the free energy landscape of
cyclo-((D-Ala-L-Ala)4) at 298 K in water (left) and nonpolar solvent
(right).

Figure 7. Low-lying minima of cyclo-((D-Ala-L-Ala)3) dimers in
nonpolar solvent. Energies are in kcal mol−1 and are relative to the
global potential or free energy minimum. Also shown is a
disconnectivity graph of the free energy landscape at 298 K. The
542 minima and 810 transition states accessible by transition states
lower than 13 kcal mol−1 from the global minimum are shown.
Coloring is according to hydrogen bonding pattern from parallel
(blue) to antiparallel (red).

Figure 8. Low-lying minima of the cyclo-((D-Ala-L-Ala)4) dimer.
Energies are in kcal mol−1 and are relative to the global potential or
free energy minimum. Also shown is a disconnectivity graph of the free
energy landscape at 298 K. The 610 minima and 832 transition states
accessible by transition states lower than 13 kcal mol−1 from the global
minimum are shown. Coloring is according to hydrogen bonding
pattern from parallel (blue) to antiparallel (red).
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4. CONCLUSIONS
We have tested the performance of several move classes in
basin-hopping optimization of cyclic peptides and their dimers.
Simple Cartesian displacement moves perform poorly because
of their tendency to invert chiral centers. MD moves are better,
but the computational cost of a single basin-hopping step is
significantly higher. The best performance, in terms of CPU
time and the effectiveness of each basin-hopping step, is
obtained with group rotation moves.
When searching the conformations of cyclic peptide dimers,

a hybrid minimization strategy, where quenches are performed
treating each molecule as a rigid body before an all-atom
quench, is very effective. The combination of group rotation
and rigid body moves is more efficient than MD moves, both in
terms of the number of basin-hopping steps required to locate
the global minimum and the computational cost of each step.
Analysis of the energy landscape of the cyclo-((D-Ala-L-Ala)3)

dimer shows that the parallel structure is the global minimum,
but also that this structure is not well-aligned to seed the
growth of a nanotube. For the cyclo-((D-Ala-L-Ala)4) dimer
there are several competing low-energy structures, and some of
these could proceed to form nanotubes.
In the future, we will consider the formation of larger cyclic

peptide nanotubes. From some preliminary calculations, we
find that basin hopping searches using all atom models are
practical for systems up to at least four cyclic peptides. For
nanotubes that are too large to study with all-atom models, we
will use a course-grained potential, such as the Martini model.61

We have used an implicit solvation model in this study. Cyclic
peptide nanotubes are large enough to contain small molecules,
and it is possible that explicit solvent models will lead to
different hydrogen bonding patterns. Basin-hopping calcula-
tions including a small number of explicit solvent molecules
could be a computationally feasible way of capturing this effect.
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(26) Büttner, F.; Norgren, A. S.; Zhang, S.; Prabpai, S.; Kongsaeree,
P.; Arvidsson, P. I. Chem.Eur. J. 2005, 11, 6145−6158.
(27) Labute, P. J. Chem. Inf. Model. 2010, 50, 792−800.
(28) Rayan, A.; Senderowitz, H.; Goldblum, A. J. Mol. Graphics
Modell. 2004, 22, 319−333.
(29) Rezai, T.; Bock, J. E.; Zhou, M. V.; Kalyanaraman, C.; Lokey, R.
S.; Jacobson, M. P. J. Am. Chem. Soc. 2006, 128, 14073−14080.
(30) Goldtzvik, Y.; Goldstein, M.; Benny Gerber, R. Chem. Phys.
2013, 415, 168−172.
(31) Dieterich, J. M.; Hartke, B. Mol. Phys. 2009, 108, 279−291.
(32) Dieterich, J. M.; Gerstel, U.; Schröder, J.-M.; Hartke, B. J. Mol.
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