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Let R be a cyclic group of prime order which acts on the 
extraspecial group F in such a way that F = [F, R]. Suppose 
RF acts on a group G so that CG(F ) = 1 and (|R|, |G|) = 1. 
It is proved that F (CG(R)) ⊆ F (G). As corollaries to this, 
it is shown that the Fitting series of CG(R) coincides with 
the intersections of CG(R) with the Fitting series of G, and 
that when |R| is not a Fermat prime, the Fitting heights of 
CG(R) and G are equal.

© 2014 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

If a group A acts on a group G in such a way that CG(A) = 1, then one can often say 
something about the structure of G given properties of A. For example, due to a result of 
V. Belyaev and B. Hartley [1, Theorem 0.11], if A is nilpotent, then G is soluble. It was 
conjectured by J. Thompson [11] that the Fitting height of a soluble group G, denoted 
f(G), is bounded by a function of the order of one of its Carter subgroups (a Carter 
subgroup is a self-normalising nilpotent subgroup, and in any soluble group there is 
a single conjugacy class of such subgroups). It is applicable here since if a nilpotent 
group A acts on a group G so that CG(A) = 1, then AG is a soluble group and A is a 
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Carter subgroup. J. Thompson proved his conjecture in the case where (|A|, |G|) = 1. 
The bounds he obtained were improved in numerous papers that followed, most notably, 
linear bounds were found by H. Kurzweil [9] and best-possible by A. Turull [13]. This 
conjecture is a special case of the more general Fitting height conjecture, which can be 
stated as follows:

Let A be a group which acts on the soluble group G so that CG(A) = 1. Then the 
Fitting height of G is bounded above by the length of the longest chain of subgroups 
in A.

This has been largely settled when A is soluble of coprime order to G; many of these 
results are collected in [12]. Much of the recent work towards settling the Fitting height 
conjecture when |A| is not assumed to be coprime to |G| has concerned when A is cyclic. 
For example, it has been proved when A is cyclic of order a product of two and three 
distinct primes by K. Cheng [2] and G. Ercan and İ. Güloğlu [5] respectively. Further 
work has been done by G. Ercan in [3], where A is cyclic of order pnq for primes p and q

greater than 3 and n ∈ N.
However, E. Khukhro has taken a slightly different approach, and has considered the 

case where A has a nilpotent subgroup B so that CG(B) = 1 and has asked: Can we 
bound the Fitting height of G in terms of how elements outside of B act on G? In particu-
lar, he has considered the case where A is a Frobenius group and has proved the following:

Theorem 1.1 (Khukhro). Suppose that a finite group G admits a Frobenius group of 
automorphisms FH with kernel F and complement H so that CG(F ) = 1. Then:

1. Fi(CG(H)) = Fi(G) ∩ CG(H) for all i; and
2. f(G) = f(CG(H)).

Proof. See [7, Theorem 2.1]. �
Since Frobenius kernels are nilpotent, E. Khukhro is still considering the situation 

where a nilpotent group acts fixed-point-freely on a group G, but there is also an ‘ad-
ditional’ action which comes from the complement H; and indeed it is in terms of the 
action of this complement that he obtains structural information about G, namely, that 
its Fitting height is equal to that of the fixed-point subgroup of H.

In what follows, we also consider the situation where a group A acts on a group G
in such a way that for some nilpotent subgroup B < A, we have CG(B) = 1, and we 
obtain structural information about G in terms of how elements outside of this nilpotent 
subgroup act on G. Namely, we prove the following:

Theorem 1.2. Let R ∼= Zr for some prime r and F be extraspecial. Suppose that R acts 
on F in such a way that F = [F, R], and that RF acts on a group G so that CG(F ) = 1
and (r, |G|) = 1. Then F (CG(R)) ≤ F (G).
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From this we obtain the following corollaries which reflect more obviously the recent 
work of E. Khukhro.

Corollary 1.3. Let R ∼= Zr for some prime r and F be extraspecial. Suppose that R acts 
on F in such a way that F = [F, R], and that RF acts on a group G so that CG(F ) = 1
and (r, |G|) = 1. Then Fi(CG(R)) = Fi(G) ∩ CG(R) for all i.

Corollary 1.4. Let R ∼= Zr for some non-Fermat prime r and F be extraspecial. Suppose 
that R acts on F in such a way that F = [F, R], and that RF acts on a group G so that 
CG(F ) = 1 and (r, |G|) = 1. Then f(CG(R)) = f(G).

It should be mentioned that by a theorem of A. Turull [13], we already have that 
f(G) ≤ f(CG(R)) + 2, even without any F .

In Section 2 we set some notation and recall some results which will be needed in 
the proof of Theorem 1.2. We will then prove Theorem 1.2 and Corollaries 1.3 and 1.4
in Section 3. The proof of Theorem 1.2 proceeds by considering a counterexample with 
|RFG| minimal. A series of reductions are made until we find that G = QV where Q is an 
RF -invariant Sylow q-subgroup of G, and V = F (G) is minimal normal in RFG. Hence, 
V is an irreducible Fp[RFQ]-module on which Q acts faithfully. We then consider V , 
which we take to be an irreducible k[RFQ]-submodule of W = V ⊗Fp

k where k is a 
splitting field for RFQ. This is also a module on which Q acts faithfully. We obtain a 
contradiction by finding that the nontrivial subgroup 1 �= Oq(CG(R)) ⊆ Q acts trivially 
on V .

After the present paper was submitted, the authors were informed by the referee 
about a recent paper by G. Ercan and İ. Güloğlu [4]. Here they consider a soluble finite 
group G admitting a ‘Frobenius-like’ group of automorphisms FR of odd order such that 
|F ′| is of prime order, CG(F ) = 1, and (|G|, |R|) = 1. (‘Frobenius-like’ means that F is a 
nilpotent normal subgroup and FR/F ′ is a Frobenius group with Frobenius kernel F/F ′

and complement R.) Theorem A of that paper asserts that Fi(CG(R)) = Fi(G) ∩CG(R)
for all i and f(CG(R)) = f(G). These results are of course very similar to Corollaries 1.3
and 1.4 of the present paper. They are more general in the sense they do not require R
to be of prime order, but less general in their stipulation that RF must be of odd order. 
Furthermore, the authors were also made aware that [4] contains Proposition C, which 
can be used to significantly shorten the proof of Theorem 1.2 of the present paper. This 
proposition is as follows.

Proposition 1.5 (Ercan–Güloğlu). Let FH be a Frobenius-like group such that F ′ is of 
prime order and [F ′, H] = 1. Suppose that FH acts on a q-group Q for some prime q
coprime to the order of H. Let V be a kQFH-module where k is a field with character-
istic not dividing |QH|. Suppose further that F acts fixed-point freely on the semidirect 
product V Q. Then we have

Ker
(
CQ(H) on CV (H)

)
= Ker

(
CQ(H) on V

)
.
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We will make it clear later how Proposition 1.5 can be used to shorten the proof of 
Theorem 1.2.

2. Preliminaries

Let G be a group. Then the Fitting subgroup, denoted F (G), is the largest normal 
nilpotent subgroup of G. If we set F0(G) = 1 and F1(G) = F (G), then we define Fi(G)
to be the full inverse image of F (G/Fi−1(G)) in G, for i ≥ 1. Note that if G is soluble, 
then there exists n ∈ N ∪ {0} such that Fn(G) = G, and the smallest such n is called 
the Fitting height of G. We denote this by f(G).

The Frattini subgroup, denoted Φ(G), is defined to be the intersection of all maximal 
subgroups of G. We note that Φ(G) ⊆ F (G), and if G �= 1, then Φ(G) �= F (G). Also, for 
N � G, we have Φ(N) ⊆ Φ(G).

The next couple results highlight some very useful properties of the Fitting and Frat-
tini subgroups.

Lemma 2.1. Let G be a p-group such that Z(Φ(G)) ≤ Z(G). Then Φ(G) ≤ Z(G).

Proof. Let G = G/Z(G) and let N be the inverse image of Ω1(Z(G)). We obtain that 
[N, Φ(G)] = 1. In particular, N ∩ Φ(G) ≤ Z(Φ(G)), and so by hypothesis, N ∩ Φ(G) ≤
Z(G). Then Ω1(Z(G)) ∩ Φ(G) = 1. As Φ(G) � G and G is a p-group, this implies 
Φ(G) = 1. �

The following is a well-known generalisation of a theorem of Gaschütz [10, Theo-
rem 1.12].

Lemma 2.2. Let X be a group and G � X. Set

V = F (G)/
(
Φ(X) ∩G

)
.

1. V = F (G/(Φ(X) ∩G));
2. V is a completely reducible X-module, possibly of mixed characteristic (by which we 

mean V = V1 ⊕ · · · ⊕ Vn where for each i there exists a field Fi such that Vi is an 
Fi[X]-module).

One of the hypotheses of Theorem 1.2 is that the extraspecial group F acts on the 
group G so that CG(F ) = 1. The nilpotence of F here not only tells us that G is soluble, 
but also gives very useful information about the action of F on the Sylow subgroups 
of G and G/N for some F -invariant normal subgroup N � G.

Theorem 2.3 (Belyaev–Hartley). Let A be a finite nilpotent group which acts on a finite 
group G so that CG(A) = 1. Then G is soluble.

Proof. See [1, Theorem 0.11]. �
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Lemma 2.4. Suppose that a finite group G admits a group RF of automorphisms where 
RF is the split extension of the nilpotent group F by R. Suppose further that CG(F ) = 1. 
Then there is a unique RF -invariant Sylow p-subgroup of G for each prime p ∈ π(G).

Proof. See [8, Lemma 2.6]. �
Lemma 2.5. Let G be a finite group admitting a nilpotent group F of automorphisms such 
that CG(F ) = 1. If N is a normal F -invariant subgroup of G, then CG/N (F ) = 1.

Proof. See [8, Lemma 2.2]. �
Throughout the proof of Theorem 1.2, we will often encounter the action of RF on 

some direct product. We now set some notation and state some results which will be 
very useful to us when considering these actions.

Definition 2.6. Let G be a group which acts on the set Ω. Then we define:

1. MovΩ(G) = {α ∈ Ω | αg �= α for some g ∈ G}; and
2. FixΩ(G) = {α ∈ Ω | αg = α for all g ∈ G}.

Lemma 2.7. Let RG be a group and V an irreducible RG-module on which G acts faith-
fully. Suppose V = V0 ⊕ · · · ⊕ Vn where each Vi is a G-submodule of V . Let H ≤ RG

be such that H ⊆ CG(V1 ⊕ · · · ⊕ Vn) and G = 〈HRG〉. Then G = G0 × · · · × Gn where 
Gi = CG(V0 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vn).

Proof. First note that H ⊆ G0. Let x ∈ RG, and suppose V x
0 = Vi. Let h ∈ H and 

v ∈ Vj �= Vi. Then vx
−1 ∈ Vk �= V0, and so [vx−1

, h] = 1. Hence vh
x = v. Therefore, 

hx ∈ Gi, and so we obtain that G = 〈HRG〉 ⊆ G0 · · ·Gn. Note that each Gi is normal 
in G as the kernel of an action. Suppose there exists an i such that Gi

⋂∏
j �=i Gj �= 1, 

and let 1 �= g ∈ Gi

⋂∏
j �=i Gj . Then g centralises V0 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vn

since g ∈ Gi, and centralises Vi since g ∈
∏

j �=i Gj . Thus g is a nontrivial element 
of G which centralises V . This is a contradiction since V is a faithful G-module. Thus 
G = Gi ×

∏
j �=i Gj . By induction it follows that G = G0 × · · · ×Gn. �

Lemma 2.8. Let G be a group which acts on a group H = H0×· · ·×Hn in such a way that 
CH(G) = 1 and for each Hi ∈ {H0, . . . , Hn} and g ∈ G we have Hg

i ∈ {H0, . . . , Hn}. 
Let G0 = NG(H0). Then CH0(G0) = 1.

Proof. Note that by induction, we may assume that G is transitive on {H0, . . . , Hn}. 
Now let T = {g0, g1, . . . , gn} be a set of representatives for the right cosets of G0 in G. 
Suppose CH0(G0) �= 1, and choose 1 �= h ∈ CH0(G0). Let ĥ =

∏
hgi . We claim that ĥ is 

fixed by G.
First note that elements in a common coset of G0 in G act in the same way on h. Let 

g′i ∈ G0gi, so g′i = ggi for some g ∈ G0. Then hg′
i = hggi = hgi .
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Now notice that the hgi commute. This follows since for distinct gi, gj ∈ T , hgi and 
hgj lie in distinct Hk. For any g ∈ G, the set Tg is another set of representatives for G0
in G. Therefore, {hgig} = {hgi}. Hence, ĥg = (

∏
{hgi})g =

∏
{hgig} =

∏
{hgi} = ĥ since 

the hgi commute. �
We now finish this section by outlining some of the representation theoretic results 

which we will require throughout Section 3.

Lemma 2.9. Let A = 〈a〉 be a cyclic group which acts semiregularly on the abelian 
group N . Let V be a faithful F[AN ]-module where AN is the split extension of N by A. 
Assume that char(F) and |N | are coprime and CV (N) = 0. Then VA is free.

Proof. This is a special case of [7, Lemma 1.3]. �
Theorem 2.10 (Flavell). Let r be a prime, R ∼= Zr and P an r′-group on which R
acts. Let V be a faithful irreducible RP -module over a field of characteristic p such that 
CV (R) = 0. Then either:

1. [R, P ] = 1; or
2. [R, P ] is a nonabelian special 2-group and r = 2n + 1 for some n ∈ N.

Proof. See [6, Theorem A]. �
3. Proof of the main result

The main aim of this section is to prove Theorem 1.2.
Let R ∼= Zr for some prime r act on the extraspecial s-group F in such a way 

that F = [F, R]. Then, clearly, r �= s and CF (R) ⊆ Φ(F ). In what follows we will 
show that if RF acts on a group G so that CG(F ) = 1, then F (CG(R)) ⊆ F (G). The 
proof will proceed by considering a minimal counterexample RFG. Thus we must have 
CF (R) = Z(F ). Otherwise CF (R) = 1; but we know that a counterexample does not 
exist in this case by Theorem 1.1. Hence, we will establish Theorem 1.2 by proving the 
following:

Theorem 3.1. Let R ∼= Zr for some prime r and F be an extraspecial s-group. Suppose 
that R acts on F in such a way that [R, Z(F )] = 1 and RF/Z(F ) is a Frobenius group. 
Suppose further that RF acts on a group G so that CG(F ) = 1 and (r, |G|) = 1. Then 
F (CG(R)) ≤ F (G).

Proof. Since F is nilpotent, the condition CG(F ) = 1 forces G to be soluble by 
Theorem 2.3. We begin by considering a counterexample with |RFG| minimal. So 
F (CG(R)) � F (G). For notational purposes set X = RFG, so G � X.
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Lemma 3.2. With G and X as above, we obtain that F (G) is a completely reducible 
X-module.

Proof. We know by Lemma 2.2 that F (G)/(Φ(X) ∩G) is a completely reducible module 
for X. We work to show that Φ(X) ∩G = 1. Suppose that Φ(X) ∩ G �= 1 and set G =
G/(Φ(X) ∩G). By minimality, we have F (CG(R)) ≤ F (G). We also have by Lemma 2.2
that F (G) = F (G). Now F (CG(R)) ≤ F (CG(R)), and so F (CG(R)) ≤ F (G). Hence

F
(
CG(R)

)(
Φ(X) ∩G

)
≤ F (G)

(
Φ(X) ∩G

)
= F (G).

However, this is a contradiction since F (CG(R)) � F (G). �
Lemma 3.3. There exists a prime p such that F (G) = Op(G) is an irreducible X-module.

Proof. We know from Lemma 3.2 that F (G) is a completely reducible X-module. Sup-
pose that F (G) is not an irreducible X-module, and let U and V denote two distinct 
irreducible X-submodules. Clearly, U ∩ V = 1. Therefore, G embeds into G/U × G/V

by the injective map given by φ(g) = (gU, gV ).
Now let G = G/U . Then F (CG(R)) ≤ F (CG(R)) ≤ F (G) where the inclusion 

on the right follows by minimality. Thus it follows that 〈F (CG(R))G〉 ≤ F (G). Simi-
larly, if we set G = G/V , then 〈F (CG(R))G〉 ≤ F (G). So the image of 〈F (CG(R))G〉
under φ is nilpotent. However, since φ is injective, 〈F (CG(R))G〉 must also be nilpo-
tent. So 〈F (CG(R))G〉 ⊆ F (G), since 〈F (CG(R))G〉 � G. This is a contradiction since 
F (CG(R)) � F (G). �

For notational purposes set F (G) = V .

Lemma 3.4. There exists a nontrivial RF -invariant Sylow q-subgroup Q of G such that 
G = QV for some prime q �= p.

Proof. Set G = G/V . By minimality we have F (CG(R)) ≤ F (G). Now F (CG(R)) �
F (G), and so there exists a prime q �= p so that Oq(CG(R)) �= 1. By the above, we 
obtain that Oq(CG(R)) ≤ Oq(G). Let K denote the full inverse image of Oq(G) in G. 
So Oq(CG(R)) ⊆ K �RFG. Now K is RF -invariant, hence CK(F ) = 1. By Lemma 2.4, 
there exists a unique RF -invariant Sylow q-subgroup Q of K. Thus K = QV . However, 
F (K) = V , and so by minimality it follows that G = K. �
Lemma 3.5. Let 1 �= H ≤ Oq(CG(R)). Then Q = 〈HF 〉.

Proof. By Lemma 3.4, G = QV where Q is an RF -invariant Sylow q-subgroup of G. By 
coprime action, we obtain that Oq(CG(R)) ≤ Q.

Set Q0 = 〈HRF 〉. Then Q0 = 〈HF 〉, since H is centralised by R. Suppose Q0 < Q, 
and set G0 = Q0V . Now CG(V ) = V , and so Oq(G0) = 1. By minimality, we obtain that 
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F (CG0(R)) ≤ F (G0) = V . However, 1 �= H ⊆ F (CG0(R)). This contradiction forces 
Q0V = G0 = G = QV , and so Q0 = Q. �

We may consider V as an irreducible Fp[RFQ]-module. We now extend the ground 
field to a splitting field k for RFQ, and consider W = V ⊗Fp

k. Henceforth, let V be an 
irreducible k[RFQ]-submodule of W .

Lemma 3.6. Q acts faithfully on V and CV (F ) = 0.

Proof. Suppose Q does not act faithfully on V . Then there exists 1 �= K ⊆ Q with K �
RFQ so that CV (K) = V . Now CV (K) ⊆ CW (K) = CV (K) ⊗Fp

k, and so CV (K) �= 0. 
Since K�RFQ, it follows that CV (K) is normalised by RFQ. By the irreducibility of V , 
we have CV (K) = V . However, Q acts faithfully on V .

The second claim follows as CW (F ) = CV (F ) ⊗Fp
k = 0 and CV (F ) ⊆ CW (F ). �

Lemma 3.7. [CV (R), Oq(CG(R))] = 0.

Proof. Note that CG(R) = CV (R)CQ(R) where CV (R) � CG(R). Thus
[
CV (R), Oq

(
CG(R)

)]
= CV (R) ∩Oq

(
CG(R)

)
= 1.

By considering CV (R) as an Fp[Oq(CG(R))]-module, we obtain that [CW (R),
Oq(CG(R))] = 0. Since CV (R) ⊆ CW (R), it follows that [CV (R), Oq(CG(R))] = 0. �

At this stage we note that we could invoke Proposition 1.5 to finish the proof of 
Theorem 1.2. As Oq(CG(R)) ⊆ CQ(R), Proposition 1.5 together with Lemma 3.7 tells 
us that Oq(CG(R)) acts trivially on V . However, since Q is faithful on V , we obtain that 
Oq(CG(R)) = 1. It follows that F (CG(R)) ⊆ F (G), which is a contradiction. We will 
now continue the proof of Theorem 1.2 without an appeal to Proposition 1.5.

Lemma 3.8. Suppose V is an imprimitive module for RFQ. Then Oq(CG(R)) centralises 
any block which is not normalised by R.

Proof. Let V = U0 ⊕ · · · ⊕ Un where the Ui are blocks of imprimitivity in the action of 
RFQ on V , and set Ω = {U0, . . . , Un}. Let R = 〈a〉. We want to show that Oq(CG(R))
centralises

U =
⊕

Ui∈MovΩ(R)

Ui.

Clearly, Oq(CG(R)) acts on MovΩ(R). Let Ui ∈ MovΩ(R), and consider

U ′ =
r⊕

Uaj

i .

j=1
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Then for u ∈ Ui, w = u + ua + · · ·+ uar−1 is centralised by R. Thus it is also centralised 
by Oq(CG(R)). Hence, U ′ is normalised by Oq(CG(R)). An r-cycle in Sym(r) is self-
centralising, so as Oq(CG(R)) is an r′-group, it follows that Oq(CG(R)) normalises Ui. 
Since w is centralised by Oq(CG(R)), and Oq(CG(R)) normalises Ui, it follows that 
Oq(CG(R)) must centralise u. �

Henceforth, we will write V = V0 ⊕ · · · ⊕ Vn where the Vi are the homogeneous 
components with respect to Z(Q). Set Γ = {V0, . . . , Vn}.

Our next major goal is to prove that [Z(Q), Z(F )] �= 1. We thus proceed with the 
assumption that this is not the case and work to obtain a contradiction. We first need a 
few lemmas.

Lemma 3.9. Assume [Z(Q), Z(F )] = 1. Then R has only one fixed point on Γ .

Proof. Let R = 〈a〉. By Lemma 3.8, we obtain that Oq(CG(R)) centralises all of the 
subspaces Vi ∈ MovΓ (R). Now CQ(V ) = 1 by Lemma 3.6, and so we have the strict 
inclusion MovΓ (R) ⊂ Γ . Now FixΓ (R) �= ∅, hence R is in the stabiliser of a point in 
the action of RFQ on Γ , and is a Sylow r-subgroup of this stabiliser. Thus NRFQ(R)
acts transitively on FixΓ (R). Now NRFQ(R) = RZ(F )CQ(R). Clearly R acts trivially on 
FixΓ (R). Also [CQ(R), Z(Q)] = 1, and by hypothesis we have [Z(Q), Z(F )] = 1. There-
fore, Z(F )CQ(R) ⊆ CRFQ(Z(Q)). Thus by Clifford’s Theorem, Z(F )CQ(R) acts trivially 
on Γ . In particular, Z(F )CQ(R) acts trivially on FixΓ (R), and so |FixΓ (R)| = 1. �

In the following lemma, let Qi = CQ(V0 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vn).

Lemma 3.10. If [Z(Q), Z(F )] = 1, then Q = Q0 × · · · ×Qn.

Proof. We can assume without loss of generality that FixΓ (R) = {V0}. Since R has no 
fixed points on Γ − {V0}, it follows by Lemma 3.8 that V1 ⊕ · · · ⊕ Vn is centralised by 
Oq(CG(R)). Thus Oq(CG(R)) ⊆ Q0. The result now follows from Lemma 2.7 with Q
and V in place of G and V respectively. �

Let F0 = NF (V0). Then F0 �= 1 otherwise V0 would be in a regular orbit under the 
action of F on Γ . Thus 〈V F

0 〉 would be a free F -module and so CV (F ) �= 1 contrary to 
Lemma 3.6.

Lemma 3.11. If [Z(Q), Z(F )] = 1, then Q0 = 〈Oq(CG(R))F0〉.

Proof. Let f ∈ F and suppose V f
0 = Vi. Let g ∈ Oq(CG(R)) and v ∈ Vj �= Vi. Then 

vf
−1 ∈ Vk �= V0, and so [vf−1

, g] = 1. Hence vg
f = v. Therefore, gf ∈ Qi, and so 

Oq(CG(R))f ⊆ Q0 if and only if f ∈ F0.
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Now Q/(Q1×· · ·×Qn) ∼= Q0 and 〈Oq(CG(R))F−F0〉 ⊆ Q1×· · ·×Qn. So if we consider 
the canonical epimorphism φ : Q −→ Q/(Q1 × · · · ×Qn), it follows that 〈Oq(CG(R))F0〉
maps onto Q/(Q1 × · · · ×Qn) under φ. So

Q =
〈
Oq

(
CG(R)

)F0〉×Q1 × · · · ×Qn.

By considering orders it follows that |Q0| = |〈Oq(CG(R))F0〉|. Hence Q0 =
〈Oq(CG(R))F0〉. �
Lemma 3.12. If [Z(Q), Z(F )] = 1, then CQ0(F0) = 1.

Proof. By noting that CQ(F ) = 1, this follows by Lemma 2.8 with F and Q in place 
of G and H respectively. �
Lemma 3.13. [Z(Q), Z(F )] �= 1.

Proof. Assume that this is not the case so [Z(Q), Z(F )] = 1. Then Q ∼= Q0 × · · · ×Qn

where the Qi are defined as in Lemma 3.10, and CQ0(F0) = 1 by Lemma 3.12.
Now since the Vi are homogeneous components for Z(Q), and k is a splitting field 

for Z(Q), Z(Q) acts on V0 by scalars. However, Z(Q) = Z(Q0) × · · · × Z(Qn), and 
Z(Q1) × · · · × Z(Qn) acts trivially on V0. So Z(Q0) acts on V0 nontrivially by scalars, 
otherwise CQ(V ) �= 1 as Z(Q0) �= 1. This follows since 1 �= Oq(CG(R)) ⊆ Q0. We know 
that Z(Q0) acts by scalars on V0, and so every element in [F0, Z(Q0)] acts trivially on V0. 
However, since Q0 acts faithfully on V0, and [F0, Z(Q0)] ⊆ Z(Q0), it follows that F0 must 
centralise Z(Q0), and thus 1 �= CQ0(F0). This is a contradiction to Lemma 3.12. �
Corollary 3.14. Z(F ) acts semiregularly on Γ .

Proof. Suppose Z(F ) normalises some Vj ∈ Γ . Since RF is transitive on Γ , and Z(F ) =
Z(RF ), we find that Z(F ) acts trivially on Γ . Now Z(Q) acts on each Vi ∈ Γ by scalars, 
and so [Z(F ), Z(Q)] must act trivially on each Vi ∈ Γ . This forces [Z(F ), Z(Q)] = 1
since CQ(V ) = 1, which is a contradiction to Lemma 3.13. �
Lemma 3.15. Q acts trivially on any system of imprimitivity in the action of RFQ on V .

Proof. Let V = U0 ⊕ · · · ⊕ Un where the Ui are blocks of imprimitivity in the action of 
RFQ on V , and set Ω = {U0, . . . , Un}. We work to show that Oq(CG(R)) acts trivially 
on Ω. Then the normal closure of Oq(CG(R)) in RFQ will also act trivially on Ω. Since 
〈Oq(CG(R))RFQ〉 = Q, the claim will follow.

Let R = 〈a〉. Then Oq(CG(R)) centralises any Ui ∈ MovΩ(R) by Lemma 3.8. Also, 
as in the proof of Lemma 3.9, we get that FixΩ(R) �= ∅ and NRFQ(R) is transitive 
on FixΩ(R). Now NRFQ(R) = RZ(F )CQ(R). Clearly, R acts trivially on FixΩ(R). 
Let Uj ∈ FixΩ(R), and suppose Z(F ) � NF (Uj). Then NF (Uj) ∩ Z(F ) = 1 since 
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Z(F ) is cyclic of prime order. In particular, R acts semiregularly on NF (Uj) because 
CF (R) = Z(F ). Note that NF (Uj) �= 1, otherwise F would have a regular orbit on Ω and 
thus a nontrivial fixed point on V , contrary to Lemma 3.6. Therefore, NF (Uj) must be 
elementary abelian since it is isomorphic to its image under the canonical epimorphism 
ϕ : F −→ F/Z(F ). Also CUj

(NF (Uj)) = 0 by Lemma 2.8. Hence CUj
(R) �= 0 by 

Lemma 2.9. Thus by Lemma 3.7, Oq(CG(R)) normalises Uj .
Suppose that Oq(CG(R)) does not normalise Uj ∈ FixΩ(R). Then reasoning as above 

we must have Z(F ) ⊆ NF (Uj) and CUj
(R) = 0. Thus CQ(R) can only map Uj to a 

subspace Ui ∈ FixΩ(R) which itself is normalised by Z(F ). So Z(F ) must act trivially 
on FixΩ(R), otherwise we get two distinct orbits in the action of NRFQ(R) on FixΩ(R). 
Since Z(F ) is trivial on FixΩ(R), we obtain that Z = [Oq(CG(R)), Z(F )] is also trivial 
on FixΩ(R). Also, Z centralises each subspace Uj ∈ MovΩ(R) since Z ⊆ Oq(CG(R)), and 
so Z acts trivially on Ω. Note that Z �= 1, since [Z(Q), Z(F )] �= 1, and so by Lemma 3.5
we have Q = 〈ZF 〉. Thus it follows that Q also acts trivially on Ω. This is a contradiction 
since Uj is not normalised by Oq(CG(R)). �
Corollary 3.16. Every characteristic abelian subgroup of Q is contained in Z(Q).

Proof. Let A be a characteristic abelian subgroup of Q. Let V = U0 ⊕ · · · ⊕ Un where 
the Ui are homogeneous components with respect to A. Then Ω = {U0, . . . , Un} is a 
system of imprimitivity for RFQ on V , and so Q is trivial on Ω. Since A acts by scalars 
on any given Ui ∈ Ω, [Q, A] centralises V . This forces [Q, A] = 1, and thus A ⊆ Z(Q). �
Corollary 3.17. Q has nilpotence class at most two.

Proof. Since every characteristic abelian subgroup of Q is contained in Z(Q), it follows 
that Z(Φ(Q)) ⊆ Z(Q). Thus Φ(Q) ⊆ Z(Q) by Lemma 2.1, and so Q/Z(Q) is abelian. �

Recall that Γ is the set of Z(Q)-homogeneous components in V . We know that the 
subset of components in Γ which are normalised by R is nonempty, and that NRF (R) =
R× Z(F ) acts transitively on this set. We also know, since Z(F ) � RF , that the orbits 
of the action of Z(F ) on Γ forms a system of imprimitivity V = W0 ⊕ · · · ⊕Wm for the 
action of RF on Γ . We can assume without loss of generality that V0 is normalised by R

and that W0 is the direct sum of components in the orbit of V0 under the action of Z(F )
on Γ . Henceforth, we set Qi = CV (W0 ⊕ · · · ⊕Wi−1 ⊕Wi+1 ⊕ · · · ⊕Wm), and find that 
Q = Q0 × · · · ×Qm, which follows exactly as in Lemma 3.10.

Lemma 3.18. Q0 = 〈Oq(CG(R))NF (V0)〉.

Proof. We first show that NF (W0) = Z(F ) × NF (V0). We can assume without loss 
of generality that W0 = V0 ⊕ · · · ⊕ Vs−1. Set Δ = {V0, . . . , Vs−1}. By definition 
Z(F ) ⊆ NF (W0) and is transitive on Δ. In particular, since |Δ| = s, NF (W0) is prim-
itive on Δ. Since NF (W0) is an s-group and |Δ| = s, NF (V0) must be the full kernel 
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in the action of NF (W0) on Δ. We find that NF (W0)/NF (V0) is regular on Δ, and 
so NF (W0)/NF (V0) ∼= Zs. Thus it follows that NF (W0) = Z(F ) × NF (V0). Arguing 
exactly as in the proof of Lemma 3.11, we find that Q0 = 〈Oq(CG(R))NF (W0)〉. Now 
[R, Z(F )] = 1, and so Oq(CG(R))Z(F ) = Oq(CG(R)). Thus

Q0 =
〈
Oq

(
CG(R)

)Z(F )×NF (V0)〉 =
〈
Oq

(
CG(R)

)NF (V0)〉
. �

Lemma 3.19. [Z(Q0), R] = 1.

Proof. Since the subspaces Vi ⊆ V are homogeneous components for Z(Q), Z(Q0) acts 
on them by scalars. Now W0 is the direct sum of components which are normalised by R. 
Since Z(Q0) acts by scalars on any given Vi ⊆ W0, it follows that [Z(Q0), R] acts trivially 
on W0. However, Q is faithful on V , and since Q0 centralises W1 ⊕ · · · ⊕Wm, this forces 
[Z(Q0), R] = 1. �
Lemma 3.20. Q is abelian.

Proof. Note that Q′ ∩Oq(CG(R)) = 1. Hence

[
Oq

(
CG(R)

)
, CQ(R)

]
⊆ Q′ ∩Oq

(
CG(R)

)
= 1,

and so Oq(CG(R)) ⊆ Z(CQ(R)). By Lemma 3.19, we have [Z(Q0), R] = 1, and so since Q
has nilpotence class at most two, Q0 = [Q0, R] ∗ CQ0(R). However, since Oq(CG(R)) ⊆
Z(CQ(R)), it follows that Oq(CG(R)) ⊆ Z(CQ0(R)), and so Oq(CG(R)) ⊆ Z(Q0) ⊆
Z(Q). Set G0 = Z(Q)V . If G0 < G, then F (CG0(R)) ⊆ F (G0) = V by induction. 
However, since Oq(CG(R)) ⊆ Z(Q), there are clearly q-elements in F (CG0(R)). Thus 
G0 = G, and so Z(Q) = Q. �

We now complete the proof of Theorem 3.1.
It follows from Corollary 3.14 that Z(F ) � NF (Vi) for any Vi ∈ Γ . Thus Z(F ) ∩

NF (V0) = 1 since Z(F ) is cyclic of prime order. Hence NF (V0) = [R, NF (V0)]. Since Q

is abelian, Lemma 3.19 now says that [Q0, R] = 1, and so [Q0, NF (V0)] = 1. Thus 
Q0 = 〈Oq(CG(R))NF (V0)〉 = Oq(CG(R)). Now NF (V0) is abelian, and CV0(NF (V0)) = 0
by Lemma 2.8. Hence CV0(R) �= 0 by Lemma 2.9. Since [Oq(CG(R)), CV (R)] = 1, we 
must have that Q0 acts trivially on CV0(R). However, V0 is a homogeneous component 
for Q0, and so Q0 must act trivially on V0. It follows that Q0 acts trivially on W0 and 
thus Q0 acts trivially on V . However, this is a contradiction since CQ(V ) = 1. �
Corollary 3.21. Let R ∼= Zr for some prime r and F be an extraspecial s-group. Suppose 
that R acts on F in such a way that [R, Z(F )] = 1 and RF/Z(F ) is a Frobenius group. 
Suppose further that RF acts on a group G so that CG(F ) = 1 and (r, |G|) = 1. Then 
Fi(CG(R)) = Fi(G) ∩ CG(R) for all i.
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Proof. Let i ∈ N be the least such that Fi(CG(R)) � Fi(G). We know that F (CG(R)) ≤
F (G) by Theorem 3.1, and so i > 1. Let G = G/Fi−1(G), and φ be the canonical 
epimorphism from G onto G. Now Fi(CG(R))�CG(R) and Fi(CG(R)) is nilpotent since 
Fi−1(CG(R)) ⊆ ker(φ). Now

Fi

(
CG(R)

)
≤ F

(
CG(R)

)
= F

(
CG(R)

)
≤ F (G).

By the definition of Fi(G), we have F (G) = Fi(G). Therefore, Fi(CG(R)) ⊆ Fi(G). 
However, this is a contradiction since Fi(CG(R)) � Fi(G). �
Corollary 3.22. Let R ∼= Zr for some non-Fermat prime r and F be an extraspecial 
s-group. Suppose that R acts on F in such a way that [R, Z(F )] = 1 and RF/Z(F ) is 
a Frobenius group. Suppose further that RF acts on a group G so that CG(F ) = 1 and 
(r, |G|) = 1. Then f(CG(R)) = f(G).

Proof. Let n ∈ N be the Fitting height of CG(R). Now we know that Fn(CG(R)) =
Fn(G) ∩ CG(R), and so CG(R) ≤ Fn(G). We work to show that Fn(G) = G. Suppose 
this is not the case, so Fn(G) < G. Let S be an RF -invariant section of G/Fn(G) which 
has no proper RF -invariant subgroups. By coprime action, R acts fixed point freely on 
G/Fn(G). Also, F acts nontrivially on S since CG/Fn(G)(F ) = 1. By Theorem 2.10, it 
follows that either [R, F/CF (S)] = 1 or r is a Fermat prime. By hypothesis, the former 
must hold. Since CF (R) = Φ(F ), we obtain that F = CF (S)Φ(F ). However, this implies 
F = CF (S), which is a contradiction. �

Note that if G is a minimal counterexample to Corollary 3.22, we obtain that f(G) ≤
f(CG(R)) + 1 in any case, since G/Fn(G) admits a fixed-point-free automorphism of 
prime order.

Corollaries 3.21 and 3.22 together with Theorem 1.1 confirm Corollaries 1.3 and 1.4
stated in the introduction. Note that we cannot drop the condition that r be a non-
Fermat prime in Corollary 3.22. In particular, if R ∼= Zr where r is a prime of the 
form r = 2n + 1, then there exists an extraspecial group F on which R acts such that 
F = [F, R], and a group G on which RF acts such that CG(F ) = 1, f(G) = 1 and 
f(CG(R)) = 0.
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