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The default mode network (DMN) is one of the most studied resting-state networks, and is thought to be in-
volved in themaintenance of consciousnesswithin the alert human brain. Althoughmany studies have examined
the functional connectivity (FC) of the DMN, few have investigated its underlying structural connectivity (SC), or
the relationship between the two. We investigated this question in fifteen healthy subjects, concentrating on
connections to the precuneus/posterior cingulate cortex (PCC), commonly considered as the central node of
the DMN. We used group independent component analysis (GICA) and seed-based correlation analysis of fMRI
data to quantify FC, and streamline and probabilistic tractography to identify structural tracts from diffusion ten-
sor imaging (DTI) data. We first assessed the presence of structural connections between the DMN regions iden-
tified with GICA. Of the 15 subjects, when using the probabilistic approach 15 (15) demonstrated connections
between the PCC andmesial prefrontal cortex (mPFC), 11 (15) showed connections from the PCC to the right in-
ferior parietal cortex (rIPC) and 8 (15) to the left IPC. Next,we assessed the strength of FC (magnitude of temporal
correlation) and SC (mean fractional anisotropy of reconstructed tracts (streamline), number of super-threshold
voxels within the mask region (probabilistic)). The lIPC had significantly reduced FC to the PCC compared to the
mPFC and rIPC. No difference in SC strength between connections was found using the streamline approach. For
the probabilistic approach,mPFChad significantly lower SC than both IPCs. The twomeasures of SC strengthwere
significantly correlated, but not for all paired connections. Finally, we observed a significant correlation between
SC and FC for both tractography approaches when data were pooled across PCC–lIPL, PCC–rIPL and PCC–mPFC
connections, and for some individual paired connections. Our results suggest that the streamline approach is ad-
vantageous for characterising the connectivity of long white matter tracts (PCC–mPFC), whilst the probabilistic
approach was more reliable at identifying PCC–IPC connections. The direct comparison of FC and SC indicated
that pairs of nodes with stronger structural connections also had stronger functional connectivity, and that this
was maintained with both tractography approaches. Whilst the definition of SC strength remains controversial,
our results could be considered to provide some degree of validation for themeasures of SC strength thatwe have
used. Direct comparisons of SC and FC are necessary in order to understand the structural basis of functional con-
nectivity, and to characterise and quantify the changes in the brain's functional architecture that occur as a result
of normal physiology or pathology.

© 2014 Elsevier Inc. All rights reserved.
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Introduction

The human brain is organised into a series of functional networks
that exhibit correlations in activity between individual regions even
in the absence of stimulation (Biswal et al., 1995; Gusnard et al., 2001;
Raichle et al., 2001; Shulman et al., 1997). This resting-state activity
can be measured from low frequency fluctuations in the blood oxygen
level dependent (BOLD) fMRI signal (Biswal et al., 1995). One of the
most studied resting-state networks (RSNs) is the default mode
network (DMN) (Greicius et al., 2003; Horovitz et al., 2009; Raichle
et al., 2001; Shulman et al., 1997) consisting of the posterior cingulate/
precuneus cortex (PCC), the left inferior parietal cortex/angular gyrus
(lIPC), the right inferior parietal cortex/angular gyrus (rIPC) and
the medial prefrontal/anterior cingulate cortex (mPFC). Many studies
have investigated the functional connectivity (FC) of the DMN
(Damoiseaux and Greicius, 2009; Greicius et al., 2003; Gusnard et al.,
2001; Raichle et al., 2001; Shulman et al., 1997). However, the structural
connectivity (SC) that ultimately provides the anatomical substrate
for functional interactions, and the relationship between FC and SC, is
less well understood.

SC canmost readily be defined non-invasively using diffusion-tensor
imaging (DTI) approaches allied with tractography analysis. DTI allows
the tracking of white-matter pathways by measuring the fractional
anisotropic diffusion (FA) of water molecules along neuronal axon
fibres (Basser and Le Bihan, 1992; Basser et al., 1994; Hagmann et al.,
2003;Mori and Zhang, 2006).Whilst a number of different tractography
algorithms of varying complexity exist, the two main distinguishing
factors relate to how white matter tracts are modelled within a voxel
(i.e. a single ormultiple fibre orientations) and how the tracts are recon-
structed (i.e. interpolated streamlines or probabilistic global connectiv-
ity estimations). These choices can have a profound effect on the
estimated white matter fibre tracts, and hence on the judgement of
whether two brain regions are structurally connected (Yo et al., 2009).
The question of how SC underpins and constrains FC, and the extent
to which the underlying SC is responsible for the maintenance and reg-
ulation of FC, remains unclear. The examination of structure–function
relationships in human neuroimaging data is a burgeoning field
(Damoiseaux and Greicius, 2009; Guye et al., 2008), not least because
it may provide a way of understanding the modifications in FC that
have been observed in many neurological and psychiatric disorders
(Broyd et al., 2009). The added value of investigating the relationship
between SC and FC has recently been highlighted in patients with idio-
pathic generalised epilepsy (Zhang et al., 2011) and traumatic brain in-
jury (Kinnunen et al., 2011).

Several studies have investigated structure–function relationships
in a variety of brain networks, and taken together this work displays
general agreement that functionally connected regions are also struc-
turally connected (Greicius et al., 2009; Hagmann et al., 2007; Honey
et al., 2009; Johansen-Berg et al., 2004; Mars et al., 2010, 2011;
Skudlarski et al., 2008; van den Heuvel et al., 2009; Zhang et al.,
2010). However, the related question of whether regions that are
more strongly functionally connected (i.e., a higher correlation coeffi-
cient between paired functional time series) are also more strongly
structurally connected has received less attention (but see Skudlarski
et al., 2008). One of the reasons for this is thatwhilst a higher correlation
between fMRI time series, after removal of physiological, scanner and
movement confounds, provides ameasurement of stronger FC, inferring
the ‘strength’ of SC frommetrics that can be extracted from existing dif-
fusion weighted scans, such as fractional anisotropy (FA) or a probabi-
listic connectivity score, is considerably more difficult. As discussed in
detail by Jones et al. (2013) diffusionweighted imaging (DWI) provides
information about the directionality of water diffusion within the mac-
roscopic volumes that are sampled in typical voxels. With certain as-
sumptions (e.g., the fitting of voxel-wise single tensor models in the
simplest case), preferred diffusion directions can be identified, and
tractography algorithms can subsequently be used to estimate the like-
lihood of the existence of connections between two regions. However,
there remains considerable controversy over the extent to which varia-
tion in structural connectivity metrics can be interpreted as indexing
variations in the strength of those structural connections (i.e., is a higher
FA indicative of an increased strength of SC?), since there are contribu-
tions from several methodological and physiological factors which are
not related to the underlying connectivity (Jbabdi and Johansen-Berg,
2011; Jones et al., 2013). Indeed, at the macroscopic level assessed by
DWI, and in the absence of precise and validatedmarkers of specific as-
pects of the underlying physiology (e.g., myelination), there is ambigu-
ity about the very definition of ‘strength’ of structural connectivity from
DWI data.Whilst it is clear that there are several potential contributions
to variation in DWI metrics, it seems a plausible hypothesis that at least
part of that variance can be attributed to underlying differences in SC
strength, with ‘strength’ defined in the broadest sense and recognised
as a concept that requires further physiological clarification. One way
of testing this hypothesis is by direct comparison with the strength of
FC. Considering the potential sources of variability inDWImetrics, a cor-
relation between FC and a particular DWImetric would only be expect-
ed if the metric coded for variations in underlying SC strength.

In the current study we focused on the DMN as one of the most reli-
ably detected RSNs, whose spatiotemporal pattern of activity has been
observed to be altered in a range of neurological and psychiatric disor-
ders (Broyd et al., 2009), as well as during altered states of conscious-
ness such as sleep (Horovitz et al., 2009; Sämann et al., 2010), coma
(Norton et al., 2012) and anaesthesia (Fiset et al., 1999). Few studies
have investigated the SC of the DMN (Greicius et al., 2009; Hagmann
et al., 2008; Skudlarski et al., 2008; van den Heuvel et al., 2009), and
some uncertainty remains concerning the existence of connections
between the PCC and inferior parietal cortices (Greicius et al., 2009),
potentially because of problems related to crossingfibres and the choice
of tractography approaches (Yo et al., 2009).

We used group independent component analysis (GICA) to spatially
identify the DMN from resting-state fMRI data. We subsequently
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defined the PCC, the core node of theDMN(Hagmann et al., 2008; Leech
et al., 2011, 2012), as the seed region fromwhich to assess SC and FC to
the three other principle nodes of the DMN (mPFC and bilateral IPC). SC
wasdefined using two tractography algorithms, interpolated streamline
(Conturo et al., 1999) and probabilistic global connectivity estimation
(Behrens et al., 2003; Hagmann et al., 2003) to investigate whether dif-
ferent analysis methods can lead to different conclusions regarding the
relationship between SC and FC.

The study tested four hypothesis: i) the PCC is structurally connected
to the other nodes of the DMN, ii) for a given pair of DMN nodes the
strength of FC between those nodes is mirrored by the strength of SC,
iii) FC and SC are correlated across the nodes of the DMN, and iv) the
FC–SC relationships identified are not affected by the definition of SC.

Methods and materials

Subjects

DTI and fMRI data were acquired from fifteen healthy adults (right
handed, 10 females, 23–29 years old, mean age = 24.6 years) using a
3 Tesla Philips Achieva MRI scanner at Birmingham University Imaging
Centre (BUIC), University of Birmingham. Participants had no history of
any neurophysiological, neuropsychological or neurological illness.
Written informed consent was obtained from all participants, and the
studywas approved by theUniversity of BirminghamEthics Committee.

Image acquisition and preprocessing

All subjects were scanned in a single session without changing
their position and were instructed to lie still in the scanner and relax
with eyes open. All participants confirmed that they remained awake
and alert through the scanning session. Each subject underwent
one resting-state fMRI scan of 5 min duration, with the following
parameters: 150 dynamics, repetition time (TR) = 2000 ms, echo
time (TE) = 35 ms, flip angle = 80°, voxel size 3 × 3 × 4 mm3, and
32 slices. In addition, they underwent a 13 minute echo planer DTI
scan: TR = 5191 ms, TE = 77 ms, field of view (FOV) = 224 ×
150 × 224 mm, angulation = 0°, and voxel size 2 mm isotropic. A
total of 75 slices were acquired for b values of b = 0 and b =
1500 mm2/s obtained by applying gradients along 61 different diffu-
sion directions. Additionally, a high-resolution (1 mm isotropic) T1-
weighted anatomical image was acquired in each subject.

Pre-processing of the fMRI data was performed using FSL, the FMRIB
Software Library (http://www.fmrib.ox.ac.uk/fsl, Smith et al., 2004).
The following procedures were applied: motion correction (Jenkinson
et al., 2002) using MCFLIRT, slice timing correction, spatial smoothing
using a Gaussian kernel (FWHM = 6 mm) and a high-pass filter cutoff
at 100 s (f N 0.01 Hz).

DTI scans were pre-processed using the FSL Brain Extraction Tool
(BET, Behrens et al., 2003) for skull stripping and the FSL Diffusion
Toolkit (Smith et al., 2004) to minimise eddy current distortion effects
and for registration of the diffusion volumes.

Defining Regions of Interest (ROI) from functional scans

All fMRI data were registered to MNI standard space and temporally
concatenated across subjects. To identify the DMN, GICA was then per-
formed using MELODIC (Beckmann et al., 2005). The number of output
components was set to 10, in accordance with a recent study (Schopf
et al., 2010) and in the absence of a clear consensus as to the optimum
number of components. A low dimensionality reduction ensures that
the DMN will be decomposed into a single component, which makes
its identification more straightforward. A single independent compo-
nent representing the DMN was identified by visual inspection from
its characteristic spatial map. The DMN Z-statistical map was then
thresholded at Z = 4 and manually divided into four group-space
ROIs: PCC, mPFC and left and right IPC. We focused on these four ROIs
as they have been consistently reported as constituting robust regions
of the DMN (Damoiseaux and Greicius, 2009; Greicius et al., 2003;
Horovitz et al., 2009; Raichle et al., 2001). Other brain regions (e.g., hip-
pocampus, parahippocampal gyrus) have been observed, but are less
consistently reported.

Measuring DMN FC

Seed-based functional connectivity analysis was performed (Fox
et al., 2005) using in-house MATLAB code (MathWorks, USA). The pre-
processed functional data was further filtered (0.009 b f b 0.08 Hz)
and single voxel co-ordinates taken from each subject's individual func-
tional scan for regions of white matter and ventricles. The white matter
and ventricular signals, the global brain signal and the motion parame-
ters were removed from the data using linear regression. The PCC ROI
was then used as the seed to measure the strength of FC to all other
DMN ROIs. The BOLD timeseries within a 3 × 3 × 3 voxel cube, centred
on the peak Z-statistic voxel in the PCC, was averaged and correlated
with all other brain voxels. This produced a whole-brain map of
Pearson's correlation coefficients which allowed FC between regions
of the DMN to be assessed and quantified. FCwas defined for the follow-
ing pairs of ROIs: PCC tomPFC, PCC to lIPC and PCC to rIPC, by averaging
the voxel-wise correlation coefficients within a 3 × 3 × 3 voxel cube
centred on the maximum Z-statistic voxel within each target ROI.

Measuring DMN SC

In order to investigate SC of the DMN, each group-space ROI was co-
registered to each individual's native DTI data space using FLIRT
(Jenkinson et al., 2002). DMN ROIs were then binarised and registered
to the b0 volume of each subject. This allowed tractography to be per-
formed to determine whether these functionally connected regions
were also structurally connected.

Interpolated streamline tractography

The interpolated streamline algorithm (Basser and Le Bihan, 1992;
Conturo et al., 1999) was used to estimate fibre tracts between ROIs.
Using FMRIB's diffusion toolbox (FDT v2.0, http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FDT), DTIFIT was used to fit a single tensor model at each voxel
of the preprocessed eddy current corrected diffusion weighted data.
Tractography was carried out using the Diffusion Toolkit (DTK) and
tracts reconstructed using Trackvis (http://www.trackvis.org/). Tracts
were considered as connecting ROIs if any part of them passed through
the ROI en route to other cortical regions. Path tracingwas permitted to
continue until the FA fell below 0.2 or until the maximum angle be-
tween path segments was larger than 35° (Johansen-Berg et al., 2004).
Aswell as using visual confirmation of the existence of SC, reconstructed
tracts were identified using a white matter atlas (Mori et al., 2011) and
mean FA values of structural connections were used as an indicator of
the strength of structural connections between nodes (Ben-Shachar
et al., 2007; Bozzali et al., 2005).

Probabilistic tractography

Probabilistic tractography was performed using FMRIB's diffusion
toolbox (FDT v2.0, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). BEDPOSTX
was used to model 5000 iterations within each voxel with a curvature
threshold of 0.2, a step length of 0.5 and a maximum number of 2000
steps (Behrens et al., 2007). Target masks were used (mPFC, lIPC and
rIPC) and a distribution of fibre orientations was calculated between
pairs of masks using the PCC as a seed mask (i.e. PCC–rIPC, PCC–lIPC,
PCC–mPFC). The connection probability was given by the number of
tracts that reached a target voxel (in the target mask) from a given
seed voxel (from the seed mask). This is an estimate of the most likely

http://www.fmrib.ox.ac.uk/fsl)
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT)
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT)
http://www.trackvis.org/)
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT)
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location and strength of a pathway between the two areas (Behrens
et al., 2007). Thresholding of probabilistic tractography remains an un-
solved statistical issue (Morris et al., 2008).We used FSLstats to identify
the voxelwith themaximum connectivity valuewithin the connectivity
distribution map of each participant and used thresholds to 50%, 25%
and 15% of themaximum connectivity value to determine the optimum
threshold value (i.e. keeping all other voxels which had values more
than 15%, 25% or 50% of the maximum connectivity value, Bennett
et al., 2011).

Comparison of structure and function

We assessed the nature of the link between the two measures of SC
and between structural and functional connectivity in three ways:
1) structural pairwise connections were identified between the PCC
and each node of the DMN as being either present or absent, by visual
inspection of connections between nodes, 2) the strength of connection
to the PCC from each of the other three nodes of the DMN was deter-
mined separately for FC and the two methods of quantifying SC. Those
subjects who did not demonstrate pairwise structural connections for
a given pair of nodes were excluded from this analysis, 3) the degree
of SC–FC coupling was determined by linear correlation analysis for
each pairwise connection between nodes, and for the DMN as a whole
(i.e., including all pairs together).

Statistical analysis

For FC and SC separately (i.e., comparison 2 above)we compared the
FC and SC between the three pairs of ROIs (PCC–mPFC, PCC–lIPC, PCC–
rIPC) using repeated measures one-way ANOVA (SSPS Inc., Chicago
USA). Secondly, bivariate correlation analysis (SPSS Inc., Chicago USA)
was carried out to determine the relationship between deterministic
and probabilistic tractography, and between SC and FC (comparison 3
from Statistical analysis section), using mean FA streamline data,
mean probability distribution connectivity data and mean FC correla-
tion coefficients.

Results

Functional connectivity

A single component containing the major nodes of the DMN was
identified visually from the GICA decomposition (Fig. 1). Seed-based
FC was then used to measure the strength of FC for each pairwise con-
nection between the PCC seed and the mPFC, lIPC, and rIPC. Repeated
measures one-way ANOVA indicated a significant main effect of region
upon FC, demonstrating differences in FC between the three pairwise
connections of the DMN (i.e., PCC–mPFC, PCC–lIPC and PCC–rIPC,
Fig. 1. The GICA map representing the DMN which was used to define ROIs for all FC and
SC analyses.
F(2,28) = 3.880, p = 0.033). Post-hoc T-tests indicated a significant
difference in FC between PCC–mPFC and PCC–lIPC (p = 0.023), as
well as between PCC–rIPC and PCC–lIPC (p = 0.037). In contrast, the
FC between PCC–mPFC was not significantly different to that between
PCC–rIPC (p = 0.980). These group data are plotted in Fig. 4a. Mean cor-
relation coefficients (i.e. magnitude of FC) were consistent between sub-
jects for a particular paired connection, as indicated by the relatively small
standard errors. The strongest FC was measured between the PCC–rIPC
(mean R = 0.1556) and the weakest between the lIPC–PCC (mean
R = 0.0998), with the mPFC–PCC intermediate (mean R = 0.1362).

Structural connectivity: streamline tractography

All of the subjects (15/15) demonstrated clear cingulate tracts
connecting the PCC to the mPFC. White matter tracts were observed
to link the PCC to the rIPC in 11/15 subjects and to the lIPC in 8/15 sub-
jects. In total 34/45 connections were detected from 15 subjects (see
data in Fig. 2 and examples in Figs. 3a–f).

The strength of white matter connections was assessed by measur-
ing the mean FA along reconstructed tracts. Although SC assessed by
streamline tractography showed a similar pattern to the FC in terms of
the relative strengths between the different nodes (Fig. 4b), no signifi-
cant main effect of region upon SC was detected (F(2,14) = 0.752,
p = 0.414).

Structural connectivity: probabilistic tractography

For the probabilistic data, SC was found between the PCC and the
other three nodes in all subjects (15/15 for all three pairs of ROIs leading
to a total of 45 connections, see examples in Figs. 3g–i). When consider-
ing the strength of SC (number of voxels above threshold), similar to the
deterministic approach the rIPC had greater connectivity than the lIPC,
but in contrast the mPFC demonstrated less connectivity than both
rIPC and lIPC. The pattern of SC between the pairs of nodes was compa-
rable across all thresholds. Themean SCof the PCC to thedifferent nodes
was found to be significantly different at the 15% threshold (one-way
ANOVA, F(1,19) = 5.00, p = 0.029). Post-hoc T-tests revealed differ-
ences in SC between PCC–mPFC and PCC–lIPC (p = 0.015) connections
and also between PCC–rIPC and PCC–mPFC (p = 0.014) connections.
The strength of SC between PCC–lIPC and PCC–rIPCwas not significantly
different (p = 0.189, Fig. 4c). At the 25% and 50% thresholds the mean
SC between the PCC and the different nodes was not significantly differ-
ent (F(1,17) = 3.10, p = 0.90 and F(1,21) = 0.22, p = 0.74). Howev-
er, at both of these thresholds the pattern of connectivity looked
qualitatively similar for the IPC regions to that at a threshold of 15%
(Fig. 4c).
Fig. 2. The total number of subjects demonstrating SC with the PCC for each target region
using deterministic streamline tractography (grey bars) and probabilistic tractography
(white bars).



Fig. 3. An example of structural connections reconstructed using streamline tractography. The functional nodes of the DMN are shown in red. a) and d) show the cingulate tracts recon-
structed between themPFC and the PCC; b) and e) show the right angular/lateral parietal lobulewhitematter and precuneus/posterior cingulatewhitematter tracts connecting the PCC to
the rIPC; c) and f) show the left angularwhitematter/lateral parietal lobule and precuneus/posterior cingulate whitematter tracts connecting the PCC to the lIPC. In g–i the same tracts are
shown reconstructed with probabilistic tractography (the functional nodes of the DMN are shown in blue and tract connection probability distribution in red/orange, the more orange/
yellow the colour the greater the probability of a connection).
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Relationship between deterministic and probabilistic tractography

Fig. 5 shows the relationship between deterministic and probabilis-
tic tractography strengths (i.e., mean FA along reconstructed tracts vs
number of suprathreshold voxels). Only subjects who showed both de-
terministic and probabilistic connections are included. Data are plotted
for a probabilistic threshold of 25%, but the results were comparable for
15% and 50%. In Fig. 5a, all paired connections to the PCC across all sub-
jects are plotted together, whilst in Figs. 5b–d the data for each of the
three paired connections are plotted separately (PCC–mPFC in b, PCC–
lIPC in c and PCC–rIPC in d). Only the posterior–anterior connections
linking the PCC with the mPFC demonstrated a significant correlation
(R = 0.76, p b 0.002). This positive correlation exists despite the fact
that the probability of PCC–mPFC connections was lowwith probabilis-
tic tractography, as indicated by the relatively small number of voxels
above threshold.

Relationship between structure and function

Fig. 6 shows the relationship between measures of FC and SC
strengths for all paired connections together (subplots a, e and i) and
separately (subplots b–d, f–h, and j–l). The results for deterministic
tractography are shown in the top row. The middle row (e–h) shows
the results for probabilistic tractography at a threshold of 25%, restricted
to those subjects who had deterministic connections to allow a direct
comparison with the top row. The bottom row (i–l) again shows the
probabilistic results, butwith all subjects included since all subjects dem-
onstrated some degree of connectivity with probabilistic tractography
(Fig. 2).
A significant positive correlationwas found between FC and SCmea-
sured by streamline tractography when pooling across all pairs of
connections and all subjects (Fig. 6a, R = 0.48, p = 0.005). Considering
each of the paired connections to the PCC individually, streamline
tractography did not demonstrate any significant correlations between
SC and FC (Figs. 6b–d, minimum p value 0.098), although there was
something of a general positive trend. A similar analysis for probabilistic
tractography demonstrated a significant correlation between SC and
FC when all paired connections were considered, both when only
those subjects who showed deterministic connections were included
(Fig. 6e, R = 0.37, p = 0.039) and when all subjects were included
(Fig. 6i, R = 0.33, p = 0.027). Of the paired connections to the PCC con-
sidered independently, only PCC–lIPC demonstrated a significant corre-
lation (Fig. 6g, R = 0.72, p = 0.045, Fig. 6k R = 0.52, p = 0.048),
although again there was some evidence of a general positive trend.
Similar resultswere seenwhether all subjects or only thosewhohadde-
terministic connections were included. At the 15% and 50% thresholds
the SC–FC correlation was found not to be significant (R = 0.027,
p = 0.85 and R = 0.031, p = 0.83).

Discussion

Analysis of intrinsic functional brain activity is becoming an increas-
ingly important and ubiquitous component of brain imaging studies.
Whilst RSNs are consistently and robustly identified (Anderson et al.,
2011; Damoiseaux and Greicius, 2009; Smith et al., 2009), considerable
inter-individual variability exists in the strength of these RSNs. The rea-
sons for this remain unclear, as do the causes of alterations in RSNs that
have been observed in various patient populations compared to healthy



Fig. 4. Overview of SC and FC for each pairwise connection between the PCC seed and the
mPFC, lIPC, and rIPC. a) Functional connectivity: group mean Pearson's correlation coeffi-
cients. b) Structural connectivity: streamline tractography.Mean FA values as ameasure of
structural connectivity. c) Structural connectivity: probabilistic tractography. The total
number of activated voxels within the probability connectivity distribution. The three
bars for each target region represent the number of activated voxels at each of the thresh-
olds tested (15%, 25%, 50%). In all cases, error bars represent standard error. (* denotes sig-
nificant difference, p b 0.05).
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controls (Andrews-Hanna et al., 2007; Rombouts et al., 2005). One fac-
tor that is likely to contribute is individual variations in the nature and
strength of the structural connectivity underlying RSNs. This aspect
has receivedmuch less attention than characterising functional connec-
tivity itself, and the current study aimed to compare two common ap-
proaches for quantifying SC and their relationship with conventional
seed-based FC. We concentrated on the default mode network (DMN),
and in particular on connections to the posterior cingulate/precuneus cor-
tex (PCC), as previous work suggests that it represents the core DMN
node (Hagmann et al., 2008; Leech et al., 2011, 2012) with particular rele-
vance for the maintenance of the conscious state (Cavanna, 2007;
Cavanna and Trimble, 2006). A better understanding of PCC functional
and structural connectivity could thus help in understanding
the physiological and pathological alterations of consciousness, such as in
sleep, epilepsy, and non-epileptic attacks (Bagshaw and Cavanna, 2013).

This study improves our understanding of the relationship between
structural and functional connectivity in severalways. Perhapsmost im-
portantly, it demonstrates a direct correlation between the strength of
SC and the strength of FC, as well as between the two measures of SC
strength defined from deterministic and probabilistic tractography
(Figs. 5 and 6). This indicates that as well as the previously reported ob-
servation that regions that are functionally connected tend to be struc-
turally connected (Hagmann et al., 2008; Honey et al., 2009; Margulies
et al., 2009), there is a specific and graded relationshipwhereby regions
which have stronger structural connections also have stronger
functional signal coherence. This issue has receivedmuch less attention,
partly because of the difficulty in defining the strength of SC. Skudlarski
et al. (2008) noted an approximately linear relationship between rest-
ing state functional connectivity and anatomical connectivity deter-
mined from a deterministic tractography algorithm (Fiber Assignment
by Continuous Tracking (FACT), Mori et al., 1999), but the definition of
SC strength remains a controversial issue. Metrics that are commonly
used to infer the presence of white matter connections (e.g., fractional
anisotropy, probabilistic score) are not necessarily good indicators of
the strength of SC, since their magnitudesmay be influenced by a num-
ber of methodological and physiological factors which are not related to
the underlying connectivity (Jbabdi and Johansen-Berg, 2011; Jones
et al., 2013). This clear need for caution and the ambiguity surrounding
the interpretability of measures of SC strength require theoretical,
methodological and empirical investigation and validation.

The results presented here lead to a number of observations which
are relevant to this issue. Firstly, Fig. 4 demonstrates an asymmetry be-
tween functional connections from thePCC to the left and right IPC,with
higher connectivity for the right compared to the left. This functional
asymmetry is mirrored in the two measures of connectivity strength
derived from deterministic (mean FA along reconstructed tracts) and
probabilistic (number of voxels above threshold) tractography. Second-
ly, the two measures of SC strength were significantly correlated
(Fig. 5), but not for all paired connections. This presumably relates to
the differential ability of the algorithms to cope with crossing fibres, as
discussed in more detail below. Thirdly, when pooling across all paired
connections, and in some caseswhen considering individual paired con-
nections, strength of SC was significantly correlated with strength of FC
(Fig. 6). Given the different pulse sequences used to acquire the data
fromwhich FC and SC strengths were measured, and that the definition
of FC strength is much less ambiguous than for SC, these observations
could be considered to provide somedegree of validation for thesemea-
sures of SC strength. If nothing else, the results indicate that there is
some shared variance between FC and SC strengths which requires fur-
ther investigation.

The first hypothesis of this study was that the PCC had direct struc-
tural connections to the other nodes of the DMN. We observe that, in
general, the DMN has reasonably clear and consistent SC, and this con-
clusion is reached using either tractography algorithm (Figs. 2 and 3).
Structural connections via cingulate tracts were found between the
mPFC and PCC in all subjects for both streamline and probabilistic anal-
yses. This is consistent with previous studies that also report robust SC
between the mPFC and PCC using streamline tractography (Greicius
et al., 2009; Hagmann et al., 2008; Van den Heuvel et al., 2009).

Examination of SC between the PCC and the bilateral IPC is compli-
cated by the crossing fibre tracts of the anterior to posterior superior
longitudinal fasciculus and the superior to inferior corona radiata tracts
that separate them (Dougherty et al., 2005). This is likely to be a partic-
ular problem for single tensor streamline tractography (Mori and
Zhang, 2006). Greicius et al. (2009) did not examine these connections,
as their preliminary data showed PCC–IPC SC in only 4/23 subjects. They
therefore felt that the investigation of the SC between these regionswas
severely restricted due to their tractography algorithm being unable to
resolve the problem of crossing fibres (Greicius et al., 2009). Hagmann
et al. did find evidence of structural connectivity between the PCC and
the IPC regions, although this was less consistent than the PCC–mPFC
(Hagmann et al., 2008). Van den Heuvel et al. used the mPFC as the
seed region for their study, and therefore did not examine the connec-
tions from the PCC to the IPC (Van den Heuvel et al., 2009). Margulies
et al. (2009) compared the functional connectivity of both human and
macaquemonkey brains against classical and recent anatomical studies.
They identified a central zone of the PCC which demonstrated strong
functional connectivity with the posterior part of the inferior parietal
lobule and adjacent superior temporal sulcus in the macaque monkey
(this corresponds in human brain to the morphology of the angular
gyrus/IPC). Margulies et al. (2009) found that the functional
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Fig. 5. Comparison betweenmeasures of SC derived from deterministic and probabilistic tractography. a) Mean FA from streamline tractography versus number of suprathreshold voxels
(25% threshold) fromprobabilistic tractography for all paired connections pooled together. The same comparison is shown for the individual paired connections in panels b–d (i.e., b) PCC–
mPFC, c) PCC–lIPC and d) PCC–rIPC). Subjects who did not show a deterministic structural connection are omitted.
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connectivity patterns were remarkably consistent between species and
with predictions from previous tract tracing anatomical studies in the
macaque.

In the current study, structural connections between the PCC and the
bilateral IPCwere seen for both tractography approaches, although they
were more consistent when using probabilistic tractography. The prob-
abilistic tractography identified connections between the PCC and all
other nodes of the DMN (mPFC, lIPC, rIPC) in all subjects. This finding
suggests that the probabilistic approach ismore effective at determining
the underlying connections between regions where considerable fibre
cross over is apparent (Behrens et al., 2007; Hagmann et al., 2007,
2008; Honey et al., 2009; Yo et al., 2009). However, a marked reduction
in the PCC–mPFC SC was found when using probabilistic tractography
(Fig. 4c). This finding suggests that the probabilistic approach is not as
effective in reconstructing long pathways as streamline tractography
(Fig. 4c). A degree of uncertainty in fibre orientation is apparent when
pathways are reconstructed, and as the probability connectivity distri-
bution is propagated, this uncertainty results in a decrease in the con-
nection probability with increasing tract length. Consequently, long
range connections are more difficult to characterise and have lower
probability values. This effect has been previously reported, with prob-
abilistic tractography demonstrating weaker SC with increasing tract
length (Morris et al., 2008). For example, long tracts have been found
to be weaker using probabilistic algorithms compared to streamline
methods (Yo et al., 2009). This finding is consistent with our results
(cf Figs. 4b and c).

The second hypothesis of this study was that variations in FC of the
ROIs are mirrored by between ROI variations in SC. The rIPC demon-
strated the strongest FC to the PCC, whilst the weakest FC was demon-
strated by the lIPC (Fig. 4a). These findings show similarities with
those of Horovitz et al., 2009, who found the strongest FC for the rIPC
and weakest for the lIPC when using a PCC seed. A recent magneto-
electroencephalography (MEG) study (de Pasquale et al., 2012) record-
ed neuromagnetic signals from the DMN and several other RSNs and
found that the lIPC demonstrated marked cross correlation with the
dorsal attention network (DAN). This may possibly account for the re-
duced correlation between the lIPC and PCC in our study, by suggesting
that the lIPC is a less consistent member of the DMN.

Given this asymmetry in the FC of the IPCs, and the evidence for non-
DMN connectivity of the lIPC, we would expect an asymmetry in the SC
of the IPCs. For each tractography algorithm therewere twomeasures of
SC, the strength of connections (mean FA for streamline data or number
of activated voxels for probabilistic data) and the number of subjects
who demonstrated a particular connection. We found a similar pattern
for SC to that found for FC for both tractography algorithms and both
measures of SC that came from themwhen considering the IPC regions.
Our findings are consistent with previous work that suggested that
regions exhibiting strong SC also exhibit strong FC, and lend weight to
the idea that FC is constrained by SC (Hagmann et al., 2008; Honey
et al., 2009).

The third hypothesis of this study was that SC and FC are correlated
across the nodes of the DMN. This is a more specific, though more con-
troversial as discussed above, test of the extent to which SC and FC are
linked. The correlation analysis demonstrated a significant relationship
between functional connectivity and structural connectivity defined
using either streamline or probabilistic tractography approaches
(Fig. 6). One of the issues related to the use of probabilistic tractography
is that at present there is no standard methodology for thresholding
maps across subjects (Morris et al., 2008). We compared the effect of
using minimum thresholds of 15%, 25% and 50% of activated voxels
within the connection probability distribution. The 15%, 25% and 50%
thresholds were successful in including only connections consistently
observed within the DMN (Figs. 2) across subjects and allowed
specific tracts between ROIs to be identifiedwithin all subjects. A signif-
icant FC–SC correlationwas found onlywith the 25% threshold (Figs. 6e,
i), but not with 15% and 50% thresholds, although the overall pattern
of connectivitywas seen tobepreserved for the IPC regions at all thresh-
olds (Fig. 4c). The lack of a significant FC–SC correlation as awhole at the
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Fig. 6. Comparison between FC and SC for deterministic tractography (panels a–d) and SC for probabilistic tractography score for 25% threshold (panels e–l). Data are shown pooled across all paired connections (panels a, e, i) and for each of the paired
connections separately. a–d) Functional correlation coefficient vs. mean FA along reconstructed tracts. Subjects who did not show a deterministic structural connection were omitted. e–h) FC is plotted against probabilistic SC for the same subjects
shown in panels a–d. i–l) FC plotted against probabilistic SC for all subjects.
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15% threshold may have been due to the significant difference in the
strength of SC of the PCC–mPFC pairwise connections compared to the
PCC–IPC connections.

The final hypothesis of this study was that the SC–FC relationships
identified would not be dependent on the type of tractography used
to define SC. As detailed above, in the majority of cases we were able
to show similar relationships between FC and SC calculated using either
streamline or probabilistic tractography. However, there were differ-
ences between the two tractography approaches both in terms of their
definition of SC strength (Fig. 5) and their relationship with FC
(Fig. 6). These differences might be related to known issues with tract
reconstruction such as crossing fibres and dispersion with distance
(Morris et al., 2008). It is important to consider some advantages and
disadvantages of the methods. In favour of the probabilistic approach
was its improved ability to cope with regions of crossing fibres, and
hence to identify PCC–IPC connections more reliably than the stream-
line approach. However, for the anterior–posterior connections be-
tween the PCC and mPFC deterministic tractography appeared to be
more related to FC than probabilistic tractography (Fig. 6). This was
despite a high level of shared variance for this pair of nodes for the
two structural approaches themselves (Fig. 5b). Yo et al. (2009) have
found that probabilistic approaches on average produce more connect-
ed regions, but lower individual connectivity values, than streamline
approaches. Accordingly, we have found that probabilistic structural
connections are weaker than streamline SC when considering the
mPFC–PCC pairwise connections. This suggests that streamline and
probabilistic approachesmay complement each otherwith probabilistic
tractography detecting more individual connections (especially where
crossover is a problem) and streamline tractography demonstrating
more consistent individual strength of connectivity. In terms of under-
standing structure–function relationships this obviously adds a level of
complexity and deserves further attention.

This study has several limitations, one of which is likely to be en-
countered by other studies which seek to compare explicitly the
strength of SC and FC, and relates to the relationship between the re-
gions where these quantities are calculated. Firstly, FC was quantified
from a relatively small region based on the peak voxel from GICA, and
would therefore primarily be in grey matter, whilst quantification of
SC is obviously restricted towhitematter. Secondly, the tractswe recon-
structed connected the larger ROIs that represented the entire DMN
nodes. The spatial group ROIs produced from the GICA analysis, whilst
comparable with those from previous studies (Greicius et al., 2009;
van den Heuvel et al., 2009), were much larger than the peak regions
used in the FC correlation analysis, and were therefore composed of
various areas of cortex. For example, the PCC ROI consisted of the
precuneus, posterior cingulate and retrosplenial cortex, whilst the IPC
consisted of the angular gyrus, lateral inferior parietal lobule and parts
of the lateral parietal sulcus. The tracts reconstructed using the two
tractography approaches demonstrated connections between the over-
all GICA ROIs, which included the peak FC correlation voxels. However,
the tracts did not pass directly through the peak FC voxel. We therefore
cannot assume SC–FC connectivity at the cytoachitectural level and
studies accounting for cytoachitectural compartmentalisation may be
more suited to the detailed analysis of the functional and structural
characterisation of each particular region of cortex (Margulies et al.,
2009). We have only addressed SC–FC at a macroscopic level, but this
spatial discrepancy would be expected to reduce the observed correla-
tion between SC and FC,meaning that the figureswe have reported like-
ly represent lower bounds on the true relationship. This study's sample
size was comparable to much of the related literature, however investi-
gating structure–function relationships in large samples such as those
provided in data repositories would increase the breadth of conclusions
that could be drawn. However, one of the motivations for our method-
ological choices was that they are readily applicable to standard clinical
scanners and can therefore lay the groundwork for ongoing and future
work in clinical populations and sleeping subjects. Finally, we did not
investigate the effect of different preprocessing strategies on the defini-
tion of FC. Foremost amongst these is the widely utilised but much de-
bated application of global signal regression, which can have quite a
profound effect on FC, particularly in terms of inducing negative FC be-
tween networks (Fox et al., 2009; Murphy et al., 2009). However as we
have focused onmeasuring only positive FCwithin a single network, the
effect of global signal removal in our data is simply a reduction in FC
consistent for all pairwise comparisons for a given individual. Addition-
ally several other factors such as controlling for residual movement ef-
fects have been shown to be important to improve FC measurements
in futurework (VanDijk et al., 2010, 2012). This highlights the difficulty
of studying SC–FC relationships, sincemethodological uncertainty exists
at every stage.

Our findings have demonstrated structural connections between
functionally connected regions of the DMN and a significant relation-
ship betweenDMN FC and SC using both deterministic and probabilistic
tractography. A better understanding of how structural connections
relate to functional connectivity is imperative in order to enhance our
understanding of changes in SC and FC that occur as a consequence of
neurological (Bozzali et al., 2005; Gattellaro et al., 2009; Kinnunen
et al., 2011; Nierenberg et al., 2005; Ringman et al., 2007; Zhang et al.,
2011), psychiatric (Broyd et al., 2009; Hubl et al., 2004; Li et al., 2008)
and sleep (Altena et al., 2010; Nofzinger et al., 2004) disorders
and whether any of these changes are reversible with therapeutic
interventions.
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