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Abstract
We propose an affine-mapping based variational ensemble Kalman filter for sequential Bayesian filtering problems with
generic observation models. Specifically, the proposed method is formulated as to construct an affine mapping from the prior
ensemble to the posterior one, and the affine mapping is computed via a variational Bayesian formulation, i.e., by minimizing
the Kullback–Leibler divergence between the transformed distribution through the affine mapping and the actual posterior.
Some theoretical properties of resulting optimization problem are studied and a gradient descent scheme is proposed to solve
the resulting optimization problem. With numerical examples we demonstrate that the method has competitive performance
against existing methods.

Keywords Affine-mapping · Data assimilation · Ensemble Kalman Filters · Kullback–Leibler divergence · Sequential
Bayesian filtering

Mathematics Subject Classification 65C05 · 62F15

1 Introduction

The ensemble Kalman filter (EnKF) (Evensen 2009, 2003)
is one of the most popular tools for sequential data assimi-
lation, thanks to its computational efficiency and flexibility
(Houtekamer andMitchell 1998;Whitaker and Hamill 2002;
Evensen 2003). Simply put, at each time step EnKF approxi-
mates the prior, the likelihood and the posterior by Gaussian
distributions. Such a Gaussian approximation allows an
affine update that maps the prior ensemble to the posterior
one. This Gaussian approximation and the resulting affine
update are the key that enables EnKF to handle large-scale
problems with a relatively small number of ensembles. In the
conventional EnKF, it is required that the observation model
is Gaussian-linear, which means that the observation opera-
tor is linear and the noise is additive Gaussian. However, in
many real-world applications, neither of these two require-
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ments is satisfied. When the actual observation model is not
Gaussian-linear, the EnKF method may suffer from substan-
tial estimation error, which is discussed in details in Sect. 3.2.

We note that, many EnKF variants (see, e.g., Law et al.
2015 and the references therein), such as the ensemble trans-
form Kalman filter (ETKF) (Bishop et al. 2001), are mainly
designed to improve the performance ofEnKFunder the stan-
dard Gaussian-linear observation model, and thus have the
same difficulty with non-Gaussian-linear observation mod-
els. To the end, it is of practical importance to develop
methods that can better deal with generic observation mod-
els than EnKF, while retaining the computational advantage
(i.e., using a small ensemble size) of it.

A notable example of such methods is the nonlinear
ensemble adjustment filter (NLEAF) (Lei and Bickel 2011),
which involves a correction scheme: the posterior moments
are calculated with importance sampling and the ensembles
are then corrected accordingly. Another very interesting class
of methods are the (conditional) mean-field EnKF (Law et al.
2016;Hoang et al. 2021),which is derivedvia the formulation
of computing an optimal point estimator in the mean-square
error sense. Themean-fieldmethods can outperform the stan-
dard EnKF inmany applications, but they still require certain
assumptions on the observation noise. Other methods that
can be applied to such problems include (Anderson 2003,
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2001; Houtekamer and Mitchell 2001; Li et al. 2018; Ba
et al. 2018) (some of them may need certain modifications),
just to name a few. In this work we focus on the EnKF type
of methods that can use a small number of ensembles in high
dimensional problems, and methods involving full Monte
Carlo sampling such as the particle filter (PF) (Arulampalam
et al. 2002; Doucet and Johansen 2009), or those seeking to
compute the exact posterior through transport maps (Span-
tini et al. 2019), are not in our scope. It is also worth noting
that a class of methods combine EnKF and PF to alleviate the
estimation bias induced by the non-Gaussianity (e.g., Stordal
et al. 2011; Frei and Künsch 2013), and typically the EnKF
part in such methods still requires a Gaussian-linear obser-
vation model (or to be treated as such a model).

The main purpose of this work is to provide an alterna-
tive framework to implement EnKF for arbitrary observation
models. Specifically, the proposed method formulates the
EnKF update as to construct an affinemapping from the prior
to the posterior and such an affine mapping is computed in
variational Bayesian framework (MacKay 2003). That is, we
seek the affine mapping minimizing the Kullback–Leibler
divergence (KLD) between the “transformed” prior distribu-
tion and the posterior.We note here that a similar formulation
has been used in the variational (ensemble) Kalman filter
(Auvinen et al. 2010; Solonen et al. 2012). The difference is
however, the variational (ensemble) Kalman filter methods
mentioned above still rely on the linear-Gaussian observation
model, where the variational formulation, combined with a
BFGS scheme, is used to avoid the inversion and storage of
very large matrices, while in our work the variational for-
mulation is used to compute the optimal affine mapping for
generic observation models.

It can be seen that this affine mapping based variational
EnKF (VEnKF) reduces to the standard EnKF when the
observation model is Gaussian-linear, and as such it is a
natural generalization of the standard EnKF to generic obser-
vationmodels. Also, by design the obtained affinemapping is
optimal under the variational (minimal KLD) principle. We
also present a numerical scheme based on gradient descent
algorithm to solve the resulting optimization problem, and
with numerical examples we demonstrate that the method
has competitive performance against several existing meth-
ods. Finally we emphasize that, as an extension of EnKF, the
proposedmethod also requires that the prior and the posterior
distributions should not deviate significantly from Gaussian.

The rest of the work is organized as follows. In Sect. 2
we provide a generic formulation of the sequential Bayesian
filtering problem. In Sect. 3 we present the proposed affine
mapping based variational EnKF. Numerical examples are
provided inSect. 4 to demonstrate the performance of the pro-
posed method and finally some closing remarks are offered
in Sect. 5.

2 Problem formulation

2.1 HiddenMarkovmodel

We start with the hidden Markov model (HMM), which is a
generic formulation for data assimilation problems (Doucet
and Johansen 2009). Specifically let {xt }t≥0 and {yt }t≥0 be
two discrete-time stochastic processes, taking values from
continuous state spaces X and Y respectively. Throughout
this work we assume that X = R

nx and Y = R
ny . The

HMMmodel assumes that the pair {xt , yt } has the following
property,

xt |x1:t−1, y1:t−1 ∼ π(xt |xt−1), x0 ∼ π(x0), (1a)

yt |x1:t , y1:t−1 ∼ π(yt |xt ), (1b)

where for simplicity we assume that the probability density
functions (PDF) of all the distributions exist and π(·) is used
as a generic notation of a PDFwhose actual meaning is spec-
ified by its arguments.

In the HMM formulation, {xt }t≥0 and {yt }t≥0 are known
respectively as the hidden and the observed states, and a
schematic illustrationofHMMis shown inFig. 1. This frame-
work represents many practical problems of interest (Fine
et al. 1998; Krogh et al. 2001; Beal et al. 2002), where one
makes observations of {yt }t≥0 and wants to estimate the hid-
den states {xt }t≥0 therefrom. A typically example of HMM
is the following stochastic discrete-time dynamical system:

xt = Ft (xt−1, αt ), x0 ∼ π(x0), (2a)

yt = Gt (xt , βt ), (2b)

where αt ∼ πα
t (·) and βt ∼ π

β
t (·) are random variables

representing respectively the model error and the observa-
tion noise at time t . In many real-world applications such as
numerical weather prediction (Bauer et al. 2015), Eq. (2a),
which represents the underlying physical model, is computa-
tionally intensive, while Eq. (2b), describing the observation
model, is available analytically and therefore easy to evalu-
ate. It follows that, in such problems, (1) one can only afford a
small number of particles in thefiltering, (2)Eq. (2a) accounts
for the vast majority of the computational cost.

All our numerical examples are described in this form and
further details can be found in Sect. 4.

2.2 Recursive Bayesian filtering

Recursive Bayesian filtering (Chen 2003) is a popular frame-
work to estimate the hidden states in a HMM, and it aims to
compute the condition distributionπ(xt |y1:t ) for t = 1, 2, . . .
recursively. In what follows we discuss how the recursive
Bayesian filtering proceeds.
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Fig. 1 A schematic illustration of the Hidden Markov Model

First applying the Bayes’ formula, we obtain

π(xt |y1:t ) = π(yt |xt , y1:t−1)π(xt |y1:t−1)

π(yt |y1:t−1)
, (3)

whereπ(yt |y1:t−1) is the normalization constant (Doucet and
Johansen 2009). From Eq. (1b) we know that yt is indepen-
dent of yt−1 conditionally on xt , and thus Eq. (3) becomes

π(xt |y1:t ) = π(yt |xt )π(xt |y1:t−1)

π(yt |y1:t−1)
. (4)

The condition distribution π(xt |y1:t−1) can be expressed
as

π(xt |y1:t−1) =
∫

π(xt |xt−1, y1:t−1)π(xt−1|y1:t−1)dxt−1,

(5)

and again thanks to the property of the HMM in Eq. (1), we
have (Doucet and Johansen 2009),

π(xt |y1:t−1) =
∫

π(xt |xt−1)π(xt−1|y1:t−1)dxt−1, (6)

where π(xt−1|y1:t−1) is the posterior distribution at the pre-
vious step t − 1.

As a result the recursive Bayesian filtering performs the
following two steps in each iteration:

– Prediction step: the prior density π(xt |y1:t−1) is deter-
mined via Eq. (6),

– Update step: the posterior density π(xt |y1:t ) is computed
via Eq. (4).

The recursive Bayesian filtering provides a generic frame-
work for sequentially computing the conditional distribution
π(xt |y1:t ) as the iteration proceeds. In practice, the ana-
lytical expressions for the posterior π(xt |y1:t ) or the prior
π(xt |y1:t−1) usually can not be obtained, and therefore these
distributions have to be represented numerically, for exam-
ple, by an ensemble of particles (Doucet and Johansen 2009).

3 Affine-mapping based VEnKF

Wedescribe the affine-mappingbasedVEnKF (AM-VEnKF)
algorithm in this section.

3.1 Formulation of the affine-mapping basedVEnKF

We first consider the update step: namely suppose that the
prior distribution π(xt |y1:t−1) is obtained, and we want to
compute the posterior π(xt |y1:t ).

We start with a brief introduction to the transport map
based methods for computing the posterior distribution
(El Moselhy and Marzouk 2012), where the main idea is
to construct a mapping which pushes the prior distribution
into the posterior. Namely suppose x̃t follows the prior dis-
tribution π(·|y1:t−1), and one aims to construct a bijective
mapping T : X → X ,

such that xt = T (x̃t ) follows the posterior distribution
π(·|y1:t ). In reality, it is usually infeasible to obtain the
mapping that can exactly push the prior into the posterior
π(·|y1:t ), and in this case an approximate approach can be
used. That is, let πT (·) be the distribution of xt = T (x̃t )
where x̃t ∼ π(·|y1:t−1) and we seek a mapping T ∈ H
whereH is a given function space, so that πT (·) is “closest”
to the actual posterior π(·|y1:t ) in terms of certain measure
of distance between two distributions.

In practice, the KLD, which (for any two distributions π1

and π2) is defined as,

DKL(π1, π2) =
∫

log

[
π1(x)

π2(x)

]
π1(x)dx, (7)

is often used for such a distance measure. That is, we find a
mapping T by solving the following minimization problem,

min
T∈H

DKL(πT , π(xt |y1:t )), (8)

which can be understood as a variational Bayes formulation
(Wainwright and Jordan 2008).

In practice, the prior distribution π(x̃t |y1:t−1) is usu-
ally not analytically available, and in particular they are
represented by an ensemble of particles. As is in the stan-
dard EnKF, we estimate a Gaussian approximation of the
prior distribution π(x̃t |y1:t−1) from the ensemble. Namely,
given an ensemble {x̃mt }Mm=1 drawn from the prior dis-
tribution π̂(x̃t |y1:t−1), we construct an approximate prior
π̂(·|y1:t−1) = N (μ̃t , Σ̃t ), with

μ̃t = 1

M

M∑
m=1

x̃mt ,

Σ̃t = 1

M − 1

M∑
m=1

(x̃mt − μ̃t )(x̃
m
t − μ̃t )

T . (9)
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As a result, Eq. (8) is modified to

min
T∈H

DKL(πT , π̂(xt |y1:t )), with

π̂(·|y1:t ) ∝ π̂(·|y1:t−1)π(yt |xt ). (10)

Namely,we seek tominimize the distance betweenπT and
the approximate posterior π̂(xt |y1:t ). We refer to the filtering
algorithm by solving Eq. (10) as VEnKF, where the complete
algorithm is given in Alg. 1.

Algorithm 1 Affine-mapping based variational ensemble
Kalman filter (AM-VEnKF)
– Prediction:

– Let x̃mt ∼ ft (·|xmt−1),m = 1, 2, . . . , M ;

– Let π̂(·|y1:t−1) = N (μ̃t , Σ̃t ) where μ̃t and Σ̂t are computed
using Eq. (9);

– Update:

– Let π̂(xt |y1:t ) ∝ π̂(xt |y1:t−1)π(yt |xt );
– Solve the minimization problem:

Tt = arg min
T∈HDKL(πT , π̂(xt |y1:t )).

– Let xmt = Tt x̃mt for m = 1, . . . , M .

Now a key issue is to specify a suitable function spaceH.
First let A and b be nx ×nx and nx ×1 matrices respectively,
and we can define a space of affine mappingsA = {T : T · =
A · +b}, with norm ‖T ‖ =

√
‖A‖22 + ‖b‖22. Now we choose

H = {T ∈ A | ‖T ‖ ≤ r , rank(A) = nx },

where r is any fixed positive constant. It is obvious that
A being full-rank implies that T is invertible, which is an
essential requirement for the proposed method, and will be
discussed in detail in Sect. 3.3.

Next we show that the minimizer of KLD exists in the
closure of H:

Theorem 1 Let P and Q be two arbitrary probability distri-
butions defined on a Borel set B(Rnx ), and

H∗ = {T ∈ A | ‖T ‖ ≤ r},

for some fixed r > 0. Let PT be the distribution of T (x),
given x being a R

nx -valued random variable following P.
The functional DKL(PT , Q) on H∗ admits a minimizer.

Proof Let Ω = {PT : T ∈ H∗} be the image of H∗ into
P(Rnx ), the space of all Borel probability measures on Rnx .
For any sequence {Tn}∞n=1 ∈ H∗ and T ∈ H∗ such that
Tn → T , we have that Tn(x) → T (x) almost surely (a.s.),

which implies that PTn converges to PT weakly. It follows
directly that PT is continuous on H∗.

Since H∗ is a compact subset of A, its image Ω is
compact in P(Rnx ). Since DKL(PT , Q) is lower semi-
continuous with respect to PT [Theorem 1 in Posner (1975)],
min
PT ∈Ω

DKL(PT , Q) admits a solution PT ∗ with T ∗ ∈ H∗. It
follows that T ∗ is a minimizer of min

T∈H∗ DKL(PT , Q). ��

Finally it is also worth mentioning that, a key assump-
tion of the proposed method (and EnKF as well) is that both
the prior and posterior ensembles should not deviate strongly
fromGaussian. To this end, a natural requirement for the cho-
sen function space H is that, for any T ∈ H, if π(x̃t |y1:t−1)

is close to Gaussian, so should be πT (xt ) with xt = T (x̃t ).
Obviously an arbitrarily function space does not satisfy such
a requirement. However, for affine mappings, we have the
following proposition:

Proposition 1 For a given positive constant number ε, if
there is a nx -dimensional normal distribution p̃G such that
DKL( p̃G(x̃t ), π(x̃t |y1:t−1)) < ε, and if T ∈ H, there must
exist a nx -dimensional normal distribution pG satisfying
DKL(pG(xt ), πT (xt )) < ε.

Proof This proposition is a direct consequence of the fact
that KLD is invariant under affine transformations. ��

Loosely the proposition states that, for an affine mapping T ,
if the prior π(x̃t |y1:t−1) is close to a Gaussian distribution, so
isπT (xt ), which ensures that the update stepwill not increase
the “non-Gaussianity” of the ensemble.

In principle one can choose a different function space H,
and for example, a popular transport-based approach called
the Stein variational gradient descent (SVGD) method (Liu
and Wang 2016) constructs such a function space using the
reproducing kernel Hilbert space (RKHS), which can also
be used in the VEnKF formulation. We provide a detailed
description of the SVGD based VEnKF in “Appendix A”,
and this method is also compared with the proposed AM-
VEnKF in all the numerical examples.

3.2 Connection to the ensemble Kalman filter

In this section, we discuss the connection between the stan-
dard EnKF (Evensen 2009, 2003) and AM-VEnKF, and
show that EnKF results in additional estimation error due to
certain approximations made. We start with a brief introduc-
tion toEnKF.Weconsider the situationwhere the observation
model takes the form of

yt = Ht xt + βt , (11)
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which implies π(yt |xt ) = N (Ht xt , Rt ), where Ht is a linear
observation operator and βt is a zero-mean Gaussian noise
with covariance Rt .

In this case, EnKF can be understood as to obtain an
approximate solution of Eq. (10). Recall that in the VEnKF
formulation, πT is the distribution of xt = T (x̃t ) where x̃t
follows π(·|y1:t−1), and similarly we can define π̂T as the
distribution of xt = T (x̃t ) where x̃t follows the approxi-
mate prior π̂(·|y1:t−1). Now instead of Eq. (10), we find T
by solving,

min
T∈H

DKL(π̂T , π̂(xt |y1:t )), (12)

and the obtainedmapping T is then used to transform the par-
ticles. It is easy to verify that the optimal solution of Eq. (12)
can be obtained exactly (Evensen 2009),

xt = T (x̃t ) = (I − Kt Ht )x̃t + Kt yt , (13)

where I is the identity matrix and Kalman Gain matrix Kt is

Kt = Σ̃t H
T
t (HtΣ̃t H

T
t + Rt )

−1. (14)

Moreover, the resulting value of KLD is zero, which means
that the optimal mapping pushes the prior exactly to the pos-
terior. One sees immediately that the optimal mapping in
Eq. (13) coincideswith the updating formula of EnKF, imply-
ing that EnKF is an approximation of VEnKF, even when the
observation model is exactly linear-Gaussian.

When the observation model is not linear-Gaussian, fur-
ther approximation is needed. Specifically the main idea is
to approximate the actual observation model with a linear-
Gaussian one, and estimate the Kalman gain matrix Kt

directly from the ensemble (Houtekamer andMitchell 2001).
Namely, suppose we have an ensemble from the prior distri-
bution: {x̃mt }Mm=1, andwegenerate an ensemble of data points:
ỹmt ∼ π(ỹmt |x̃mt ) for m = 1, . . . , M . Next we estimate the
Kalman gain matrix as follows,

K̃t = CxyC
−1
yy ,

x̂t = 1

M

M∑
m=1

x̃mt , ŷt = 1

M

M∑
m=1

ỹmt ,

Cxy = 1

M − 1

M∑
m=1

(x̃mt − x̂t )(ỹ
m
t − ŷt )

T ,

Cyy = 1

M − 1

M∑
m=1

(ỹmt − ŷt )(ỹ
m
t − ŷt )

T .

Finally the ensemble are updated: xmt = x̃mt + K̃t (yt− ỹmt )

for i = 1, . . . , M . As one can see here, due to these approx-
imations, the EnKF method can not provide an accurate

solution to Eq. (10), especially when these approximations
are not accurate.

3.3 Numerical algorithm for minimizing KLD

In the VEnKF framework presented in Sect. 3.1, the key step
is to solve the KLDminimization problem (8). In this section
we describe in details how the optimization problem is solved
numerically.

Namely suppose at step t , we have a set of samples
{x̃mt }Mm=1 drawn from the prior distribution π(x̃t |y1:t−1), we
want to transform them into the ensemble {xmt }Mm=1 that fol-
lows the approximate posterior π(xt |y1:t ). First we set up
some notations, and for conciseness some of them are differ-
ent from those used in the previous sections: first we drop the
subscript of x̃t and xt , andwe then define p(x̃) = π(x̃ |y1:t−1)

(the actual prior), p̃(x̃) = π̂(x̃ |y1:t−1) = N (μ̃, Σ̃) (the
Gaussian approximate prior), l(x) = − logπ(yt |x) (the neg-
ative log-likelihood) and q(x) = π̂(x |y1:t ) (the approximate
posterior). It should be clear that

q(x) ∝ p̃(x) exp(−l(x)). (15)

Recall thatwewant tominimizeDKL(pT (x), q(x))where
pT is the distribution of the transformed random variable
x = T (x̃), and it is easy to show that

DKL(pT (x), q(x)) = DKL(p(x̃), qT−1(x̃)),

where qT−1 is the distribution of the inversely transformed
random variable x̃ = T−1(x) with x ∼ q(x). Moreover, as

DKL(p(x̃), qT−1(x̃)) =
∫

log[p(x̃)]p(x̃)dx̃

−
∫

log[qT−1(x̃)]p(x̃)dx̃,

minimizing DKL(pT (x), q(x)) is equivalent to

min
T∈H

−
∫

log[qT−1(x̃)]p(x̃)dx̃ . (16)

A difficulty here is that the feasible space H is constrained
by ‖T ‖ ≤ r (i.e. an Ivanov regularization), which poses
computational challenges.

Following the convention we replace the constraint with
a Tikhonov regularization to simplify the computation:

min
T∈A

−
∫

log[qT−1(x̃)]p(x̃)dx̃ + λ‖T ‖2, (17)

where λ is a pre-determined regularization constant.
Now using T x = Ax + b, qT−1(x̃) can be written as,

qT−1(x̃) = q(Ax̃ + b)|A|, (18)
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and we substitute Eq. (18) along with Eq. (15) in to Eq. (17),
yielding,

min
A,b

Fq(A, b)

:= −
∫

log[q(Ax̃ + b)]p(x̃)dx̃
− log |A| + λ(‖A‖22 + ‖b‖22),

= −
∫

log[ p̃(Ax̃ + b)]p(x̃)dx̃ +
∫

l(Ax̃ + b)p(x̃)dx̃

− log |A| + λ(‖A‖22 + ‖b‖22),
= 1

2
Tr [(Σ̃ + μ̃μ̃T )AT Σ̃−1A]

+(b − μ̃)T Σ̃−1[Aμ̃ + 1

2
(b − μ̃)]

− log |A| + Ex̃∼p[l(Ax̃ + b)]
+1

2
(nx log(2π) + log |Σ̃ |)

+λ(‖A‖22 + ‖b‖22), (19)

which is an unconstrained optimization problem in terms of
A and b. It should be clear that the solution of Eq. (19) is
naturally invertible.

We then solve the optimization problem (19) with a gra-
dient descent (GD) scheme:

Ak+1 = Ak − εk
∂Fq
∂A

(Ak, bk),

bk+1 = bk − εk
∂Fq
∂b

(Ak, bk),

where εk is the step size and the gradients can be derived as,

∂Fq
∂A

(A, b) = (Σ̃ + μ̃μ̃T )AT Σ̃−1 + Σ̃−1(b − μ̃)μ̃T

−A−1 + Ex̃∼p[∇x l(Ax̃ + b)x̃ T ] + 2λA,

(20)
∂Fq
∂b

(A, b) = Σ̃−1[Aμ̃ + b − μ̃]
+Ex̃∼p[∇x l(Ax̃ + b)] + 2λb. (21)

Note that Eq. (20) involves the expectations Ex̃∼p[∇x l
(Ax̃ + b)x̃ T ] and Ex̃∼p[∇x l(Ax̃ + b)] which are not known
exactly, and in practice they can be replaced by their Monte
Carlo estimates:

Ex̃∼p[∇x l(Ax̃ + b)x̃ T ] ≈ 1

M

∑
∇x l(Ax̃

m + b)(x̃m)T ,

Ex̃∼p[∇x l(Ax̃ + b)] ≈ 1

M

M∑
m=1

∇x l(Ax̃
m + b),

where {x̃m}Mm=1 are the prior ensemble and ∇x l(x) is
the derivative of l(x) taken with respect to x . The same

Monte Carlo treatment also applies to the objective function
Fq(A, b) itself when it needs to be evaluated.

The last key ingredient of the optimization algorithm is
the stopping criteria. Due to the stochastic nature of the
optimization problem, standard stopping criteria in the gra-
dient descent method are not effective here. Therefore we
adopt a commonly used criterion in search-based optimiza-
tion: the iteration is terminated if the current best value is
not sufficiently increased within a given number of steps.
More precisely, let F∗

k and F∗
k−Δk be the current best value

at iteration k and k − Δk respectively where Δk is a posi-
tive integer smaller than k, and the iteration is terminated if
F∗
k −F∗

k−Δk < ΔF for a prescribed thresholdΔF . In addition
we also employ a safeguard stopping condition, which ter-
minates the procedure after the number of iterations reaches
a prescribed value Kmax.

It is also worth mentioning that the EnKF type of meth-
ods are often applied to problems where the ensemble size
is similar to or even smaller than the dimensionality of the
states and in this case the localization techniques are usually
used to address the undersampling issue (Anderson 2007).
In the AM-VEnKF method, many localization techniques
developed in EnKF literature can be directly used, and in our
numerical experiments we adopt the sliding-window local-
ization used in Ott et al. (2004), and we will provide more
details of this localization technique in Sect. 4.1.

Finally we provide some remarks on the theoretical prop-
erty of the algorithm. First as has been mentioned, it is
essential a specific implementation of the GD scheme and
therefore we expect that it enjoys the same convergence
property of GD from the optimization perspective. Another
theoretical issue is that we here do not have results on the
statistical stability of the algorithm, which is an important
question and should be studied in future works.

4 Numerical examples

4.1 Observationmodels

In our numerical experiments, we test the proposed method
with an observationmodel that is quite flexible and also com-
monly used in epidemic modeling and simulation (Capaldi
et al. 2012):

yt = G(xt , βt ) = M(xt ) + aM(xt )
θ ◦ βt , (22)

where M(·) : X → Y is a mapping from the state space to
the observation space, a is a positive scalar, βt is a random
variable definedonY , and◦ stands for theSchur (component-
wise) product.Moreover we assume thatβt is an independent
random variable with zero mean and variance R, where R
here is the vector containing the variance of each compo-
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nent and should not be confused with the covariance matrix.
It can be seen that aM(xt )θ ◦ βt represents the observa-
tion noise, controlled by two adjustable parameters θ and
a, and the likelihood π(yt |xt ) is of mean M(xt ) and variance
a2M(xt )2θ ◦ R.

The parameter θ is particularly important for specifying
the noise model in Capaldi et al. (2012) and here we consider
the following three representative cases. First if we take θ =
0, it follows that yt = M(xt ) + aβt , where the observation
noise is independent of the state value xt . This is the most
commonly used observation model in data assimilation and
we refer to it as the absolute noise following (Capaldi et al.
2012). Second if θ = 0.5, the variance of observation noise
is a2M(xt ) ◦ R, which is linearly dependent on M(xt ), and
we refer to this as the Poisson noise (Capaldi et al. 2012).
Finally in case of θ = 1, it is the standard deviation of the
noise, equal to aM(xt )R1/2, that depends linearly on M(xt ),
and this case is referred to as the relative noise (Capaldi et al.
2012). In our numerical experiments we test all the three
cases.

Moreover, in the first two numerical examples provided
in this work, we take

M(xt ) = 0.1x2t , (23)

a = 1, and assume βt to follow the Student’s t-distribution
(Roth et al. 2013) with zero-mean and variance 1.5. In the
last example, we take,

M(xt ) = exp(xt/2), (24)

and a = 1.
As has been mentioned, localization is needed in some

numerical experiments here. Given Eqs. (23) and (24) we
can see that the resulting observation model has a property
that each component of the observation yt is associated to a
component of the state xt : namely,

yt,i = M(xt,i ) + (M(xt,i ))
θβt,i , i = 1, . . . , nx ,

where βt,i is the i-th component of βt , and ny = nx .
In this case, we can employ the sliding-window localiza-
tion method, where local observations are used to update
local state vectors, and the whole state vector is recon-
structed by aggregating the local updates. Namely, the state
vector xt = (xt,1, . . . , xt,nx ) is decomposed into a num-
ber of overlapping local vectors: {xt,Ni }nxi=1, where Ni =
[max{1, i − l} : min{i + l, nx }] for a positive integer l.
When updating any local vector xt,Ni , we only use the local
observations yt,Ni and as such each local vector is updated
independently. It can be seen that by design each xt,i is
updated in multiple local vectors, and the final update is
calculated by averaging its updates in local vectors indexed

by Nmax{1,i−k}, . . . , Ni , . . . , Nmin{i+k,nx }, for some positive
integer k ≤ l. We refer to Ott et al. (2004), Lei and Bickel
(2011) for further details.

4.2 Lorenz-96 system

Our first example is the Lorenz-96 model (Lorenz 1996):

{ dxn
dt = (xn+1 − xn−2)xn−1 − xn + 8, n = 1, . . . , 40
x0 = x40, x−1 = x39, x41 = x1,

(25)

a commonly used benchmark example for filtering algo-
rithms.

By integrating the system (25) via the Runge-Kutta
scheme with stepsize Δt = 0.05, and adding some model
noise, we obtain the following discrete-time model:

{
xt = F(xt−1) + αt , t = 1, 2, . . .
yt = M(xt ) + M(xt )θβt , t = 1, 2, . . .

(26)

where F is the standard fourth-order Runge-Kutta solution
of Eq. (25), αt is standard Gaussian noise, and the initial
state x0 ∼ U [0, 10]. We use synthetic data in this example,
which means that both the true states and the observed data
are simulated from the model.

As mentioned earlier, we consider the three observation
models corresponding to θ = 0, 0.5 and 1. In each case, we
use two sample sizes M = 100 and M = 20. To evalu-
ate the performance of VEnKF, we implement both the AM
based and the SVGD based VEnKF algorithms. As a com-
parison, we also impliment several commonly usedmethods:
the EnKF variant provided in Sect. 3.2, PF, and NLEAF (Lei
and Bickel 2011) with first-order (denoted as NLEAF 1) and
second-order (denoted asNLEAF2) correction, in thenumer-
ical tests. The stopping criterion in AM-VEnKF is specified
byΔk = 20,ΔF = 0.1 and Kmax = 1000,while the step size
εk in GD iteration is 0.001. In SVGD-VEnKF, the step size
is also 0.001, and the stopping criterion is chosen in a way
so that the number of iterations is approximately the same as
that in AM-VEnKF. For the small sample size M = 20, in
all the methods except PF, the sliding window localization
[with l = 3 and k = 2; see Lei and Bickel (2011) for details]
is used.

With eachmethod, we compute the square of the estimator
bias (i.e., the difference between the ensemble mean and the
ground truth) at every time step

and then average the bias over the 40 different dimensions.
The procedure is repeated 200 times for each method and all
the results are averaged over the 200 trials to alleviate the
statistical error.

The average bias for θ = 0 is shown in Fig. 2 where
it can be observed that in this case, while the other three
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Fig. 2 The average bias at each time step for θ = 0 and M = 100 in
the Lorenz 96 example

methods yield largely comparable accuracy in terms of esti-
mation bias, the bias of AM-VEnKF is significantly smaller.
To analyze the convergence property of the method, in Fig. 3
(left) we show the number of GD iterations (of both AM and
SVGD) at each time step, where one can see that all GD iter-
ations terminate after around 300-400 steps in AM-VEnKF,
except the iteration at t = 1 which proceeds for around 750
steps. The SVGD-VEnKF undergoes a much higher num-
ber of iterations in the first 20 time steps, while becoming
about the same level as that of AM-VEnKF. This can be fur-
ther understood by observing Fig. 3 (right) which shows the
current best value F∗

k with respect to the GD iteration in AM-
VEnKF, and each curve in the figure represents the result at
a time step t . We see here that the current best values become
settled after around 400 iterations at all time locations except
t = 1, which agrees well with the number of iterations shown
on the left. It is sensible that the GD algorithm takes substan-
tially more iterations to converge at t = 1, as the posterior
at t = 1 is typically much far away from the prior, com-
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Fig. 4 The average bias at each time step for θ = 0.5 and M = 100 in
the Lorenz 96 example

pared to other time steps. These two figures thus show that
the proposed stopping criteria are effective in this example.

The same sets of figures are also produced for θ = 0.5
(Fig. 4 for the average bias and Fig. 5 for the number of
iterations and the current best values) and for θ = 1 (Fig. 6
for the average bias andFig. 7 for the number of iterations and
the current best values). Note that, in Fig. 6 the bias of EnKF
is enormously higher than those of the othermethods and so is
omitted.The conclusions drawn from thesefigures are largely
the same as those for θ = 0, where the key information is
that VEnKF significantly outperforms the other methods in
terms of estimation bias, and within VEnKF, the results of
AM are better than those of SVGD. Regarding the number
of GD iterations in AM-VEnKF, one can see that in these
two cases (especially in θ = 1) it takes evidently more GD
iterations for the algorithm to converge, which we believe
is due to the fact that the noise in these two cases are not
additive and so the observation models deviate further away
from the Gaussian-linear setting.

As has been mentioned, we also conduct the experi-
ments for a smaller sample size M = 20 with localization

Fig. 3 Left: the number of GD
iterations (in both AM and
SVGD) at each time step. Right:
the current best value plotted
against the GD iterations (in
AM) where each line represents
a time step. The results are for
θ = 0 and M = 100 in the
Lorenz 96 example

0 20 40 60 80 100

time steps

200

400

600

800

1000

G
D

 it
er

at
io

ns

AM-VEnKF
SVGD-VEnKF

123



Statistics and Computing            (2022) 32:97 Page 9 of 15    97 

Fig. 5 Left: the number of GD
iterations (in both AM and
SVGD) at each time step. Right:
the current best value plotted
against the GD iterations (in
AM) where each line represents
a time step. The results are for
θ = 0.5 and M = 100 in the
Lorenz 96 example
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Fig. 6 The average bias at each time step for θ = 1 and M = 100 in
the Lorenz 96 example

employed, and we show the average bias results for θ = 0,
θ = 0.5 and θ = 1 in Fig. 8. Similar to the larger sample size
case, the bias is also averaged over 200 trials. In this case,
we see that the advantage of VEnKF is not as large as that
for M = 100, but nevertheless VEnKF still yields clearly the
lowest bias among all the tested methods. On the other hand,
the results of the twoVEnKFmethods are quite similar while

that of AM-VEnKF is slightly lower. Also shown in Fig. 8
are the number of GD iterations at each time step for all the
three cases, which shows that the numbers of GD iterations
used are smaller than their large sample size counterparts.

4.3 Fisher’s equation

Our second example is the Fisher’s equation, a baseline
model ofwildfire spreading,where filtering is often needed to
assimilate observed data at selected locations into the model
(Mandel et al. 2008). Specifically, the Fisher’s equation is
specified as follows,

ct = Dcxx + rc(1 − c), 0 < x < L, t > 0, (27a)

cx (0, t) = 0, cx (L, t) = 0, c(x, 0) = f (x), (27b)

where D = 0.001, r = 0.1, L = 2 are prescribed con-
stants, and the noise-free initial condition f (x) takes the form
of,

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ x < L/4
4x/L − 1, L/4 ≤ x < L/2
3 − 4x/L, L/2 ≤ x < 3L/4

0, 3L/4 ≤ x ≤ L.

(28)

Fig. 7 Left: the number of GD
iterations (in both AM and
SVGD) at each time step. Right:
the current best value plotted
against the GD iterations (in
AM) where each line represents
a time step. The results are for
θ = 1 and M = 100 in the
Lorenz 96 example
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Fig. 8 The results for M = 20
in the Lorenz 96 example. The
figures on the left show the
average bias at each time step;
the ones on the right show the
number of GD iterations (in
both AM and SVGD) at each
time step. From top to bottom
are respectively the results of
θ = 0, 0.5 and 1
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In the numerical experiments we use an upwind finite dif-
ference scheme and discretize the equation onto Nx = 200
spatial grid points over the domain [0, L], yielding a 200
dimensional filtering problem. The time step size is deter-
mined by D Δt

Δx2
= 0.1withΔx = L

Nx−1 and the total number
of time steps is 60. The prior distribution for the initial con-
dition is U [−5, 5] + f (x), and in the numerical scheme a
model noise is added in each time step and it is assumed to
be in the form of N (0,C), where

C(i, j) = 0.3 exp(−(xi − x j )
2/L), i, j = 1, . . . , Nx ,

with xi , x j being the grid points.

The observation is made at each grid point, and the obser-
vation model is as described in Sect. 4.1. Once again we
test the three cases associated with θ = 0, 0.5 and 1. The
ground truth and the data are both simulated from the model
described above.

We test the same set of filteringmethods as those in thefirst
example. Since in practice, it is usually of more interest to
consider a small ensemble size relative to the dimensionality,
we choose to use 50 particles for this 200 dimensional exam-
ple. Since the sample size is smaller than the dimensionality,
the sliding window localization with l = 5 and k = 3 is used.
All the simulations are repeated 200 times and the average
biases are plotted in Fig. 9 for all the three cases (θ = 0, 0.5
and 1). We see that in all the three cases the two VEnKF
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Fig. 9 The average bias at each
time step in the Fisher’s equation
example. From top to bottom:
θ = 0, θ = 0.5 and θ = 1
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methods result in the lowest estimation bias among all the
methods tested, and the results of the two VEnKF methods
are rather similar. It should be mentioned that, in the case of
θ = 1, the bias of EnKF is omitted as it is enormously higher
than those of the other methods.

As the bias results shown in Fig. 9 are averaged over
all the dimensions, it is also useful to examine the bias at
each dimension. We therefore plot in Fig. 10 the bias of each
grid point at three selected time steps t = 10, 30, and 60.
The figures illustrate that, at all these time steps, the VEnKF
methods yield substantially lower bias at the majority of the
grid points, which is consistent with the average bias results
shown in Fig. 9.

We also report that, the wall-clock time for solving the
optimization problem in each time step in AM-VEnKF is
approximately 2.0 s (on a personal computer with a 3.6GHz
processor and 16GB RAM), indicating a modest computa-
tional cost in this 200 dimensional example.

4.4 Lorenz 2005model

Here we consider the Lorenz 2005 model (Lorenz 2005)
which products spatially more smoothed model trajectory
than Lorenz 96. The Lorenz 2005 model is written in the
following scheme,

dxn

dt
= [x, x]K ,n − Xn + F, n = 1, . . . , N . (29)

where

[x, x]K ,n =
J∑

j=−J

′
J∑

i=−J

′(−xn−2K−i xn−K− j

+xn−K+ j−i xn+K+ j )/K 2,

and this equation is composed with periodic boundary condi-
tion. F is the forcing term and K is the smoothing parameter
while K << N , and one usually sets J = K−1

2 if K is
odd, and J = K

2 if K is even. Noted that the symbol
∑ ′

denote a modified summation which is similarly with gener-
ally summation

∑
but the first and last term are divided by

2. Moreover if K is even the summation is
∑ ′, and if K is

odd the summation is replaced by ordinary
∑

.
It is worth noting that, when setting K = 1, N = 40, and

F = 8, the model reduces to Lorenz 96. In this example, we
set the model as N = 560, F = 10 and K = 16, resulting in
a 560-dimensional filtering problem. Following the notations
in Sect. 4.2, Lorenz 2005 is also represented by a standard
discrete-time fourth-order Runge-Kutta solution of Eq. (29)
with Δt = 0.01 where the same model noise is added, and
the state and observation pair {xt , yt } is similarly denoted by
Eq. (26). We reinstate that in this example the observation
model is chosen differently (see Sect. 4.1).

And the initial state is chosen to be x0 ∼ U [0, 5].
In this numerical experiments, we test the same set of

methods as those in the first two examples, where in each
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Fig. 10 The estimation bias at t = 10 (top), t = 30 (middle) and t = 60 (bottom), in the Fisher’s equation example. From left to right: θ = 0,
θ = 0.5 and θ = 1

method 100 particles are used. Due to the small ensemble
size, it is necessary to adopt the sliding-window localization
with (l, k) = (5, 3) in all methods except PF. We observe
that the errors in the results of EnKF and PF are significantly
larger than those in the other methods, and so those results
are not presented here. It should be noted that the stopping
threshold is as ΔF = 0.5 during nearest Δk = 20 iterations
in AM-VEnKF. All methods are repeated 20 times and we
plot the averaged bias and the averaged GD iterations for all
the three cases (ε = 0, 0.5 and 1) in Fig. 11. One can see
from the figures that, in the first case (ε = 0) the results of all
the methods are quite similar, while in the other two cases,
the results of AM-VEnKF are clearly better than those of all
the other methods.

5 Closing remarks

We conclude the paper with the following remarks on the
proposed VEnKF framework. First

we reinstate that, the Fisher’s equation example demon-
strates that the KLD minimization problem in AM-VEnKF
can be solved rather efficiently, and more importantly this
optimization step does not involve simulating the underly-
ing dynamical model. As a result, this step, though more
complicated than the update in the standard EnKF, may not
be the main contributor to the total computational burden,
especially when the underlying dynamical model is com-
putational intensive. Second, it is important to note that,
although VEnKF can deal with generic observation models,
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Fig. 11 The results for the
Lorenz 2005 example: the
figures on the left show the
average bias at each time step;
the ones on the right show the
number of GD iterations (in
both AM and SVGD) at each
time step. From top to bottom
are respectively the results of
θ = 0, 0.5 and 1
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it still requires that the posterior distributions are reason-
ably close to Gaussian, an assumption needed for all EnKF
type of methods. For strongly non-Gaussian posteriors, it
is of our interest to explore the possibility of incorporat-
ing VEnKF with some existing extensions of EnKF that can
handle strong non-Gaussianity, such as the mixture Kalman
filter (Stordal et al. 2011). Finally, in this work we pro-
vide two transform mappings, the affine mapping and the
RKHS mapping in the SVGD framework. In the numeri-
cal examples studied here, the affine mapping exhibits better
performance, but we acknowledge that more comprehensive
comparisons should be done to understand the advantages
and limitations of different types ofmappings.A related issue
is that, some existing works such as Pulido and van Leeuwen
(2019) use more flexible and complicated mappings and so

that they can approximate arbitrary posterior distributions.
It is worth noting, however, this type of methods are gen-
erally designed for problems where a rather large number
of particles can be afforded, and therefore are not suitable
for the problems considered here. Nevertheless, developing
more flexible mapping based filters is an important topic that
we plan to investigate in future studies.
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A SVGD-VEnKF

In this section, we discuss the procedure for constructing the
mapping using the Stein variational gradient descent (SVGD)
formulation (Liu and Wang 2016), which provides a nonlin-
ear transform from the prior to the posterior in each time
step.

Recall that in Sect. 3 wewant to find amapping by solving

min
T∈H

DKL(πT , q), (30)

where q(·) = π̂(·|y1:t ) andH is a certain function space that
will be specified later.

Following the same argument in Sect. 3.3, we obtain that
Eq. (30) is equivalent to,

min
T∈H

DKL(p(x̃), qT−1(x̃)), (31)

where qT−1(·) is as defined in Sect. 3.3.
Now we need to determine the function space H. While

in the proposed AM-VEnKF method H is chosen to be an
affine mapping space, the SVGD framework specifiesH via
a reproducing kernel Hilbert space (RKHS) (Scholkopf and
Smola 2018).

First we write the mapping T in the form of,

T (x̃) = x̃ + τφ(x̃), (32)

where τ is a prescribed stepsize.
Next we assume that mapping φ is chosen from a RKHS

HK specified by a reproducing kernel K (·, ·). Therefore the
optimisation problem (31) becomes,

min
φ∈HK

DKL(p(x̃), qT−1(x̃)). (33)

In the SVGD framework, one does not seek to solve the
optimisation problem in Eq. (33) directly; instead it can be
derived that the direction of steepest descent is

φ∗(·) = Ex̃∼p[∇x̃ log q(x̃)K (x̃, ·) + ∇x̃ K (x̃, ·)]. (34)

It should be noted that we omit the detailed derivation of
Eq. (34) here and interested readers may consult (Liu and
Wang 2016) for such details. The obtained mapping φ∗ is
then applied to the samples which pushes them toward the
target distribution. This procedure is repeated until certain
stopping conditions are satisfied. The complete SVGD based
VEnKF algorithm is given in Alg. 2. Finally we note that, in
the numerical experiments we use the squared exponential
kernel with bandwidth h:

K (x, x ′) = exp(−‖x − x ′‖22/h),

where the implementation details can be found in Liu and
Wang (2016).

Algorithm 2 SVGD based variational EnKF (SVGD-
VEnKF)
– Prediction:

– Let x̃mt = Ft (xmt−1, α
m
t ),m = 1, 2, . . . , M ;

– Let π̂(·|y1:t−1) = N (μ̃t , Σ̃t ) where μ̃t and Σ̂t are computed
using Eq. (9);

– Update:

– Let q(·) = π̂(·|y1:t ) ∝ π̂(·|y1:t−1)π(yt |·);
– Repeat the following steps until the stopping conditions are

satisfied;
• Let

φ̃∗(·) = 1

M

M∑
m=1

[∇x̃mt log q(x̃mt )K (x̃mt , ·) + ∇x̃mt K (x̃mt , ·)].

• Let x̃mt ← x̃mt + τ φ̃∗(x̃mt ), m = 1, . . . , M .
– Let xmt = x̃mt , for m = 1, . . . , M .
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