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Regression (SVR), and Extreme Gradient Boosting
(XGBoost) Networks
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Abstract: A primary energy consumption and CO2 emission source stems from buildings and
infrastructures due to rapid urbanisation and social development. An accurate method to forecast
energy consumption in a building is thus critically needed to enable successful management of
adaptive energy consumption and ease the level of CO2 emission. However, energy forecasting for
buildings, especially residential buildings, has several challenges, such as significant variations in
energy usage patterns due to unpredicted demands of the residences and some intricate factors, which
can randomly affect the patterns. Traditional forecasting approaches require a tremendous number of
inputs needed for building physic models and variations often exist between as-built and as-designed
buildings in reality. Most recent studies have adopted only ambient weather conditions, building
components, and the occupant’s behaviours. As a result, in order to take into account the complexity
of factors that can affect the building energy model development and its computation, we develop
advanced machine learning models driven by the inherent electricity consumption pattern associated
with the day and time. In this study, we demonstrate benchmarking results derived from three
different machine learning algorithms, namely SVR, XGBoost, and LSTM, trained by using 1-year
datasets with sub-hourly (30 min) temporal granularity to determine the outperformed predictor.
Ultimately, the machine learning model robustness and performance on a basis of the coefficient of
variation (CV) obtained by the SVR is benchmarked across XGBoost and LSTM trained by the same
datasets containing attributes related to the building type, data size, and temporal granularity. The
insight stemming from this study indicates that the suitable choice of the machine learning models
for building energy forecasts largely depends on the natural characteristics of building energy data.
Hyperparameter tuning or mathematical modification within an algorithm may not be sufficient to
attain the most accurate machine learning model for building energy forecast.

Keywords: AI model; CO2 emissions; energy consumption; machine learning; building energy;
smart cities

1. Introduction

According to the United Kingdom (UK) Green Building Council, the UK is undergoing
widespread climate changes attributed to greenhouse gas emissions, as most electricity
is produced by foil fuels [1]. After 2010, a 30% emission reduction was seen mainly
owing to the decarbonisation of the electricity grid [2]. However, the energy efficiency of
buildings remains unresolved. Residential and commercial buildings account for around
40% of total building emissions in the United States [3]. Moreover, electricity demand for
buildings has been increasing over the decades and forecasting electricity to match the
supply and demand for buildings is essential because a large amount of electricity cannot
be stored. Therefore, predicting future energy consumption has emerged as a powerful
platform for demand and supply management which retrofits the energy efficiency of
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residential and commercial buildings. More importantly, the expansion of electricity
efficiency alleviates fuel consumption and the emission of greenhouse gases. At the same
time, energy consumption prediction guides renewable energy supply operators to provide
enough renewable energy sources to match building energy demands. However, the
foresight of electricity consumption can be operose since plenty of factors contribute to
electricity consumption, such as the design of the buildings, weather conditions, and
occupants’ way of life [4].

In the present age, building energy consumption prediction and estimation has gained
focus from researchers and industries. Amasyali et al. extensively reviewed data-driven
and physical modelling approaches predicting energy consumption [5]. The physical model
is dedicated to using physical principles such as the design of buildings, operation, heating,
ventilation, air conditioning (HVAC) equipment, and climate conditions to calculate the
building’s energy behaviour and thermal dynamics [6]. More in-depth calculations can be
found in [7–9] for the physical model.

The data-driven method, mainly focusing on machine learning methods, relies on
acquiring energy usage patterns from historical data. This approach benefits from not
diving into detailed calculations like the physical model. In recent years, there has been an
increasing interest in this domain using Artificial Neural Network (ANN) [10], Support
Vector Machine (SVM) [11], Long-Short Term Memory (LSTM) [12,13], XGBoost [14], etc.

This study proposes a data-driven method using historical and temporal dependency
to predict electricity consumption. At the same time, this study also explores the effect
of more outputs. A recent systematic literature review [5] summarised 63 pieces of litera-
ture predicting energy consumption in terms of algorithms, building types and features,
etc. Researchers favoured using four categories of features, namely, weather conditions,
conditions of buildings, time, and occupant behaviours [15]. Weather conditions refer to
temperature, humidity, wind speed, etc., while conditions of buildings point to the indoor
environmental conditions and designs of buildings. Time features are day types, such as a
holiday or special event, and the type of hour. Occupant behaviour covers the number of
occupants and building use schedule. The performance using these features can be good;
however, it is not easy to implement as it needs more sensors to monitor the temperature
or other weather indicators. The authors of [16] predicted the hourly energy consumption
for the cooling system at a non-residential building using seven weather indicators like
temperature, dew point temperature, wind speed etc. A good R2 (0.71–0.95) was delivered
for the 27.5 months of actual data. Edwards et al. have conducted two branches of tasks
using 7 AI models, which were trained by a dataset collected by 140 different sensors
in 1 year, acquiring the lowest CV of 20.15%. At the same time, they also trained the
same model with another 6-months’ data (including solar flux, temperature, cosine of the
hour, sine of the hour, and date) from the American Society of Heating, Refrigerating, and
Air-conditioning Engineers (ASHRAE) achieving a better CV of 2.71% than the model using
1-year dataset [17]. It is observable from [17] that a large number of features (150 sensory
data) is sometimes not helpful compared to the dataset with five features. Long-term
energy prediction has also gained interest where [18,19] employed a variety of features,
mainly from the designs of the buildings and the weather conditions to train models to
envisage the overall energy consumption for residential buildings next year. However, the
yearly prediction is beyond the scope as a short-term prediction is favourable to achieving
more live assistance for the suppliers adapting their strategy. To predict future energy
usage, the type of building is also critical as commercial buildings present a more consistent
pattern than residential buildings. The commercial building is subjected to a pre-defined
schedule, but the residential building is confounded by a more changeable time plan. Most
of the non-residential based models provided better performance than the residential-based
model, such as the non-residential models from Leung et al. [20] and Platon et al. [21],
compared to the residential-based models in [17,22]. Compared to all the literature above,
our novelty refers to using as few features as possible (the least number of features used
by [17] is five so far) to deliver lightweight ML models and less computational cost. More
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importantly, this paper explores the multi-output case that allows delicate management.
To the best of our knowledge, very little about the multi-output is currently known in this
domain. Specifically, the multi-output contributes to predictions every time granularity in
the following hours, unlike a long-term prediction with an overall value.

In this study, electricity consumption and day are the only two types of attributes.
Weather data are not employed to alleviate the tedium caused by acquiring data and the
computational cost abatement. The focal point of this article is the inherent pattern of
electricity consumption demonstrated in Figure 1 instead of factors affecting consumption.
Figure 1 exemplifies an example using features at four previous timestamps to predict the
energy consumption at the future two timestamps.
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Day feature is converted to Day sin and Day cos, which, to some extent, can reflect
the pattern of temperature variation, such as night-time is cooler than daytime. Machine
Learning (ML) is adopted in this research to avoid complex calculations but maintain
satisfying performance. The contributions of this study can be summarised in the following
two points:

1. The study confirms the model’s performance in the absence of weather features which
makes the model less computational cost. It is almost effortless to deploy from an
engineering prospect since no sensors for weather conditions are needed;

2. The multi-output allows a detailed scenario to respond to the electricity usage in the
following hours.

The remainder of the paper is organised as follows: Section 2 unveils the overview of
the whole process from raw data collection and the development of ML models. Section 2
lays out data collection, analysis, and data pre-processing for ML models. Subsequently,
details of three different ML algorithms, hyperparameter tuning, and evaluation criteria are
discussed in the rest subsections of Section 2. Section 3 provides results for predicting the
electricity usage in the next 30 min and discussions for a comparison with other research.
Section 4 provides conclusions, limitations, and future directions.

2. Materials and Methods
2.1. Data Collection

The first step in predicting the electric energy consumption of a residential building is
to collect energy consumption data. The selected building shall have a monitoring system
that collects and monitors electricity consumption. The building studied is the University
of Birmingham Chamberlain Halls of Residence. The residential halls of Chamberlain
consist of four buildings, Linear Wing A, Linear Wing B, Linear Wing C, and the Tower.
Linear Wing A to C is a 4-story construction, and the Tower is a 20-story construction.
Chamberlain provides over 120 shared flats and studios. Optima Energy Systems manage
chamberlain energy monitoring. After requesting the energy consumption data from the
University of Birmingham, the university provided one year of electricity consumption
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data from December 2020 to December 2021. The temporal granularity of the data is half
an hour.

Figure 2 uncovers the shape of the dataset showing that the dataset is slightly longer
than one year, which exceeds a majority of studies ranging from two weeks to four years.
However, this is not an appropriate justification for the dataset’s size. In [23], the authors
well explained a common question arising when using ML—what is the proper size of
data needed? The n–p ratio, where n refers to the number of samples and p stands for the
number of features, is used to assess the data size. ML models are prone to overfitting when
p is much larger than n. Therefore, more samples can be recruited to relieve or mitigate
overfitting. The size of data is also sensitive to the complexity of algorithms, as a simple
algorithm can present better performance than a complex algorithm when there is a limited
number of samples [24]. There is no simple answer to the size of the dataset. However, it is
sensible to ensure that the n is large enough to avoid overfitting and that the model can
learn a representative pattern.
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2.2. Exploratory Data Analysis

In this section, data analysis has been conducted to explore and summarise the main
characteristics using an additive decomposition model and data visualisation methods.
All the insights from this section underpin the ML model part. This section starts with
a quick observation of the rolling mean and standard deviation (std), where a rolling
window covering one day long is 48 slots, as seen in Figure 3. Several spikes in Figure 3a
are considered to be outliers. Apart from the spikes, flat rolling mean and std with slight
dip and rise can be found to reflect that the daily consumption is consistent over the year.
To study the detail of the dataset, Figure 3b shows a seasonal pattern and pattern based
on student timetable. There are three plateaus (after 1 December 2020, 15 March 2021,
and 1 July 2020) responding to three breaks of the university and the mean value from
1 May 2021 to 1 July 2021 is lower than other months due to the higher temperature
leading to no heating needed. The preliminary assessment infers that the trend in electricity
consumption is time-related. It is noted that Figure 3c decomposes the first 2000 slots based
on (1), yielding a seasonal trend. All these analyses have been performed to support the
deployment of a time-series model since an explicit trend can be found and the rolling mean
and std remains stable. To conquer the three plateaus, day features are also introduced.

yt = St + Tt + Rt (1)

where yt represents the data; St is the seasonal element; Tt is the trend; and Rt is the
remainder component.
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Figure 3. Data mean and std: (a) the overall plotting, (b) zooming in plotting, and (c) seasonal
decomposition by the additive model.
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2.3. Data Preprocess

The data cover the electricity consumption for each flat on the selected date. It is not
necessary to predict the trivial electricity consumption at the flat level so that the electric
usage of each flat adds up to generate the consumption for the whole building according to
dates and temporal granularities, as demonstrated in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 14 
 

Figure 3. Data mean and std: (a) the overall plotting, (b) zooming in plotting, and (c) seasonal de-
composition by the additive model. 

𝑦 =  𝑆 +  𝑇 +  𝑅  (1)

where yt represents the data; St is the seasonal element; Tt is the trend; and Rt is the re-
mainder component.  

2.3. Data Preprocess 
The data cover the electricity consumption for each flat on the selected date. It is not 

necessary to predict the trivial electricity consumption at the flat level so that the electric 
usage of each flat adds up to generate the consumption for the whole building according 
to dates and temporal granularities, as demonstrated in Figure 4.  

 
Figure 4. Electricity consumption of the whole building. 

Outliers which enlarge the mean value and variance of the dataset can jeopardise 
models and result in biased parameter estimation, model misspecification, and wrong 
predictions. Therefore, it is necessary to identify them before model development. 
Boukerche et al. defined an outlier where a value diverges far from the main track [25], as 
seen in Figure 3a. The interquartile range (IQR) method is employed for the main appeal 
of IQR's low sensitivity to distortion, as only the central part of the observation is desired 
[26]. Q1 (25 percentile) and Q3 (75 percentile) define the IQR, while the minimum and 
maximum values define where values inside the region are considered sensible. The out-
liers shown in Figure 5a are replaced by the maximum value defined in Figure 3. 
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Outliers which enlarge the mean value and variance of the dataset can jeopardise mod-
els and result in biased parameter estimation, model misspecification, and wrong predic-
tions. Therefore, it is necessary to identify them before model development. Boukerche et al.
defined an outlier where a value diverges far from the main track [25], as seen in Figure 3a.
The interquartile range (IQR) method is employed for the main appeal of IQR’s low sensitiv-
ity to distortion, as only the central part of the observation is desired [26]. Q1 (25 percentile)
and Q3 (75 percentile) define the IQR, while the minimum and maximum values define
where values inside the region are considered sensible. The outliers shown in Figure 5a are
replaced by the maximum value defined in Figure 3.
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The date and time attributes which need to be transformed are noted as they cannot be
used by the AI model directly. To show the periodicity of the electricity usage, the date and
time feature is converted to Day sin and Day cos using sine and cosine functions, as can
be seen in Figure 6. After the above transformation, an example of the input and output
can be seen in (2) and (3). It can be seen that (2) depicts an input with four timestamps and
(3) provides an output with four timestamps. This means that the input features at the four
historical timestamps are adopted to predict the electricity consumption at the future four
timestamps. In this study, the number of input and predicted timestamps vary from 1 to 9
to evaluate the impact of the timestamps.
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y0 =
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(3)

where E is electricity consumption; D is Day; subscript s and c stand for sine and cosine;
and the superscript number is the number of timestamps.

2.4. Machine Learning Models

Three powerful algorithms, Long Short-Term Memory (LSTM), XGBoost, and SVR,
are provided for rigorous evaluation and to avoid potentially biased results.
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LSTM, cut out for time-series problems, is famous for its cheap computational cost and
high performance. Before Hochreiter et al. developed LSTM, recurrent backpropagation
was haunted by the time-consuming issue when it tried to store information over extended
time intervals, mainly due to insufficient decaying error backflow [27]. To eliminate this
issue, LSTM, also known as the gradient-based method, truncated the gradient that will
cause no harm and dedicated to linking up to 1000-time steps by making constant error
flow to constant error carousels within special units. Multiplicative input and output gates
were used to protect the constant error flow from irrelevant inputs and other units from
unimportant memory contents [27].

XGBoost has gained success and has been booming in some competitions, such as
Kaggle 2015 and KDDCup 2015. At Kaggle, 17 out of 29 winning teams utilised XGBoost,
while a great success could also be seen at KDDCup 2015, which the top 10 teams all
employed XGBoost [28]. From [29], the researchers have proposed four crucial factors that
make XGBoost great success: highly scalable, a theoretically justified weighted quantile
sketch for efficient proposal calculation, a new sparsity-award algorithm for parallel tree
learning, and an effective cache-aware block for out-of-core tree learning. These techniques
enable XGBoost to run ten times faster than common models on an individual machine.

SVR was proposed based on Vapnik’s concept in [30]. The core goal of SVR is to learn
a target function with the most significant ε deviation from the actual targets for all training
samples. Moreover, SVR is desperate for a flat function inferring that SVR is not sensitive
to errors smaller than the deviation shown in Figure 7. However, the error outside the +ε
and −ε is not tolerable.
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2.5. Hyper-Parameter Tuning

Manual search (MS) and grid search (GS) [31] are widely used to find the optimal
hyperparameters of an ML model. MS is not that friendly for people fresh to ML as
expertise and understanding of how the model works inside is required. Moreover, it
is time-consuming to use MS and GS, while GS can also be a high computational cost if
the search area is large. A more effective way, random search (RS), is required for model
selection. Bergstra et al. have conducted a parametric analysis using a neural network
configured with GS and RS under seven different datasets [32]. They concluded that RS
outperforms GS with less computational time, and the performance of RS can be superior
if the same computational budget is granted since RS can search in a larger space. Over
four out of the seven datasets, the same performance was seen between RS and GS, but RS
achieved one superior outcome. Another important finding from [32] is that only a limited
amount of hyperparameters is sensitive to a dataset, but those critical hyperparameters
vary with datasets. This reveals that if there is a requirement to re-train a model to work
with a different dataset, GS is more difficult to use for a new dataset.

2.6. Metrics

Motivated by the growing importance and need for an energy forecasting system, the
ASHRAE Great Energy Predictor Shootout leveraged and unified a metric, CV, to accurately
compare the methods predicting hourly energy use based on building data [33]. Root
Mean Squared Error (RMSE) [34], Mean Absolute Error (MAE) [35], and coefficient of
determination (R2) [36,37] are also provided to allow in-depth insights into the results and
benchmarking with other research as these metrics have also been widely used. The details
of the three metrics are given as follows:

CV =

√
1

N−1 ∑N
i=1 (yi − ŷi)

2

y
× 100 (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (5)

R2 = 1− ∑N
i=1(ŷi − yi)

2

∑N
i=1(ŷi − y)2 (6)

MAE =
∑N

i=1|ŷi − yi|
N

(7)

where yi is actual values; ŷi indicates predicted values; y is the average value of the total
energy consumption; and N is the number of samples. As seen in (4), a large numerator
means an extensive error range leading to a high CV. It is noticeable that RMSE pays
more attention to the error itself, while R2 focuses on a ratio of the error to actual and
average values.

3. Results and Discussions

This section provides results based on the optimal models, which result from the
random search method with the defined space in Table A2.

The best R2, RMSE, and CV for the different configurations due to the number of
inputs and outputs for the 10% testing set (80% training set and 10% validation set) are
in Table 1. In Table 1, the SVR provides the optimal performance by configuring one
historical timestamp to predict the electricity consumption at the sequential timestamp.
This capital scenario implies that the resident’s living pattern related to electricity usage
is highly time-dependent as SVR can use the electricity consumption in this half an hour
to predict that in the next half an hour well. Two out of three models in Table 1 depict
comparable performance with 14% and 15% CV from the SVR and the XGBoost. The LSTM
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procures a slightly bigger CV than the other two. More insights regarding the number of
inputs and outputs can be gained from Table A1. Table A1 lists how the SVR responds to
the different number of inputs and outputs. It is apparent that the SVR is subjected to a
large number of outputs showing less qualified to predict four or more outputs, especially
using limited inputs. However, when three outputs are required, the SVR predictor can
still at least promise 90% R2 and 19.801% CV.

Table 1. Summary of the best result.

Model The no. of Inputs The no. of Outputs Testing R2 RMSE CV (%) MAE

LSTM 4 1 0.9187 3.4789 18.9421 2.2101
SVR 1 1 0.9535 2.6210 14.2823 1.7005

XGBoost 4 1 0.9470 2.8042 15.2683 1.8401

Table 2 displays some research in the same area to benchmark this study. They compete
in terms of temporal granularity, building type, features, and data size. Compared to [38],
which only focused on the cooling system, which relies on fewer features, this study
investigates the electricity for the whole building, which can be affected by plenty of factors
that make it hard to predict. CV provided by the SVR is slightly higher. However, the
absence of weather features leads to no additional sensors being required. The same R2 can
be seen from the SVR compared to [16], which also introduced seven weather conditions.
It is noted that [16] aimed to predict hourly results, while the SVR model can predict in
more detail two slots within one hour with 93% R2. The SVR performs better than [18],
which implemented 140 sensors among the three residential buildings. The SVR uses
fewer features compared to [22]. The 84-day dataset used in [22] is considered diminutive
compared to the 1-year dataset used in this article. The SVR delivered a better CV of 14.25%,
while [22] achieved a 14.88% CV for the sub-hourly prediction.

Table 2. Comparative analysis of the result.

Reference Temporal
Granularity Building Features Data Size Best

Performance

[38] Hourly Cooling
system Eight features 33,189

samples RMSE: 1.55

[16] Hourly Commercial Seven weather
conditions 27.5 months R2: 0.95

[17] Hourly Residential 140 sensors One year CV: 20.05%

[22]

Sub-hourly

Residential

Temperature,
date, cosine of

the hour, sine of
the hour

84 days

CV: 14.88%

Hourly CV: 12.03%

SVR—Our
study Sub-hourly Residential

Electricity
consumption,
Date and time

One year
CV: 14.25%

R2: 0.95
RMSE: 2.6210

4. Conclusions

In this investigation, the aim is to develop a lightweight model to determine the
future electricity consumption of a residential building based on historical information.
This study has identified that even three features can work well with an elaborate tuning
of an outstanding ML model SVR producing 14% CV. We broaden our investigation to
evaluate the influence of the number of inputs and outputs, which has not been done
before. Specifically, the time-series model, which depends more on the periodicity of the
data, cannot improve itself by effortlessly adding the number of inputs which sometimes is
a helpful tactic for the non-time series models. The finding that more output can impede
the model’s performance will contribute to the area of multiple steps predictions.
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To allow the practical implications for the proposed model, only a smart meter is
required to monitor and record necessary features. This approach will provide flexible
energy management to meet the net-zero goal and reduce CO2 emissions. A limitation
of this study is that the building studied is a student accommodation which reflects high
mobility each year due to graduation. Every academic year, many new students will move
to the accommodation, resulting in slightly different electricity usage patterns. The model
learnt from the previous year can give some biased predictions on the varied new pattern.
Therefore, there is a potential that the model needs to be tuned regularly to ensure high
performance. The performance of the proposed model for a new academic year can be
guaranteed as the main feature of the building resulting from the university’s timetable
will not change.

In future works, we will examine ensemble models [39], as the three models dis-
cussed here operate separately. There is a possibility that an ensemble method assembling
several models in parallel or series can enhance robustness and generalizability over a
single model.
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Appendix A

Table A1. Comparative analysis of the result.

The no. of Inputs The no. of Outputs Testing R2 RMSE CV (%) MAE

1 1 0.953518 2.620952 14.25236 1.700528
2 1 0.951107 2.691193 14.66036 1.760021
4 1 0.949834 2.732484 14.87774 1.809715
3 1 0.948978 2.752481 14.99133 1.793756
9 1 0.948214 2.789799 15.24027 1.836671
8 1 0.947892 2.796634 15.26033 1.859448
7 1 0.947191 2.812954 15.33542 1.843559
5 1 0.945543 2.850398 15.52231 1.84593
6 1 0.944791 2.873362 15.65309 1.864009
1 2 0.928819 3.245625 17.69942 2.078487
9 2 0.929776 3.249956 17.77945 2.12982
8 2 0.928676 3.272915 17.88575 2.147037
2 2 0.926786 3.295525 17.9669 2.120674

www.risen2rail.eu


Appl. Sci. 2022, 12, 9788 12 of 14

Table A1. Cont.

The no. of Inputs The no. of Outputs Testing R2 RMSE CV (%) MAE

4 2 0.92628 3.314742 18.0658 2.15817
7 2 0.926563 3.318645 18.11707 2.146832
3 2 0.924467 3.351245 18.26608 2.153108
6 2 0.923579 3.382362 18.44958 2.180407
5 2 0.922765 3.396789 18.51793 2.178441
8 3 0.912832 3.618912 19.80815 2.382346
9 3 0.91182 3.643122 19.95959 2.387658
7 3 0.908606 3.702905 20.24705 2.397612
1 3 0.90163 3.817739 20.83863 2.398218
6 3 0.902258 3.826442 20.90294 2.456909
2 3 0.900004 3.853622 21.02873 2.444086
4 3 0.899262 3.877127 21.15628 2.470191
5 3 0.899529 3.8759 21.15871 2.484479
3 3 0.898187 3.893086 21.24173 2.465941
1 4 0.873442 4.332329 23.67179 2.704412
2 4 0.869945 4.397046 24.02154 2.760474
1 5 0.843701 4.815976 26.34899 2.989854
2 5 0.839289 4.889294 26.74877 3.036636
1 6 0.817151 5.20917 28.54327 3.232244
1 7 0.794325 5.523127 30.31602 3.44357
1 8 0.776903 5.747819 31.61279 3.621202
1 9 0.76303 5.915412 32.61033 3.764738

Table A2. Optimal hyperparameters for the three algorithms.

Algorithms Hyperparameters Searching Space Optimal Value

LSTM

The no. of LSTM layers 1–8 4
The no. of units for LSTM layer 1 32–256 128
The no. of units for LSTM layer 2 32–256 64
The no. of units for LSTM layer 3 32–256 64
The no. of units for LSTM layer 4 32–256 192

The no. of dense layers 1–8 3
The no. of units for dense layer 1 32–256 89
The no. of units for dense layer 2 32–256 40
The no. of units for dense layer 3 32–256 73

Learning rate 1 × 10−1–1 × 10−6 0.001347157

XGBoost

subsample 1 × 10−3–5 × 10−1 0.1
No. of estimators 1–2000 60
Min samples split 2–50 0.1

Max depth 2–50 5
Learning rate 0.1–0.9 0.1

eta 1 × 10−3–5 × 10−1 0.8
Colsample bytree 1 × 10−3–5 × 10−1 0.8

SVR
Epsilon 1 × 10−2–2 × 10−1 0.16

C 1–2000 943
Kernel rbf rbf
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