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RESEARCH ARTICLE

RhoJ interacts with the GIT–PIX complex and regulates focal
adhesion disassembly

Eleanor Wilson1,*, Katarzyna Leszczynska1,*, Natalie S. Poulter2, Francesca Edelmann1, Victoria A. Salisbury1,
Peter J. Noy1, Andrea Bacon1, Joshua Z. Rappoport2, John K. Heath2, Roy Bicknell1 and Victoria L. Heath1,`

ABSTRACT

RhoJ is a Rho GTPase expressed in endothelial cells and tumour

cells, which regulates cell motility, invasion, endothelial tube

formation and focal adhesion numbers. This study aimed to

further delineate the molecular function of RhoJ. Using timelapse

microscopy RhoJ was found to regulate focal adhesion

disassembly; small interfering RNA (siRNA)-mediated knockdown

of RhoJ increased focal adhesion disassembly time, whereas

expression of an active mutant (daRhoJ) decreased it. Furthermore,

daRhoJ co-precipitated with the GIT–PIX complex, a regulator of

focal adhesion disassembly. An interaction between daRhoJ and

GIT1 was confirmed using yeast two-hybrid experiments, and this

depended on the Spa homology domain of GIT1. GIT1, GIT2, b-PIX

(also known as ARHGEF7) and RhoJ all colocalised in focal

adhesions and depended on each other for their recruitment to

focal adhesions. Functionally, the GIT–PIX complex regulated

endothelial tube formation, with knockdown of both GIT1 and

GIT2, or b-PIX phenocopying RhoJ knockdown. RhoJ-knockout

mice showed reduced tumour growth and diminished tumour vessel

density, identifying a role for RhoJ in mediating tumour

angiogenesis. These studies give new insight into the molecular

function of RhoJ in regulating cell motility and tumour vessel

formation.
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INTRODUCTION
Cell motility is fundamental to numerous developmental and

physiological processes, as well as being crucial in the

pathogenesis of diseases such as cancer where it is a pre-

requisite for the metastasis of tumours to distant organs. Cell

movement depends on the remodelling of the cytoskeleton and

coordinated modulation of contacts with the extracellular matrix.

Central to the regulation of the actin cytoskeleton are Rho

GTPases, molecular switches which orchestrate its dynamic

rearrangement to enable cell movement (Sit and Manser, 2011).

RhoJ belongs to the Cdc42 subfamily of Rho GTPases, and

cycles between active GTP-bound and inactive GDP-bound forms

(Burridge and Wennerberg, 2004). It was first identified in 2000

(Vignal et al., 2000) and early studies suggested roles for RhoJ

in modulating the actin cytoskeleton, early endocytosis and

adipocyte differentiation (Abe et al., 2003; Aspenström et al.,

2004; de Toledo et al., 2003; Nishizuka et al., 2003; Vignal et al.,

2000). Subsequently it was found to be expressed in endothelial

cells (Fukushima et al., 2011; Kaur et al., 2011; Takase et al.,

2012; Yuan et al., 2011) and induced by the transcription factor

Erg (Yuan et al., 2011). Functionally, RhoJ has been shown to

regulate endothelial motility, tubulogenesis and lumen formation in

vitro (Kaur et al., 2011; Yuan et al., 2011) and vascularisation in

vivo (Kim et al., 2014; Takase et al., 2012; Yuan et al., 2011).

Recently, a role for RhoJ has been identified in regulating the

motility and invasion of melanoma cells, suggesting a role for RhoJ

in the metastatic spread of malignant melanoma (Ho et al., 2013).

Reducing RhoJ expression using small interfering RNA (siRNA) is

associated with an impairment in motility (Ho et al., 2013; Kaur

et al., 2011), and this in turn is associated with increased

actinomyosin contractility (Kaur et al., 2011). This increase in

contractility is consistent with observations that RhoJ knockdown

causes decreased levels of active Rac and Cdc42 and increased

levels of active RhoA and phosphorylated myosin light chain (Kaur

et al., 2011; Yuan et al., 2011). RhoJ has been found to both localise

to focal adhesions and to regulate their numbers (Kaur et al., 2011).

These adhesions connect the intracellular actin cytoskeleton to the

extracellular matrix through integrins, which are transmembrane

proteins, and the coordinated assembly and disassembly of focal

adhesions are crucial to cell motility (Parsons et al., 2010).

The GIT–PIX complex is an oligomeric protein assembly that

acts as a scaffold and signal integrator (Frank and Hansen, 2008;

Hoefen and Berk, 2006). Within focal adhesions, it functions to

regulate their maturation and disassembly (Feng et al., 2010; Kuo

et al., 2011; Nayal et al., 2006; Zhao et al., 2000). There are two

G-protein-coupled receptor kinase-interacting target (GIT)

proteins, GIT1/CAT-1 and GIT2/CAT-2/PKL (Bagrodia et al.,

1999; Di Cesare et al., 2000; Premont et al., 1998; Turner et al.,

1999), and two Pak-interacting exchange factor (PIX) proteins, a-

PIX (also known as ARHGEF6 and Cool-2) and b-PIX (also

known as ARHGEF7 and Cool-1) (Bagrodia et al., 1998; Manser

et al., 1998; Oh et al., 1997). Both GIT and PIX proteins have

multiple domains and interacting partners. GIT proteins are

recruited to focal adhesions through their binding of paxillin (Di

Cesare et al., 2000; Turner et al., 1999; Zhao et al., 2000) and

have ARF-GAP activity which is likely involved in their

trafficking and localisation (Di Cesare et al., 2000; Matafora

et al., 2001). GIT proteins associate through their Spa homology

domains (SHD) with PIX proteins (Premont et al., 2004; Zhao

et al., 2000), which in turn results in the recruitment of the kinase

PAK to focal adhesions through its binding to PIX. In addition,
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PIX proteins contain Cdc42 and Rac guanine-nucleotide-
exchange factor (GEF) domains (Bagrodia et al., 1998; Manser

et al., 1998). A number of studies indicate that promoting the
localisation of the PAK–PIX–GIT complex to focal adhesions
increases cellular motility and protrusions (Manabe et al., 2002;
West et al., 2001; Zhao et al., 2000).

The purpose of this study was to characterise the molecular
mechanism by which RhoJ modulates focal adhesion dynamics
and determine its role in angiogenesis in vivo. RhoJ was found to

regulate focal adhesion disassembly and the active form of RhoJ
interacted with the GIT–PIX complex in pulldown experiments.
Yeast two-hybrid experiments also identified that active RhoJ

interacted with the SHD of GIT1. RhoJ, GIT1, GIT2 and b-PIX
all potentiated the recruitment of each other to focal adhesions.
Like RhoJ, a role for b-PIX, GIT1 and GIT2 in endothelial

tube formation was discovered. Knockout of RhoJ reduced the
growth and vascularisation of subcutaneous tumours compared
with wild-type controls. This study demonstrates a role for RhoJ
in regulating tumour angiogenesis and in mediating focal

adhesion dynamics through its association with the GIT–PIX
complex.

RESULTS
RhoJ regulates focal adhesion disassembly
RhoJ had previously been shown to regulate both cell motility

and focal adhesion number. A reduction in the level of RhoJ leads
to reduced motility and increased focal adhesion numbers,
whereas the expression of an active GTP-bound mutant

(daRhoJ) results in fewer focal adhesions and increased
motility. In order to more precisely determine how RhoJ affects
focal adhesion dynamics, experiments were performed to track
the assembly and disassembly of focal adhesions in endothelial

cells manipulated for their expression and activity of RhoJ. To
investigate reduced RhoJ activity, siRNA knockdown rather than
a dominant-negative mutant was used to specifically reduce

levels of this Rho GTPase; the promiscuous binding of GEF
proteins to multiple related Rho GTPases would be likely to result
in a dominant-negative mutant of RhoJ sequestering and

inhibiting GEFs of Cdc42 or Rac (Debreceni et al., 2004;
Schmidt and Hall, 2002). In order to track focal adhesions, human
umbilical vein endothelial cells (HUVECs) were transduced with
an RFP-tagged paxillin and subjected to total internal reflection

fluorescence (TIRF) microscopy, which is suited for visualisation
of structures close to the cell surface (Mattheyses et al., 2010).
Paxillin is a well-characterised focal adhesion protein and this

fusion has been previously used for studying focal adhesion
dynamics (Berginski et al., 2011). In order to confirm its
suitability for these studies, it was confirmed that siRNA-

mediated RhoJ knockdown increased numbers of paxillin–RFP-
positive focal adhesions, and that expressing paxillin–RFP did not
affect numbers of focal adhesions (data not shown). Paxillin–

RFP-transduced HUVECs were treated with either a siRNA
control duplex or a RhoJ-specific duplex, plated at a high cell
density and then the monolayer was scratched. Motile cells at the
edge of the scratch wound, where the focal adhesion phenotype is

evident, were then tracked over a period of 90 minutes, imaging
every 2 minutes. A representative series of images is shown in
Fig. 1A. The duration times of focal adhesions in cells from each

condition were manually tracked and considered to be the time
taken from their first appearance to when they were no longer
visible. The fluorescence intensity was also measured to enable

assembly and disassembly times to be calculated; the assembly

time being the time from appearance to the peak fluorescence and
the disassembly time being from the peak to disappearance of the

focal adhesion. It was found that RhoJ knockdown resulted in
significantly longer focal adhesion duration times (data not shown).
When this was broken down into assembly and disassembly times,
it was found that the disassembly times, but not the assembly times,

were significantly longer after knockdown of RhoJ (Fig. 1B).
Displaying the data as a histogram, with the number of focal
adhesions disassembling during 10-minute intervals shows that

siRNA knockdown of RhoJ results in a shift to the right with higher
numbers of focal adhesions taking more than 20 minutes to
disassemble (Fig. 1C). Levels of RhoJ knockdown were confirmed

by western blot with tubulin as a loading control (Fig. 1D).
To look at the effect of increased RhoJ activity on focal

adhesions, HUVECs were transduced to express both paxillin–

RFP and either GFP or GFP-tagged daRhoJ (GFP–daRhoJ). Focal
adhesions in cells at the edge of a scratch were monitored as
described above. In contrast to reducing expression of RhoJ,
introduction of active RhoJ resulted in faster focal adhesion

turnover and again it was disassembly rather than assembly that
was changed (Fig. 1E). Expression of GFP–daRhoJ resulted in a
statistically significant reduction in disassembly times compared

with the GFP control, and plotting the data as a histogram
resulted in a shift to the left with the majority of focal adhesions
disassembling in less than 20 minutes (Fig. 1F). Western blots

showed that there was substantial expression of both GFP and the
GFP–daRhoJ fusion proteins (Fig. 1G). These data demonstrate
that RhoJ activity promotes focal adhesion disassembly, and is

consistent with our previous observations that RhoJ regulates
focal adhesion numbers (Kaur et al., 2011): RhoJ knockdown
causing increased numbers of focal adhesions owing to slower
disassembly, and daRhoJ causing decreased numbers owing to

more rapid disassembly.

RhoJ interacts with the GIT–PIX complex
In order to better characterise the molecular basis for the role of
RhoJ in focal adhesion disassembly, experiments were performed
to determine its interacting partners. Pulldown experiments were

performed using recombinant glutathione S-transferase (GST)-
tagged daRhoJ incubated with HUVEC lysate and candidate
interacting proteins were identified using mass spectrometry.
Two candidate interacting proteins were the focal adhesion

proteins GIT1 (11 peptides, 4.8% coverage) and b-PIX (53
peptides, 6.9% coverage). These proteins were of particular
interest given the role of the GIT–PIX complex in focal adhesion

disassembly (Feng et al., 2010; Kuo et al., 2011; Nayal et al.,
2006; Zhao et al., 2000). GIT2 and a-PIX are structurally related
to GIT1 and b-PIX, respectively. Levels of GIT2 mRNA were

found to be higher than those of GIT1 in HUVECs, while b-PIX
was expressed at a higher level than a-PIX in this cell type (data
not shown). Given its similarity to GIT1, GIT2 was also explored

as a potential interacting partner for RhoJ.
In order to confirm these interactions, cellular lysates were

prepared from HUVECs expressing either GFP or GFP–daRhoJ,
and incubated with GFP-trap beads. Western blotting revealed

that b-PIX, GIT1 and GIT2 all co-immunoprecipitated with GFP–
daRhoJ, but not with GFP alone (Fig. 2A). To further characterise
the interaction of RhoJ with the GIT–PIX complex, yeast two-

hybrid was performed to investigate whether either or both of
these proteins were able to interact with RhoJ in this system. In
order to do this a GAL4 DNA-binding domain fusion with

daRhoJ and dominant-negative (dn)RhoJ was constructed. This
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was co-expressed in yeast with GIT1 or b-PIX fused to the GAL4
activation domain. In the yeast strain used, close interaction of
these GAL4 domains results in the transactivation of the GAL1-
promoter-driven HIS3 gene enabling this auxotrophic yeast strain

to grow on plates lacking histidine. These assays showed that
daRhoJ, but not dnRhoJ, interacted with GIT1 but not b-PIX to
allow growth on medium lacking histidine (Fig. 2B). A series of

C-terminal truncation mutants of GIT1 were created to determine
which regions of GIT1 were necessary for interaction with RhoJ,
these identified a region including the SHD as being necessary

(Fig. 2B). Both GIT1 and GIT2 have SHDs with a sequence
identity of 90% and 87% for SHD1 and SHD2, respectively, with
non-identical amino acids being similar, and so it is likely that
daRhoJ would also bind this region of GIT2. These data suggest

that GIT1 and most likely GIT2 bind daRhoJ through their SHDs,
and b-PIX is co-immunoprecipitated with daRhoJ through its
association with GIT1 and/or GIT2. Endogenous GIT1, GIT2,
RhoJ and b-PIX all colocalised with vinculin at focal adhesions

(supplementary material Fig. S1A), and there was colocalisation
of GFP–daRhoJ with GIT1, GIT2 and b-PIX at focal adhesions
(Fig. 2C).

RhoJ regulates focal adhesion size
As well as regulating focal adhesion numbers (Kaur et al., 2011),

during the course of this study we observed that the activity of
RhoJ within endothelial cells also affected the size of focal
adhesions. HUVECs expressing either GFP or GFP–daRhoJ were
fixed and immunofluorescence staining of vinculin was performed

Fig. 1. RhoJ regulates focal adhesion disassembly in endothelial cells. (A) HUVECs expressing paxillin–RFP at a scratch edge were imaged every
2 minutes by TIRF microscopy and focal adhesions were tracked. Representative images show a focal adhesion (arrow) appearing at time 0 and disappearing
after 26 minutes. Assembly times were the time from first appearance to maximal intensity and disassembly times were the time from the maximal intensity to
disappearance. Scale bar: 10 mm. (B) Paxillin–RFP-expressing HUVECs were transfected with either control siRNA (siControl) or RhoJ siRNA duplex 48 hours
before imaging. Assembly and disassembly times were measured from 10–15 adhesions from each of 11 cells (three or four cells from three independent
experiments, a total of 155 adhesions per condition) and displayed as a bar chart (mean6s.e.m.). (C) Data from B were also plotted as a histogram showing the
number of focal adhesions with different disassembly times. (D) Reduction in RhoJ expression was confirmed by western blotting with tubulin as a loading
control. (E,F) Paxillin–RFP-expressing HUVECs were transduced to express either GFP or GFP–daRhoJ, and focal adhesion assembly and disassembly times
were measured as above, from 10–15 adhesions from each of 12 cells (four cells from three independent experiments, a total of 165 adhesions per condition)
and displayed as a bar chart (mean6s.e.m.) (E) and a histogram (F). (G) Expression of GFP and GFP–daRhoJ was confirmed with western blotting for GFP.
***P,0.001; NS, not significant (Mann–Whitney test).
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(Fig. 3A). The area of vinculin staining was quantified for at least 15
focal adhesions randomly selected from three cells and the mean

focal adhesion area for each condition calculated. Data from three
replicate experiments showed a statistically significant increase in
focal adhesion size in HUVECs expressing GFP–daRhoJ compared
those expressing GFP (Fig. 3B). In contrast, HUVECs transfected

with two different RhoJ-specific siRNA duplexes were found to
consistently have a small reduction in focal adhesion area compared
with control siRNA-transfected HUVECs across three experiments

(Fig. 3A,C; supplementary material Fig. S1B,C).
Consistent with these observations was the increase in levels of

GIT1, GIT2 and b-PIX found at focal adhesions in GFP–daRhoJ-

expressing cells compared with those expressing GFP alone
(Fig. 4A). In the case of GIT2 we observed higher levels of
GIT2 protein in lysates from HUVECs expressing GFP–daRhoJ,

compared with control GFP-expressing cells. In order for its
recruitment to focal adhesions, GIT2 must be tyrosine
phosphorylated by Src and focal adhesion kinase (FAK) (Brown
et al., 2005). Levels of phospho-GIT2 (Y392) were also found to be

elevated to the same extent as total GIT2 in GFP–daRhoJ-
expressing cells (Fig. 4B). Increased recruitment of GIT2 to focal
adhesions through interaction with daRhoJ might result in its

stabilisation and protection from degradation. There is also a shift
in size of GIT2 from HUVECs expressing daRhoJ, this is likely to
be due to increased levels of serine and threonine phosphorylation

because phosphorylation of these residues in GIT1 has been
observed (Webb et al., 2006b). Inhibition of Src and FAK reduced
levels of phospho-GIT2 (Y392), but did not change its
electrophoretic mobility (supplementary material Fig. S2).

Knockdown of RhoJ did not lead to lower levels of GIT2
protein, but rather resulted in reduced levels of GIT2
phosphorylation (Fig. 4C), and although the reduction was small

it was consistently observed. The reduced level of phosphorylation
might be due to reduced GIT2 being recruited to focal adhesions
(supplementary material Fig. S3D) and being phosphorylated there.

RhoJ, GIT1, GIT2 and b-PIX are involved in recruitment of
each other at focal adhesions
Given the physical interactions between GIT1 and GIT2 with b-
PIX and RhoJ, experiments were performed to determine whether
knocking down expression of each of these components affected
the recruitment of the others to focal adhesions. HUVECs were

transfected with the siRNA control duplex, duplexes specific for
RhoJ, b-PIX or a combination of GIT1 and GIT2 duplexes.
Owing to the similarity and redundancy between GIT1 and GIT2

and the fact both are expressed in HUVECs, knockdowns of both
GIT1 and GIT2 were performed together. At 2 days after
transfection, cells were fixed and then immunofluorescence

Fig. 2. RhoJ interacts and colocalises with b-PIX, GIT1 and GIT2.
(A) HUVECs stably expressing GFP or GFP–daRhoJ were lysed and
pulldowns performed using GFP-trap beads. Samples were probed by
western blot for interactions with b-PIX, GIT1 and GIT2, using GFP as a
binding control. (B) Yeast two-hybrid assays were performed using yeast
transformed with Gal4 activation domain (AD) fusions of candidate
interacting partners and Gal4 DNA-binding domain (DBD) fusions of daRhoJ
or dnRhoJ. Positive interactions are indicated by growth of yeast on plates
lacking Histidine (–His). Truncations of GIT1 were performed to map its
interaction with RhoJ, with the Spa homology domain (SHD) found to be
necessary for this binding. (C) HUVECs transduced to express GFP–daRhoJ
were fixed and stained for GIT1, GIT2 and b-PIX. The box indicates the
enlarged area. Scale bar: 20 mM. These data are representative of three
independent experiments.
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staining was performed for the focal adhesion protein vinculin in

combination with antibodies specific to RhoJ, b-PIX, GIT1 or
GIT2. Focal adhesions were identified by their staining for
vinculin, and the mean grey value for RhoJ, GIT1, GIT2 or b-PIX
staining in the region positive for vinculin was analysed. It was

found that knocking down any of these components resulted in a
reduction of staining with antibodies specific to any other
member of the complex. Examples of the immunofluorescence

staining are shown in supplementary material Fig. S3A–D. A total
of 20 focal adhesions were examined from each of three cells. In
order to compare data generated from different experiments,

mean grey values were scaled to the average mean grey value for
the siRNA control duplex. Thus for each replicate experiment,
data points from each experimental group, including those of the

negative control duplex, were scaled to the mean of the negative
control data for that experiment which was set at 100. Data from

focal adhesions from three independent experiments were then
combined and are shown in Fig. 5A. Very similar results were
obtained with an alternative set of siRNA duplexes (supplementary
material Fig. S3E). Knockdown of RhoJ, GIT1 and GIT2 together,

and b-PIX were confirmed at 48 hours by western blotting
(Fig. 5B). Thus, knocking down RhoJ resulted in not only a
significant decrease in RhoJ localisation to focal adhesions but also

that of GIT1, GIT2 and b-PIX. Similarly b-PIX knockdown
resulted in reduced GIT1, GIT2 and RhoJ at focal adhesions;
likewise knockdown of GIT1 and GIT2 together caused less RhoJ

and b-PIX to be recruited to focal adhesions.

b-PIX, GIT1 and GIT2 regulate tubulogenesis
Previously we and others had demonstrated a role for RhoJ in
regulating endothelial migration and tube formation (Kaur et al.,
2011; Yuan et al., 2011). Owing to the biochemical and
functional interaction between RhoJ and the GIT–PIX complex,

the role of RhoJ, GIT1 and GIT2, and b-PIX alone and in
combination in tube formation was also assessed using a Matrigel
tube forming assay. In this assay, endothelial cells are seeded on

to wells coated with Matrigel, a solubilised basement membrane
extract from the Engelbreth–Holm–Swarm sarcoma cell which is
rich in collagen IV, laminin, heparin sulphate proteoglycans and

entactin (Kalluri, 2003). This extract induces the endothelial cells
to form tube-like structures, a process dependent on cell
attachment, migration and differentiation of endothelial cells

and which is considered to represent the differentiation stage of
angiogenesis (Kubota et al., 1988; Lawley and Kubota, 1989).
HUVECs were transfected with siRNA control duplex or siRNA
against RhoJ, b-PIX, a combination of GIT1 and GIT2 or a

combination of all four duplexes. After 2 days, cells were
harvested and plated on to Matrigel, and imaged after 12 and
24 hours. The images were processed by software that calculated

the number of loops for each image, to give an indication of the
connectivity of the network (Fig. 6B). Knockdown of b-PIX and
both GIT1 and GIT2 resulted in disrupted tube formation, giving

rise to less connected and less stable networks of cells, similar to
that observed with RhoJ knockdown (Fig. 6). These data suggest
that, like RhoJ, the GIT–PIX complex plays a positive role in tube
formation. Knocking down the combination of RhoJ, b-PIX,

GIT1 and GIT2 was found to impair tube formation to a similar
degree as knocking out RhoJ or b-PIX individually or the
combination of GIT1 and GIT2 (Fig. 6). This would be consistent

with these proteins acting together in the same pathway, rather
than in distinct pathways, where an additive and more severe
phenotype would be expected. Similar observations were

made using an alternative set of duplexes (supplementary
material Fig. S4).

RhoJ regulates tumour angiogenesis
In order to determine the role of RhoJ in vivo a knockout mouse
was made. These were derived from embryonic stem cells which
contained a gene trap cassette inserted between the first and

second exons and which had LoxP sites flanking the second exon.
Mice homozygous for the RhoJ genetrap were crossed with mice
constitutively expressing Cre recombinase resulting in removal of

the second exon. RhoJ-knockout mice were born at the normal
Mendelian frequency and grew normally indicating that RhoJ is
not essential for embryonic development. However, subcutaneous

implantation of syngeneic Lewis lung carcinoma cells resulted in

Fig. 3. RhoJ regulates focal adhesion size. (A) HUVECs were transfected
with control siRNA (siControl) or RhoJ siRNA duplexes and after 48 hours were
stained with vinculin-specific antibodies. Similarly, HUVECs transduced to
express GFP or GFP–daRhoJ were fixed and stained for vinculin. The box
indicates the enlarged area. Scale bar: 20 mm. (B) Focal adhesion areas from
GFP- and GFP–daRhoJ-expressing HUVECs were measured using ImageJ of
15 focal adhesions per cell from a total of three cells, and the mean focal
adhesion area calculated for each condition. This was performed three times
and plotted are the mean values from each experiment (n53) (mean6s.e.m.).
*P,0.05 (Student’s t-test). (C) Similarly, focal adhesion areas from HUVECs
transfected with siControl or RhoJ siRNA were measured using ImageJ of 106–
135 focal adhesions from a total of five or six cells and mean focal adhesion
area calculated per condition, plotted are the mean focal adhesion areas from
three independent experiments (n53) (mean6s.e.m.). Reductions in focal
adhesion areas were observed in each of the three experiments.
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the formation of smaller tumours compared with those in wild-
type controls after 2 weeks (Fig. 7A). The rapid growth of these

tumours is highly dependent on angiogenesis, the new vessels
being required to sustain tumour cell proliferation (Carmeliet and
Jain, 2011). To investigate whether tumour vascularisation was

affected in the knockout mice, tumours were excised and
immunofluorescence staining of the endothelial protein CD31
was performed on frozen sections (Fig. 7B), analysis of vessel

density indicated that this was reduced in tumours from RhoJ-
knockout mice (Fig. 7C). These data demonstrate a role for RhoJ
in mediating tumour angiogenesis.

DISCUSSION
We have identified a role for RhoJ in regulating focal adhesion
disassembly through its interaction with the GIT–PIX complex

and demonstrate that this complex is required for endothelial tube
formation. We also show that RhoJ plays a role in tumour
angiogenesis in vivo. A model for the role of RhoJ within focal

adhesions is depicted in Fig. 8. Active GTP-bound RhoJ is
localised to focal adhesions and interacts through the SHD of
GIT1 and GIT2 to promote the recruitment of the GIT–PIX
complex to focal adhesions. This in turn increases the activity of

Rac and Cdc42 because of the GEF activity of b-PIX. Although
the precise mechanism of GIT–PIX-mediated disassembly has not
been delineated, an increased ratio of activated Rac relative to

RhoA is associated with adhesion disassembly (Vicente-
Manzanares and Horwitz, 2011; Wehrle-Haller, 2012). We
found RhoJ, b-PIX and the GIT proteins all promote the

recruitment of each other to focal adhesions, and this is likely
to be mediated through the interaction between paxillin and GIT1
and/or GIT2. This interaction is potentiated by the PAK-mediated

phosphorylation of paxillin (Nayal et al., 2006), thus as the GIT–
PIX complex is recruited, the PAK associated with b-PIX is

likely to promote further paxillin phosphorylation. Expression of
daRhoJ promoted the assembly of larger adhesions. The time taken
for these larger adhesions to reach their maximal size was no longer

than in the control cells; however, their increased size would
indicate an accelerated recruitment of focal adhesion proteins. The
faster disassembly of the adhesion would suggest these larger

adhesions are less stable. In contrast, knocking down RhoJ
expression resulted in smaller more stable adhesions, with reduced
levels of the GIT–PIX complex recruited. Our data are consistent
with those of Yuan et al. who observed that RhoJ knockdown

reduced levels of active Rac and Cdc42 (Yuan et al., 2011).
Previously a number of groups have demonstrated that

promoting the localisation of the PAK–PIX–GIT complex to

focal adhesions results in increased levels of cellular motility and
protrusions (Manabe et al., 2002; West et al., 2001; Zhao et al.,
2000). In contrast, knockdown of GIT2 but not GIT1 in epithelial

cells was found to decrease focal adhesion size and increase
motility, although the effect on focal adhesion turnover times was
not measured in this study (Frank et al., 2006). Thus, there are
likely to be cell-type- and context-specific variation in the

functions of GIT1 and GIT2. Our findings are consistent with
work of Kuo et al. who identified a role for b-PIX in driving
nascent focal adhesion turnover (Kuo et al., 2011). They found

that siRNA knockdown of b-PIX specifically reduced focal
adhesion disassembly rather than assembly, mirroring our
observations with knockdown of RhoJ. They investigated b-PIX

after finding it at increased levels in focal adhesions in cells with
reduced actinomyosin contractility induced by blebbistatin-
mediated inhibition of myosin II. Previously, we have shown

Fig. 4. GFP–daRhoJ expression increases recruitment of partner proteins to focal adhesions. (A) HUVECs were transduced to express GFP or
GFP–daRhoJ, and were fixed and stained for vinculin and either b-PIX, GIT1 or GIT2. Scale bar: 20 mm. (B) Cellular lysates were prepared from HUVECs
expressing GFP or GFP–daRhoJ and western blotted for GIT2 phosphorylated on Y392 (pGIT2), GIT2, GFP and tubulin. (C) HUVECs were transfected with
control siRNA (siControl) or RhoJ siRNA duplexes. After 48 hours, cells were lysed and blotted for GIT2 phosphorylated on Y392, GIT2, RhoJ and tubulin.
These data are representative of three independent experiments.
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that there is a link between RhoJ activation and contractility in
endothelial cells, with RhoJ negatively regulating myosin light
chain phosphorylation, actin stress fibre formation and

contraction of collagen gels (Kaur et al., 2011). Thus, both
myosin II inhibition and daRhoJ expression result in decreased
contractility and an associated increased b-PIX accumulation at

focal adhesions (Kuo et al., 2011 and Fig. 4A). There is a
complex relationship between focal adhesion maturation,
turnover and actinomyosin contractility; thus, as myosin II
activity can influence focal adhesion size and distribution, so

too can focal adhesion proteins regulate contractility (Parsons
et al., 2010). Our data would suggest that RhoJ regulates
contractility through its interaction and modulation of GIT–PIX-

mediated focal adhesion turnover.
The GIT–PIX complex is multimeric. GIT proteins form

homodimers and heterodimers through their coiled coil domains

(Paris et al., 2003; Premont et al., 2004), likewise similar domains
in the C-terminus of b-PIX enable its homodimerisation (Kim
et al., 2001; Koh et al., 2001). Recent structural studies have

suggested that b-PIX forms trimers rather than dimers, resulting
in a heteropentameric complex in which each SHD of GIT1 binds
the GIT-binding domains of two of the three b-PIX proteins
(Schlenker and Rittinger, 2009). We identified the SHD of GIT as

being a region necessary for the binding of daRhoJ. Besides RhoJ
and b-PIX, phospholipase Cc, FAK, MEK and the presynaptic
matrix protein piccolo all have been shown to interact with the

SHD (Haendeler et al., 2003; Kim et al., 2003; Yin et al., 2004;
Zhao et al., 2000). The finding that GIT1 acts as a MEK1 and
ERK1/2 scaffold in focal adhesions might explain the reduced

levels of active B-Raf in endothelial cells with reduced RhoJ
expression (Yin et al., 2005; Yuan et al., 2011). However, data
generated using mutagenesis suggested that piccolo, FAK and b-

PIX all interact with different regions of the SHD. Our pulldown
experiments would suggest that daRhoJ does not compete with b-
PIX for GIT binding because daRhoJ was able to pulldown b-
PIX, presumably through its interaction with GIT1 or GIT2. It is

possible that binding of active RhoJ to GIT1 and/or GIT2 might
act to regulate focal adhesion turnover through displacement of
another GIT-binding protein. Thus the SHD of GIT mediates

multiple interactions, the nature of which is likely to depend on
the cell type and activation.

Multiple sites of serine, threonine and tyrosine phosphorylation

have been identified on GIT1 (Webb et al., 2006b), with some
modulating the binding of interacting proteins, such as paxillin
and Vav2 (Jones et al., 2013; Webb et al., 2006a). Expression of

daRhoJ results in increased levels of GIT2, which was
phosphorylated at Y392, one of three tyrosine residues whose
phosphorylation is required for focal adhesion localisation
(Brown et al., 2005). The GIT2 from daRhoJ-expressing

endothelial cells ran at an increased molecular mass, most
likely due to increased serine and threonine phosphorylation.
Incubation with Src and/or FAK inhibitors reduced Y392

Fig. 5. Reciprocal regulation of the recruitment of RhoJ, GIT1/2 and b-PIX to focal adhesions. (A) HUVECs were transfected with control siRNA
(siControl), RhoJ siRNA, b-PIX siRNA or both GIT1 and GIT2 (GIT1/2) siRNA duplexes. After 48 hours, HUVECs were fixed and stained for vinculin, and
RhoJ, b-PIX, GIT1 or GIT2. For each experiment, the mean grey value of either GIT1, GIT2, RhoJ or b-PIX staining (as indicated) was calculated for 20
adhesions per cell from three cells using ImageJ from three independent experiments according to the Materials and Methods. For each replicate experiment, all
data points were scaled to the mean of the siControl, which was set at 100. Plotted are the means of all the scaled data points from each condition from
each of the experimental replicates (mean6s.e.m.). ***P,0.001 (Mann–Whitney test comparing each of the data points to the siControl). (B) Cells were lysed
after 48 and 72 hours and blotted for GIT1, GIT2, RhoJ, b-PIX or tubulin as a loading control.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 3039–3051 doi:10.1242/jcs.140434

3045



Jo
ur

na
l o

f C
el

l S
ci

en
ce

Fig. 6. Knockdown of RhoJ, b-PIX, both GIT1 and GIT2 or a
combination of all four similarly impairs tube formation.
(A) HUVECs were transfected with control siRNA (siControl), RhoJ
siRNA, b-PIX siRNA or GIT1 and GIT2 siRNA together (GIT1/2) or a
combination of RhoJ, b-PIX, GIT1 and GIT2 duplexes. At 48 hours
after transfection, the cells were replated on Matrigel and imaged after
12 and 24 hours. Scale bars: 200 mm. (B) Analysis of the tubule
formation using the angiogenesis analyser ImageJ plugin to show the
number of loops formed by the tubules. For each experiment the
mean loop number was calculated from five to six fields of view per
time point. The mean of these values from three experimental
replicates is plotted (n53) (mean6sem). All knockdowns give a
statistically significant difference compared with the siControl duplex
[P,0.05 (Student’s t-test)], but there are no differences between
the individual RhoJ, b-PIX, GIT1/2 knockdowns and knockdown of all
four in combination.
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phosphorylation but did not alter the increased molecular mass of
GIT2 from daRhoJ-expressing HUVEC (supplementary material
Fig. S3). Co-expression of active Cdc42 and b-PIX causes
increased activation of the serine threonine kinase PAK (Manser

et al., 1998), and it is possible that daRhoJ is also activating PAK,
causing it to phosphorylate GIT2. We did not find increased
levels of GIT1 or any change in its size in daRhoJ-expressing

cells, suggesting that RhoJ might be preferentially interacting
with GIT2.

We find that both GIT1 and GIT2 are expressed in HUVECs,

although GIT2 is more readily detectable by RT-PCR (data not
shown). Expression analyses suggest widespread expression of
GIT2, whereas GIT1 is localised to endothelial cells, cells lining
the bronchi and the bile duct (Schmalzigaug et al., 2007).

Although GIT1-knockout mice have impaired vascularisation of

the developing lung (Pang et al., 2009), no vascular phenotype
has been reported for the GIT2 knockout (Schmalzigaug et al.,
2009). This might be due to functional redundancy between these
two GIT proteins. Roles for the PIX–GIT–PAK complex have

been identified in regulating endothelial cell podosome
formation, barrier function, contractility and vascular
permeability (Shikata et al., 2003; Stockton et al., 2007; van

Nieuw Amerongen et al., 2004; Wang et al., 2009). A role for the
GIT–PIX complex in mediating vascular stability has also been
suggested because there is increased cerebral haemorrhage in

developing zebrafish with either b-PIX mutation or knocked
down GIT1 expression (Liu et al., 2012). Slit2 is a ligand for the
roundabout receptors that promotes vascular stability. Upon
binding its ligand, Robo4 interacts with a paxillin–GIT1 complex

sequestering GIT1 away from focal adhesions, and impairing
cellular protrusive activity (Jones et al., 2009). In this study, we
have shown that, like RhoJ, the GIT–PIX complex positively

regulates endothelial tube formation. Combined knockdown of
RhoJ with the GIT–PIX complex gives a similar level inhibition
of tube formation as knocking down RhoJ, b-PIX and GIT alone.

These findings are consistent with RhoJ and the GIT–PIX
complex acting together in the same pathway. Endothelial
quiescence or activation is tightly controlled by the balance of

pro- and anti-angiogenic stimuli (Carmeliet and Jain, 2011), and
they likely act by appropriately controlling the localisation and
activity of signal integrators, such as the GIT–PIX complex.

Consistent with its role in endothelial tube formation in vitro, are

our observations that knockout of RhoJ results in diminished
tumour growth and reduced vessel density. These data indicate a
role for RhoJ in tumour angiogenesis in vivo. Although, knockout

of RhoJ has been reported to affect neonatal retinal vascularisation
(Takase et al., 2012), and RhoJ is expressed in the developing
mouse vasculature (Kaur et al., 2011), it is not essential for

development presumably due to compensation from closely related
Rho GTPases expressed by endothelial cells. Recently RhoJ has
been identified as part of a tumour angiogenesis signature – one of
20 genes highly upregulated in tumour vessels (Masiero et al.,

2013). The rapid growth of tumours is crucially dependent on the
development of vessels to sustain the tumour cell proliferation
(Carmeliet and Jain, 2011), and our data would suggest that RhoJ is

required to facilitate this process. Our data are similar to that
recently reported (Kim et al., 2014); they demonstrate that a variety

Fig. 7. Reduced tumour growth in RhoJ-knockout mice. Wild-type (WT) and RhoJ-knockout (KO) mice were subcutaneously implanted with 106 Lewis lung
carcinoma cells, after 2 weeks the tumours were excised and weighed (WT, n55; RhoJ KO n57). (A) The tumour weights are plotted (mean6s.e.m.).
*P50.0101 (Mann–Whitney test). (B) The excised tumours were sectioned and vessels stained using anti-CD31 with representative images shown. Scale bar:
100 mm. (C) Vessel density was calculated using the Angiosys Software and plotted (mean6s.e.m.). *P50.0303 (Mann–Whitney test).

Fig. 8. A model for RhoJ function. Active RhoJ interacts with the
GIT–PIX complex through its interaction with the Spa homology domain
(SHD) of GIT1 or GIT2 (GIT). GIT interacts with paxillin and b-PIX. Active
RhoJ together with the GIT–PIX complex promote activation of Rac and
Cdc42 and focal adhesion disassembly and increased motility. This is
associated with decreased RhoA activity and decreased actinomyosin
contractility.
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of anti-cancer agents are more effective in RhoJ-knockout mice,
suggesting that inhibition of RhoJ signalling might have

therapeutic benefit.
Recently, roles beyond angiogenesis have been identified for

RhoJ. In melanoma cell lines, it was discovered that not only did
RhoJ affect their motility and invasion (Ho et al., 2013), but that

it also modulated chemoresistance by affecting DNA damage
sensing (Ho et al., 2012). The latter required the activation of
PAK1, and it will be of interest to discover whether the GIT–PIX

complex is also involved. Understanding the biology of RhoJ
might provide therapeutic opportunities in targeting both tumour
cells and the tumour vasculature.

MATERIALS AND METHODS
Reagents
All chemicals were obtained from Sigma-Aldrich (Gillingham, UK)

unless otherwise stated. For western blotting, mouse monoclonal anti-

human RhoJ (Abcam, Cambridge, UK), mouse monoclonal anti-chicken

tubulin (Sigma-Aldrich, Gillingham, UK); rabbit polyclonal anti-human

GIT1 (Cell Signaling Technology, Hitchin, UK); mouse monoclonal anti-

GFP (Clone 3E1, Cancer Research UK, London, UK); and rabbit

monoclonal anti-phospho-GIT2 (Tyr392) (Cell Signaling Technology,

Hitchin, UK) antibodies were used. For western blotting and

immunofluorescence, rabbit polyclonal anti-human b-PIX (Millipore,

Livingstone, UK); rabbit monoclonal anti-human GIT2 (Cell Signaling

Technology, Hitchin, UK); purified anti-rabbit RhoJ polyclonal [as

previously described (Kaur et al., 2011)] antibodies were used. For

immunofluorescence mouse monoclonal anti-human vinculin (hVIN-1,

Sigma-Aldrich, Gillingham, UK); rabbit polyclonal anti-human GIT1

(Santa Cruz Biotechnology, Santa Cruz, USA) antibodies were used. For

immunofluorescence staining of tumour vessels anti-mouse CD31

(MEC13.3; BD Biosciences, Oxford, UK) antibody was used.

Secondary antibodies were as follows: goat polyclonal anti-mouse

immunoglobulin conjugated to horseradish peroxidase (HRP; Dako

Cytomation, Ely, UK), donkey polyclonal anti-rabbit IgG conjugated to

HRP (GE Healthcare), goat polyclonal anti-mouse IgG conjugated to

Alexa Fluor 488 (Life Technologies, Paisley, UK), donkey polyclonal

anti-rabbit IgG conjugated to Alexa Fluor 488 (Life Technologies,

Paisley, UK), goat polyclonal anti-mouse IgG conjugated to Alexa Fluor

546 (Life Technologies, Paisley, UK), goat polyclonal anti-mouse IgG

conjugated to Alexa Fluor 647 (Life Technologies, Paisley, UK) goat

polyclonal anti-rat IgG conjugated to Alexa Fluor 546 (Life

Technologies, Paisley, UK). Inhibitors used were FAK inhibitor PF

573228 (1 mM, SelleckChem, Munich, Germany); and Dasatinib (50 nM,

SelleckChem, Munich, Germany).

Plasmids and siRNA duplexes
The plasmids used for lentivirus production were psPAX2 (Lentiviral

packaging for mammalian expression; Addgene, Cambridge, USA) and

pMD2G (Envelope plasmid; Addgene, Cambridge, USA) in combination

with pWPI (a lentiviral mammalian expression vector with an EMCV

IRES-EGFP cassette; Addgene, Cambridge, USA) or pWPXL (Addgene,

Cambridge, USA) for GFP expression or pWPXL-GFP-daRhoJ,

constructed as previously described (Kaur et al., 2011). pWPXL-

paxillin-RFP was constructed by subcloning the paxillin–RFP from

pcDNA3.1-mRFP-N-paxillin (Parsons et al., 2008) into pWPXL and in

the process removing the GFP cassette. For yeast two-hybrid experiments,

daRhoJ (Q79L) or dnRhoJ (T35N) each lacking the C-terminal CAAX box

were cloned as BamHI-EcoRI fragments into the plasmid pGBT9 and

expressed as fusion proteins with the Gal4p DNA-binding domain. GIT1,

b-PIX, GIT1 amino acids 1–378 and GIT1 amino acids 1–258 where each

cloned as EcoRI fragments into pACT2 to create Gal4p activation domain

fusions. The yeast strain PJ69-4A, which comprises a GAL1::HIS3

promoter, was used as the host strain for the assays (Heath et al.,

2004). The following siRNA duplexes were used: RhoJ siRNA, 59-

AGAAACCUCUCACUUACGAG-39 (Eurogentec, Southampton, UK);

GIT2 siRNA, 59-CGAUGAAGUUGACAGGCGATT-39; GIT1 siRNA,

59-GGCAUUACAUCAUCCCACATT-39; and b-PIX siRNA, 59-CAGA-

TAGACAAGATATTCATT-39 (Life Technologies, Paisley, UK). Control

siRNAs were from both Eurogentec (Southampton, UK) and Life

Technologies (Paisley, UK). Alternative duplexes used for experiments

in the supplementary data were as follows: b-PIX, 59-CAACGACA-

GGAATGACAATTT-39, GIT1, 59-ACAUCUCCAUUGUCAAGCATT-

39; GIT2, 59-CGUUGAUUAUGCAAGGCAATT-39, and RhoJ, 59-

CCACUGUGUUUGACCACUAU-39.

Cell culture
Human umbilical vein endothelial cells (HUVECs) were used between

passage 1 and 6 for all experiments. Umbilical cords were obtained

from Birmingham Women’s Health Care NHS Trust after delivery;

mothers had given informed consent. HUVECs were cultured to

confluence in Media 199 containing 4 mM L-glutamine, 90 mg/ml

heparin, 10% (v/v) fetal bovine serum (PAA, The Cell Culture Co,

Yeovil, UK) and purified bovine brain extract (Maciag et al., 1979).

HEK293T cells and human dermal fibroblasts (Promocell, Heidelberg,

Germany) were cultured in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 4 mM L-glutamine, penicillin-

streptomycin solution and 10% (v/v) fetal bovine serum. Methods for

siRNA transfection and lentiviral transduction are as described

previously (Kaur et al., 2011). Transfections of HUVECs with siRNA

duplexes were performed using RNAiMAX lipofectamine (Life

Technologies, Paisley, UK) at a final concentration of 0.3% (v/v) with

duplexes at 10 nM in OptiMEM. Lentivirus was generated in HEK293T

through transient transfection with a combination of the packaging,

envelope and expression plasmids listed above. The mixture of plasmids

was incubated in OptiMEM (Life Technologies, Paisley, UK) with

polyethylenimine (Sigma-Aldrich, Gillingham, UK) at 36 mg/ml for

10 minutes at room temperature prior to adding to HEK293T cells in

their normal growth medium. Medium containing virus was harvested

48 hours after transfection, passed through a 0.45 mm2 pore syringe filter

(Corning, Amsterdam, The Netherlands), supplemented with 8 mg/ml

polybrene (Sigma-Aldrich, Gillingham, UK) and endothelial growth

supplements: bovine brain extract and heparin as described above, and

incubated with the HUVECs to be transduced.

Generation of the RhoJ-knockout mouse and tumour
implantation assays
Mice were housed at the Birmingham Biomedical Services Unit

(Birmingham, UK), animal maintenance and experimentation had

appropriate Home Office approval and licensing. C57BL/6N JM8.N4

feeder-independent embryonic stem cells containing the RhoJ-knockout

first promoter driven cassette [RhoJtm1a(KOMP)Wtsi project ID

CSD25401] were procured from the Knockout Mouse Project

(University of California, Davis, USA) and knockout mice were

generated by the Transgenic Mouse Facility at the University of

Birmingham. Chimeric mice were generated by injection of embryonic

stem cells into albino C57BL/6 mice and were bred to C57BL/6

females to generate mice heterozygous for the cassette. These mice were

crossed with PGK-Cre mice, which constitutively express Cre

recombinase (Lallemand et al., 1998) resulting in the removal of the

LoxP flanked exon 2 of RhoJ. To induce tumour growth, 106 Lewis lung

carcinoma cells were injected subcutaneously into the flank of male mice

at 8–9 weeks of age. After 2 weeks, tumour mass was determined and

then the tumours were frozen in OCT compound and serial sections cut at

6 mm.

Preparation of lysates, GFP-trap experiments and western
blotting
All cell lysates were prepared using Rho-assay lysis buffer (1% (v/v)

NP40, 1% (w/v) N-octyl-b-D-glucopyranoside, 25 mM HEPES pH 7.5,

30 mM MgCl2, 150 mM NaCl, mammalian protease inhibitor cocktail,

10 mM NaF, 2 mM NaVO3). Cells were resuspended in lysis buffer on

ice for 15 minutes prior to spinning at 21,910 g for 10 minutes at 4 C̊.

For western blotting of cell lysates, lysates were mixed with sample

buffer and subjected to SDS-PAGE. For GFP-trap experiments 26107
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HUVECs were plated the day prior to the experiment, they were lysed

with 1 ml Rho-assay lysis buffer, 25 ml of the lysate was mixed with an

equal volume of 26 SDS-PAGE sample buffer, and the remainder was

incubated with 20 ml washed GFP-trap A beads (Chromotek, Planegg-

Martinsried, Germany) for 1 hour at 4 C̊ with rotation. Subsequently,

beads were washed three times with Rho-assay lysis buffer and bound

proteins eluted with 50 ml 26 SDS-PAGE sample buffer. Samples were

then subjected to SDS-PAGE electrophoresis and western blotting. SDS-

PAGE and western blotting were performed using standard techniques.

Primary antibodies used were as indicated with HRP-conjugated

secondary antibodies, they were developed with ECL western blotting

detection reagents (GE Healthcare).

Yeast two-hybrid
Yeast media and culture conditions were as previously described

(Sherman, 1991). The strain PJ69-4A (MATa trp1-901, leu2-3,112, ura3-

52, his3-200, gal4D, gal80D, GAL2-ADE2, LYS2::GAL1-HIS3,

met2::GAL7-lacZ) (James et al., 1996) was transformed with

combinations of GBT9 and pACT2 plasmids (described above) using the

lithium acetate method (Gietz and Woods, 2002). Yeast two-hybrid assays

were performed as previously described (Heath et al., 2004). Briefly,

cultures were grown in selective medium to stationary phase, diluted to a

OD600 of 0.5 and spotted on to synthetic medium either containing or

lacking histidine, plates lacking histidine also contained amino-1,2,4-

triazole (3-AT) at 3 mM. Plates were incubated for 3 to 5 days at 30 C̊.

Immunofluorescence staining
The protocol for immunofluorescence staining is as described previously

(Kaur et al., 2011). For all staining other than with anti-RhoJ antisera,

cells were fixed with 4% (w/v) paraformaldehyde in PBS for 15 minutes,

neutralised with 50 mM NH4Cl in PBS for 10 minutes and then

permeabilised with 0.1% (v/v) Triton X-100 in PBS for 4 minutes,

with washing in PBS between each step. Blocking was performed using

3% (w/v) BSA, 10% (v/v) FCS, 0.1% (v/v) Tween-20, 0.01% (w/v)

sodium azide in PBS for 1 hour at room temperature. For RhoJ staining,

cells were fixed and permeabilized with ice-cold methanol for 5 minutes

prior to blocking for 1 hour at room temperature in 4% (w/v) BSA in

PBS. Primary and secondary antibodies were diluted in the blocking

buffer and cells were mounted onto slides using ProLong Gold Antifade

reagent with DAPI (Life Technologies, Paisley, UK) and left in the dark

overnight. Staining was analysed using the Zeiss LSM 510-UV confocal

microscope, and imported using the LSM Image Brower (Zeiss,

Cambridge, UK). In order to visualise tumour vessels, tissue was fixed

with 4% paraformaldehyde and blocked with 2.5% normal horse serum

(Vector Laboratories, Peterborough, UK). Immunostaining was

performed using 1.5 mg/ml anti-mCD31 (MEC13.3) (BD Biosciences,

Oxford, UK) and 5 mg/ml anti-rat IgG conjugated to Alexa Fluor 546

(Life Technologies Paisley, UK). Images were taken using an Axioskop2

microscope and AxioVision SE64 Rel4.8 software (Zeiss, Cambridge,

UK).

TIRF microscopy
TIRF microscopy was used to monitor focal adhesion turnover. HUVECs

were transduced to express paxillin–RFP, and manipulated for their

expression of RhoJ as indicated. A day before imaging, cells were

replated onto 35-mm diameter, 20 mm microwell MatTek plates (No. 1.5

uncoated coverslip, MatTek Corporation, Ashland, USA). The next day

and 2–4 hours before imaging, a scratch wound was made in the

monolayer with a sterile 20 ml pipette tip and migrating cells at the

scratch edge were monitored by timelapse TIRF microscopy. Prior to

imaging, media was replaced with DMEM lacking phenol red (Sigma-

Aldrich, Gillingham, UK), supplemented as described above for HUVEC

media. Cells at the edge were selected and monitored for 1.5 h using a

Nikon TIRF system on a Nikon Eclipse Ti inverted microscope (Nikon,

Surrey, UK) at 37 C̊ with CO2 buffering. Cells were imaged every

2 minutes using a Green Diode 561 nm laser and a CFL Plan Apo 606
NA 1.49 objective. Images were captured on a 12-bit Ixon 1M EMCCD

camera controlled by Nikon NIS Elements software.

Image analyses
In order to assess focal adhesion turnover, turnover times were measured

from 10–15 adhesions from each of 11–12 cells (three or four cells from

three independent experiments, a total of 155 or 165 adhesions per

condition). Focal adhesions were manually tracked using the Cell

Counter plug-in for ImageJ. There were no statistically significant

differences using the Kruskal–Wallis test between data from each cell

within experimental groups and so data for each focal adhesion within an

experimental group were pooled. Turnover durations were recorded from

the point at which the adhesion was first visible, to the point where they

could no longer be seen. To assess assembly and disassembly, these same

adhesions were manually outlined in ImageJ and mean grey values

measured for each frame they were visible. The duration of assembly was

the point from the first appearance of the adhesion to the time when the

highest mean grey value was recorded. Disassembly was from this

brightest point, to when the adhesion was no longer visible. To determine

levels of recruitment of GIT1, GIT2, RhoJ or b-PIX, vinculin-stained

focal adhesions distributed around the perimeter of the cell were selected.

These were manually outlined on ImageJ. Mean grey values were

measured and recorded for staining against GIT1, GIT2, RhoJ or b-PIX.

The mean grey value for the protein of interest was only measured after

selection and drawing round the vinculin-positive adhesions to eliminate

any bias. For each experimental replicate, all data points were scaled to

the mean of the mean grey value for the control siRNA for that

experiment, which was set to 100. This enabled the data from each

experimental replicate to be combined. To assess focal adhesion size,

cells were stained with anti-vinculin antibodies and the focal adhesion

size was measured as the area of fluorescence. For GFP- or GFP–daRhoJ-

expressing cells, 15 focal adhesions from three cells per condition from

three independent experiments were manually outlined on ImageJ, and

areas measured. For cells transfected with control siRNA or RhoJ siRNA,

at least 20 adhesions were measured per cell. In order to analyse vessel

density, images from the red channel were inverted using ImageJ and

vessel numbers from each field were determined using AngioSys

software (Cellworks, Buckingham, UK). For each tumour the mean

vessel density was derived from three or four fields of view.

Tube-forming assays
Natural Matrigel (VWR, East Grinstead, UK) was thawed overnight on

ice at 4 C̊. The wells of a 12 well plate were wetted with PBS prior to

adding 70 ml of matrigel. The basement membrane extract was allowed

to solidify at 37 C̊ for 30 minutes. Cells were harvested and seeded at a

density of 1.46105/well in HUVEC media. Cells were then incubated at

37 C̊ with 5% CO2 for a further 24 hours. Tube formation was observed

by taking pictures using Leica DM IL microscope and USB 2.0 2M Xli

camera (Leica Microsystems, Houston, USA) and five or six images were

captured per condition. These were analysed using the angiogenesis

analyser plugin for ImageJ [Carpentier G., Angiogenesis Analyzer for

ImageJ (2012) available online: http://imagej.nih.gov/ij/macros/toolsets/

Angiogenesis%20Analyzer.txt, accessed February 2014], the loop

number is given by the mesh parameter. For each experiment the mean

loop number per condition at 12 and 24 hours was calculated from five or

six images, and the mean used for each experimental replicate.

Statistical analyses
All experiments were performed at least three times with similar results. To

compare datasets for focal adhesion assembly and disassembly, RhoJ, GIT1,

GIT2 and b-PIX recruitment and tumour size and vascular density the

Mann–Whitney test was performed. To analyse focal adhesion area and

matrigel loop number data sets, the Student’s t-test was used. All calculations

were performed using the Prism software (GraphPad, La Jolla, USA).
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Figure S1. RhoJ, GIT1, GIT2 and b-PIX localize to focal adhesions and 

reducing RhoJ expression reduces RhoJ size 

 (A) HUVECs were fixed and stained for vinculin and RhoJ, GIT1, GIT2 or b-

PIX. Scale bar: 20 mm 
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Figure S1. RhoJ, GIT1, GIT2 and b-PIX localize to focal adhesions and reducing RhoJ 

expression reduces RhoJ size 

(B) HUVECs were transfected with siControl or an alternative RhoJ siRNA duplex and after 48 

hours were stained with vinculin specific antibodies. The box indicates the enlarged area.  Scale 

bar: 20 mm. (C) Focal adhesion areas were measured using ImageJ of 100 - 120 focal adhesions 

from a total of  5 or 6 cells and mean focal adhesion area calculated per condition.  This was 

performed three times and plotted are the mean focal adhesion areas from each experiment, error 

bar represent SEM.  A reduction in focal adhesions area was observed in each of the three 

experiments.  
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Figure S2. Inhibition of Src and FAK reduce levels of phospho-GIT2  (Y392) 

HUVECs were transduced to express either GFP or GFP-daRhoJ.  Prior to lysis they were incubated 

with 50 nM Dasatinib (Src inhibitor), 1 µM PF573228 (FAK inhibitor) or both.  Lysates were 

subjected to SDS-PAGE and western blotting for phosph-GIT2 (Y392), GIT2 or GFP.  This is 

representative of 3 experiments. 
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Figure S3(A) GIT1/2 and b-PIX knockdown reduce RhoJ recruitment to focal adhesions. 

HUVECs were transfected with siControl, RhoJ siRNA, b-PIX siRNA or both GIT1 and GIT2 siRNA 

duplexes. After 48 hours HUVECs were fixed and stained for vinculin and RhoJ. Scale bar: 20 mm 
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Figure S3(B) GIT1/2 and RhoJ knockdown reduce b-PIX recruitment to focal adhesions. 

HUVECs were transfected with siControl, RhoJ siRNA, b-PIX siRNA or both GIT1 and GIT2 siRNA 

duplexes. After 48 hours HUVECs were fixed and stained for vinculin and b-PIX. Scale bar: 20 mm 
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Figure S3(C) b-PIX and RhoJ knockdown reduce GIT1 recruitment to focal adhesions. 

HUVECs were transfected with 10 nMsiControl, RhoJ siRNA, b-PIX siRNA or both GIT1 and GIT2 

siRNA duplexes. After 48 hours HUVECs were fixed and stained for vinculin and GIT1. Scale bar: 

20 mm 
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Figure S3(D) b-PIX and RhoJ knockdown reduce GIT2 recruitment to focal adhesions. 

HUVECs were transfected with siControl, RhoJ siRNA, b-PIX siRNA or both GIT1 and GIT2 siRNA 

duplexes. After 48 hours HUVECs were fixed and stained for vinculin and GIT2. Scale bar: 20 mm 
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Figure S3(E).  Reciprocal 

regulation of the recruitment of 

RhoJ, GIT1/2 and b-PIX to focal 

adhesions.  

HUVECs were transfected with  

siControl, and alternative  duplexes 

specific for RhoJ, b-PIX and both 

GIT1 and GIT2. After 48 hours 

HUVECs were fixed and stained for 

vinculin and either RhoJ, b-PIX, 

GIT1 or GIT2. For each experiment,  

the mean grey value of either GIT1, 

GIT2, RhoJ or b-PIX staining (as 

indicated) was calculated  for 20 

adhesions per cell from 3 cells using 

ImageJ according the materials and 

methods. For each replicate 

experiment all data points were 

scaled to the mean of the siControl 

which was set at 100.  Plotted is the 

mean of the all scaled data points 

from each condition from each of the 

experimental replicates, error bar 

represent SEM, *** indicates 

p<0.001 by a Mann Whitney test 

comparing each of the data points to 

the siControl. 
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Figure S4. Knockdown of  RhoJ, b-

PIX, GIT1/2 or a combination of all 

four similarly impairs tube formation.  

(A) HUVECs were transfected with 

siControl, and alternative RhoJ siRNA, 

b-PIX siRNA or GIT1 and GIT2 siRNA 

or a combination of  the alternative RhoJ, 

b-PIX, GIT1 and GIT2  duplexes.  48 

hours after transfection, the cells were 

replated on matrigel and imaged after 12 

and 24 hours. Scale bar: 200 mm (B) 

Analysis of the tubule formation using 

the angiogenesis analyser ImageJ plugin 

to show the number of loops formed by 

the tubules.  For each experiment the 

mean loop number was calculated from 

five to six fields of view.  The mean of 

these values from three replicates is 

plotted. 
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