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In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically
range between �10 and +5 �C. However, on occasion, they can exceed 20 �C, and these instances are likely
to increase and intensify as a result of climate warming. Remaining active under both cool and warm con-
ditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and max-
imise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in
the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarc-
ticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited
in all three species, at temperatures as low as�4.6 �C in A. antarcticus. At high temperatures, all three spe-
cies had capacity for activity above 30 �C and were most active at 25 �C. This indicates a comparable
spread of temperatures across which activity can occur to that seen in temperate and tropical species,
but with the activity window shifted towards lower temperatures. In all three species following one
month acclimation at �2 �C, chill coma (=the temperature at which movement and activity cease) and
the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred
at lower temperatures than for individuals maintained at +4 �C (except for the CTmin of M. arctica). Indi-
viduals acclimated at +9 �C conversely showed little change in their chill coma or CTmin. A similar trend
was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one
month at �2 �C, the heat coma and CTmax were reduced as compared with +4 �C reared individuals,
whereas the heat coma and CTmax of individuals acclimated at +9 �C showed little adjustment. The data
obtained suggest these invertebrates are able to take maximum advantage of the short growing season
and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As poikilothermic ectotherms, invertebrates have limited
means of regulating their own body temperature and are instead
dependent on the thermal conditions of their environment
(Speight et al., 2008). It is widely acknowledged therefore that
the spatial and temporal distribution and abundance of inverte-
brates are partly determined by the range of temperatures they
can tolerate and by the range of temperatures at which they per-
form optimally (Gaston, 2009; Terblanche et al., 2011). Investiga-
tions into the thermal tolerance limits of invertebrates are
accordingly necessary to fully understand the ecology of a species
or population and to infer the impact of climate change (e.g. Deu-
tsch et al., 2008; Everatt et al., 2013; Somero, 2005). A common
limitation of many current thermal biology studies, however, is
their emphasis on organismal survival. While survival clearly
underpins the fitness of a species, there are also a number of other
attributes which are greatly affected by temperature (Bale, 2002).
These attributes, termed sub-lethal characteristics, include court-
ship, reproduction, foraging/feeding and predator avoidance (Kelty
and Lee, 1999; Korenko et al., 2010). When these attributes can oc-
cur is governed by the upper and lower activity thresholds of the
organism, and this thermal activity ‘window’ demonstrates pheno-
typic plasticity depending on the geographic location and the ther-
mal/physiological history of the organism being studied (Addo-
Bediako et al., 2000; Bale and Hayward, 2010). Because thermal
activity thresholds are affected by less extreme temperatures,
more regularly encountered than those which cause mortality,
the extent to which sub-lethal characteristics are affected could
be of more importance than the ability to survive temperature ex-
tremes per se.

The limits of movement under low temperatures have been a
source of fascination since the late 19th Century. Rossbach
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(1872) observed the frequency of contractions of the contractile
vesicle of three protist species and noticed that, at some low tem-
perature, contractions ceased. He termed the absence of movement
‘chill coma’. By 1939, the terminology relating to chill coma
encompassed four potential states; chill coma1 – absence of activ-
ity and movement, chill coma2 – final peak of activity and move-
ment, chill coma3 – loss of coordination, and chill coma4 –
absence of spontaneous movement, and these terms have re-
mained in use to this day (Hazell and Bale, 2011). Within this pa-
per, the first definition will be used, i.e. the absence of activity and
movement. Cowles and Bogert (1944) applied a new term to de-
scribe chill coma3 or the loss of coordination. This term was the
‘Critical Thermal minimum’ (CTmin) and will be used here to de-
fine the complete loss of coordination (inability to walk or move
forward). The upper thermal thresholds of activity are analogous
to those of low temperature and include heat coma and the Critical
Thermal maximum (CTmax) (Hazell et al., 2008).

The Antarctic and Arctic are characterised by long, cold winters
and brief, cool summers (Avila-Jimenez et al., 2010; Block et al.,
2009). During the winter, air temperatures regularly fall below
�10 �C, and to lower than �40 �C, in regions of the High Arctic
and maritime and continental Antarctic (Block et al., 2009; Coulson
et al., 1993; Strathdee and Bale, 1998; Walton, 1984). Buffered
microhabitat temperatures in the soil or underneath the snow
are likewise sub-zero during winter, though generally these tem-
peratures do not fall much lower than �10 �C (Coulson et al.,
1993; Davey et al., 1992; Rinehart et al., 2006; Strathdee and Bale,
1998). Water is also transformed into ice in winter and is inacces-
sible to living organisms (Block et al., 2009). Activity is virtually
impossible under these conditions. Accordingly, polar terrestrial
invertebrates are dormant during this period and wait until the
short, four to six month, summer period to resume activity (Con-
vey, 1996). Summer air temperatures are still very cool, however,
rarely rising above 0 �C in the continental Antarctic, 5 �C in the
maritime Antarctic, and slightly higher in the Arctic (Davey et al.,
1992; Block et al., 2009; Coulson et al., 1993; Strathdee and Bale,
1998). To benefit from these relatively favourable conditions, these
invertebrates are capable of activity at low and even sub-zero tem-
peratures. Hågvar (2010) has identified several invertebrate
groups, including Collembola, Mecoptera, Diptera, Plecoptera and
Araneae, which are active at or below 0 �C on the snow of Fenno-
scandinavia. Block et al. (1990) and Sinclair et al. (2006) have also
shown sub-zero activity in the Antarctic mites Alaskozetes antarcti-
cus and Nanorchestes antarcticus, and the Collembola Isotoma klov-
stadi, Cryptopygus cisantarcticus and Friesea grisea, respectively.

Activity at high temperatures may also be important in the po-
lar regions. Currently, buffered microhabitat temperatures range
up to c. 20 �C in the maritime Antarctic (Convey et al., 2009; Davey
et al., 1992; Everatt et al., 2013), and to slightly higher tempera-
tures in the Arctic (Coulson et al., 1993). Climate warming is also
rapidly affecting the polar regions. Over the last 50 years, polar
amplification of global climate trends has led to an average 2 �C
rise in air temperatures in parts of the Arctic and Antarctic, with
even greater increases experienced in regions such as the northern
and western Antarctic Peninsula, or when looked at on a seasonal
basis (Arctic Council, 2005; Convey et al., 2009; Turner et al., 2009).
This trend is set to continue, with general circulation models pre-
dicting particularly rapid warming at polar latitudes (Convey et al.,
2009; Kattenberg et al., 1996). In addition, specific microhabitats,
such as the surfaces of rocks and bryophyte clumps, can experience
maximum temperatures approaching or exceeding 30 �C (Convey,
1996; Everatt et al., 2013; Smith, 1988). Climate warming may in-
crease the prevalence and duration of these exposures (Bokhorst
et al., 2011; Nielsen and Wall, 2013). The ability of polar terrestrial
invertebrates to remain active at high temperatures has only as yet
been explored in three continental Antarctic Collembola, and all
show a remarkable capacity to remain active above 30 �C (Sinclair
et al., 2006).

The vast majority of polar terrestrial invertebrates express sea-
sonal and shorter term thermal tolerance strategies to enable sur-
vival of shifts in temperature (Cannon and Block, 1988; Worland
and Convey, 2001; Denlinger and Lee, 2010). However, the ability
of polar terrestrial invertebrates to acclimate or acclimatise their
thermal activity thresholds is less well known. Only two polar spe-
cies, the aphid, Myzus polaris, and the collembolan, Isotoma klovsta-
di, have been demonstrated to have this ability, with a depression
in the CTmin of individuals reared at, or taken from, lower temper-
atures (Hazell et al., 2010; Sinclair et al., 2006). In the current
study, the lower and upper thermal activity thresholds are charac-
terised in three common polar invertebrates widely regarded as
‘model’ species in their respective ecosystems: Cryptopygus antarc-
ticus (Block et al., 2009; Tilbrook, 1967) and Alaskozetes antarcticus
(Block and Convey, 1995; Burn, 1986) from the maritime Antarctic,
and Megaphorura arctica (Fjellberg, 1994) from the High Arctic. In
particular, how the thermal activity thresholds of these species re-
spond to acclimation is explored.
2. Materials and methods

2.1. Invertebrate collection and storage conditions

Summer acclimatised individuals of M. arctica were collected
from moss-covered slopes at Krykkefjellet and Stuphallet, near
Ny-Ålesund, Spitsbergen, Svalbard (78�550N, 11�560E) in August
2011. Summer acclimatised individuals of C. antarcticus and A. ant-
arcticus were collected from moss and algae, and the underside of
rocks, on Lagoon Island (67�350S, 68�160W) and Léonie Island
(67�360S, 68�210W), near to Rothera Research Station, Adelaide Is-
land (western Antarctic Peninsula, maritime Antarctic), between
January and March 2012.

Samples of C. antarcticus and A. antarcticus were held at +4 �C
(24:0 L:D) in plastic bags or boxes containing substratum from
the sites at which they were found whilst at Rothera Research Sta-
tion and were used shortly after collection in experiments 2.3, 2.4
and 2.6. These individuals were designated as the ‘‘summer accli-
matised’’ group. Following each respective field season, samples
of M. arctica, and C. antarcticus and A. antarcticus, were transported
to the University of Birmingham under refrigerated conditions and
then held in plastic boxes containing substratum from the site of
collection at +4 �C (0:24 L:D). The duration of travel was �2 d from
the Arctic and �2 months from the Antarctic. Each species was
split into two additional acclimatory groups (�2 and +9 �C, 0: 24
L:D), representing early spring/late autumn microhabitat tempera-
ture and upper summer microhabitat temperature, respectively.
Samples were held for at least two weeks at +9 �C, and for at least
one month at �2 �C prior to experimentation. The age of individu-
als used for experimentation was not uniform, as it was not possi-
ble to breed same age populations of the polar invertebrates in a
laboratory setting. Difficulties in obtaining active individuals of
M. arctica from acclimation at �2 �C meant that individuals used
in observations of locomotion (Section 2.5) were instead taken
from a one month acclimation at 0 �C.
2.2. Experimental conditions

Activity thresholds were assessed within an aluminium block
arena. The temperature within the arena was regulated using an
alcohol bath (Haake Phoenix II C50P, Thermo Electron Corpora-
tion), and activity monitored using a digital video camera with a
macro lens (see Hazell et al., 2008). Thirty individuals were trans-
ferred into the arena in groups of 10 (initially set to +4 �C), and
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were allowed to settle before video recording (Studio Capture DT,
Studio86Designs, Lutterworth, UK) and the alcohol bath pro-
gramme began. This procedure was performed for each species
and for each acclimation treatment.
2.3. CTmin and chill coma

The temperature of the arena was reduced from +4 to �10 �C at
0.2 �C min�1. Although a rate of change more closely in line with
that experienced by the study species would have been preferable,
a rate of 0.2 �C min�1 was chosen due to time constraints. The tem-
peratures at which each individual last walked or moved forward
(CTmin) and last moved its body, legs and/or antennae (chill coma)
were subsequently recorded.
2.4. CTmax and heat coma

The temperature of the arena was raised from +4 to +40 �C at
0.2 �C min�1. The temperatures at which each individual last
walked or moved forward (CTmax) and last moved its body, legs
and/or antennae (heat coma) were recorded.
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2.5. Locomotion analysis

The arena and video equipment, as described in Section 2.2, was
used to record the total distance travelled by individuals within a
5 min observation period at temperatures representative of either
current spring/winter conditions, or current and future (predicted)
summer microhabitat conditions. Spring/winter conditions: +4, 0,
�4 and �8 �C; summer conditions: 10, 15, 20, 25, 30 and 35 �C.
Groups of 5 individuals were held in the arena for each recording,
and cooled or warmed from 4 �C at a rate of 0.2 �C min�1. For each
acclimation group, the same 10 individuals were used for the +4, 0,
�4 and �8 �C exposures, and a second set of 10 individuals were
used for 10, 15, 20, 25, 30 and 35 �C. Thus, in the spring/winter
temperature exposures, individuals were observed at +4 �C for
5 min, then ramped to 0 �C and observed for 5 min, then ramped
to �4 �C and so on. This technique more accurately reflects the
gradual change in microhabitat conditions within terrestrial habi-
tats than would be represented by direct transfer to each temper-
ature. The distance travelled within each 5 min holding period was
measured using Studio Measure (Studio86Designs, Lutterworth,
UK). Inactive periods were not screened out so as to take account
of both the propensity and ability of each species to move at each
temperature.
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Fig. 1. CTmin (A) and chill coma (B) of C. antarcticus, A. antarcticus and M. arctica,
following acclimation at 4, 9 and �2 �C, and individuals acclimatised to the
Antarctic summer (C. antarcticus and A. antarcticus only). Means ± S.E.M. are
presented for approximately 30 individuals. Asterisks indicate a treatment signif-
icantly different from 4 �C acclimated individuals for each species at P < 0.05
(Kruskal–Wallis test; Tukey’s multiple range test).
2.6. Supercooling points (SCPs)

The supercooling points (SCP = freezing point of body fluids) of
each acclimation group were determined by cooling 32 (24 in sum-
mer acclimatised group) individuals of each species from +4 to
�30 �C at 0.5 �C min�1. Each individual was placed in contact with
a thermocouple (one individual per thermocouple, except in the
‘‘summer acclimatised’’ groups in which there were three individ-
uals per thermocouple). This was housed within an Eppendorf
tube, itself in a glass test tube plugged with sponge, inside an alco-
hol bath. The SCP was defined as the temperature at the onset of
the freezing exotherm and was recorded using Picolog Recorder
Software (Pico Technology Limited, UK) (cf. Hawes et al., 2006).
The SCP is known to be the lower limit of survival, and equivalent
to the lower lethal temperature, in the three species studied (Can-
non and Block, 1988; Worland et al., 1998).
2.7. Statistical analysis

The Kolmogorov–Smirnov test was used to determine whether
activity threshold and SCP data were normally distributed. Nor-
mally distributed data were analysed using analysis of variance
(ANOVA) and Tukey’s multiple range test, and non-normally dis-
tributed data were analysed using the Kruskal–Wallis test.
3. Results

3.1. CTmin and chill coma

3.1.1. Interspecific comparisons
The point at which each species (+4 �C acclimation) no longer

showed coordination (CTmin) and lost mobility entirely (chill
coma) both typically occurred at temperatures below 0 �C
(Fig. 1). The chill coma temperature was lower than �3.8 �C in all
species, and was lowest in A. antarcticus (�4.6 �C). The CTmin oc-
curred at similarly low temperatures in the two collembolan spe-
cies (C. antarcticus: �3.5 �C, M. arctica: �4 �C), but was
significantly higher in the mite (�0.6 �C, P < 0.05 Kruskal–Wallis
test).

3.1.2. Effect of acclimation
Following 1 month at �2 �C, all species showed significantly

lower chill coma values (P < 0.05 Kruskal–Wallis test [C. antarcticus
and M. arctica], P < 0.05 Tukey’s multiple range test [A. antarcti-
cus]), and generally lower or equivalent CTmin values, than indi-
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viduals maintained at +4 �C (Fig. 1). Individuals of A. antarcticus
(�2 �C acclimation) also exhibited significantly lower CTmin and
chill coma values in comparison with summer acclimatised indi-
viduals (P < 0.05 Tukey’s multiple range test). There were no signif-
icant differences in the CTmin and chill coma values between
species acclimated at +9 �C and those at +4 �C, except for M. arctica
in which the CTmin was significantly higher in the +9 �C accli-
mated group (P < 0.05 Kruskal–Wallis test).
3.2. CTmax and heat coma

3.2.1. Interspecific comparisons
In all species maintained at +4 �C, both CTmax and heat coma

temperatures were typically above 30 �C (Fig. 2). Both CTmax
and heat coma values were significantly different between species
and were progressively greater from C. antarcticus (30.1 and
31.8 �C), through M. arctica (31.7 and 34.6 �C), to A. antarcticus
(34.1 and 36.9 �C) (P < 0.05 Tukey’s multiple range test, variances
not equal).
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3.2.2. Effect of acclimation
A one month acclimation at �2 �C significantly reduced CTmax

and heat coma temperatures compared to individuals maintained
at +4 �C in all species (Fig. 2, P < 0.05 Kruskal–Wallis test). A two
week acclimation at +9 �C also led to lower (or unchanged – C. ant-
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Fig. 2. CTmax (A) and heat coma (B) of C. antarcticus, A. antarcticus and M. arctica,
following acclimation at 4, 9 and �2 �C, and individuals acclimatised to the
Antarctic summer (C. antarcticus and A. antarcticus only). Means ± S.E.M. are
presented for approximately 30 individuals. Asterisks indicate a treatment signif-
icantly different from 4 �C acclimated individuals for each species at P < 0.05
(Kruskal–Wallis test).
arcticus) CTmax and heat coma temperatures, though this was only
significant for the heat coma temperature of A. antarcticus (P < 0.05
Kruskal–Wallis test). Summer acclimatised individuals of C. antarc-
ticus exhibited significantly lower CTmax and heat coma tempera-
tures than individuals acclimated at either �2 �C or +4 �C, while
summer acclimatised individuals of A. antarcticus only showed sig-
nificantly lower CTmax and heat coma temperatures than individ-
uals maintained at +4 �C.

3.3. Locomotion analysis

3.3.1. Interspecific comparisons
Across all temperatures between �4 and 20 �C, both collembo-

lan species were significantly more active and travelled a greater
distance than the mite (P < 0.05 Kruskal–Wallis test, 4 �C acclima-
tion, Fig. 3). In all species previously acclimated at +4 �C, move-
ment increased with temperature up to 25 �C (except at 9 �C in
M. arctica), before decreasing again at temperatures P30 �C.

3.3.2. Effect of acclimation
Following an acclimation period at �2 �C (0 �C for M. arctica),

there was no significant difference in locomotion at temperatures
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Fig. 3. Locomotion analysis (distance travelled in 5 min) of M. arctica (A), C.
antarcticus (B) and A. antarcticus (C), following acclimation at 4, 9, and �2 �C (0 �C
for M. arctica). Means ± S.E.M. are presented for approximately 10 individuals.
Asterisks indicate a treatment significantly different from 4 �C acclimated individ-
uals for each species at P < 0.05 (Kruskal–Wallis test; Tukey’s multiple range test).
Movement speeds at 25 �C were not analysed for M. arctica and C. antarcticus.
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60 �C, except for M. arctica, in which movement was significantly
greater at �4 �C (P < 0.05 Tukey’s multiple range test, variances
not equal) (Fig. 3). At 15 and 20 �C, movement was most rapid in
C. antarcticus acclimated at �2 �C, as compared with the two other
acclimation groups. The movement of M. arctica, acclimated at 0 �C,
was also more rapid at 20 �C. Individuals of both collembolan spe-
cies given an acclimation period at +9 �C exhibited considerably
slower movement at temperatures above +4 �C than individuals
maintained at +4 �C. In contrast, movement was greater across all
temperatures between 0 and 25 �C in +9 �C acclimated individuals
of A. antarcticus.

3.4. SCPs

3.4.1. Interspecific comparisons
There were no significant differences in the SCPs of the three

species when maintained at +4 �C (Table 1, P < 0.05 Kruskal–Wallis
test). Alaskozetes antarcticus was the only species to show a bimo-
dal distribution.

3.4.2. Effect of acclimation
In all three species, the SCPs of individuals acclimated at �2 �C

for one month, and summer acclimatised individuals of C. antarcti-
cus and A. antarcticus, were significantly lower than those of indi-
viduals maintained at +4 �C (P < 0.05 Kruskal–Wallis test).
Conversely, the SCP of individuals after a +9�C acclimation period
was not significantly different to those maintained at +4 �C
(P > 0.05 Kruskal–Wallis test). Summer acclimatised individuals
of C. antarcticus also had significantly lower SCPs than individuals
acclimated at �2 �C (P < 0.05 Kruskal–Wallis test).
4. Discussion

4.1. Activity at low temperatures

Temperate and tropical invertebrates, such as the peach-potato
aphid, Myzus persicae, the predatory mirid, Nesidiocoris tenuis, and
the brown planthopper, Nilaparvata lugens, lose the ability to coor-
dinate movement (CTmin) at temperatures above 0 �C, and more
usually above +3 �C (Chidwanyika and Terblanche, 2011; Clusel-
la-Trullas et al., 2010; Hazell et al., 2010; Hughes et al., 2010; Nya-
mukondiwa and Terblanche, 2010; Piyaphongkul personal
communication). These CTmin values are not compatible with po-
lar summer microhabitat temperatures, which regularly fall below
0 �C and average less than +3 �C in the maritime and continental
Antarctic, and only a little more in the High Arctic (Davey et al.,
1992; Block et al., 2009; Coulson et al., 1993; Strathdee and Bale,
1998). It is not surprising, therefore, that polar terrestrial inverte-
brates have lower thermal thresholds than their temperate and
tropical counterparts, and have been observed performing activity
at temperatures as low as �13.3 �C (Sinclair et al., 2006), including
attempts to fly at �4 �C (Hågvar, 2010). Other examples of sub-
zero activity are found in high altitude environments and include
Himalayan Diamesa sp., which has been observed walking at
�16 �C (MacMillan and Sinclair, 2010). In the current study, the
Table 1
SCP of C. antarcticus, A. antarcticus and M. arctica, following acclimation at 4, 9 and �2 �C, a
only). Means ± S.E.M. are presented for approximately 32 individuals (24 for summer accl
acclimated individuals for each species at P < 0.05 (Kruskal–Wallis test).

Species 4 �C 9 �C

C. antarcticus �6.31 ± 0.2 �7.71 ± 0.8
A. antarcticus �7.42 ± 0.9 �7.8 ± 0.7
M. arctica �6.13 ± 0.1 �5.9 ± 0.2
CTmin and chill coma of the two Collembola, M. arctica and C. ant-
arcticus, and the mite, A. antarcticus, were below �0.6 and �3.8 �C,
respectively. Locomotion analysis also showed that the inverte-
brates walked in a coordinated manner at +4 and 0 �C, and that
they were capable of movement at �4 �C, but at a reduced speed
(Figs. 3-5).

In the two collembolan species, the CTmin of individuals main-
tained at +4 �C was low, averaging between �3.5 and �4 �C. Con-
versely, the CTmin of the mite only averaged �0.6 �C, even
though its chill coma was similar to both Collembola (Fig. 1).
Observation revealed that the mites tended to aggregate or stop
moving early in the cooling regime and moved little thereafter.
Alaskozetes antarcticus is well known to aggregate in the field,
and has been observed aggregating in numbers of tens, hundreds
and even many thousands of individuals (Richard et al., 1994;
Strong, 1967; Tilbrook, 1973). Block and Convey (1995) and other
authors suggest that, due to the reduced surface area to volume ra-
tio of the aggregation, this behaviour may buffer the mite against
low temperatures and reduce water loss. The reason that mites
may aggregate so early on during the cooling regime at tempera-
tures near to 0 �C, rather than attempting to select for more ‘‘opti-
mal’’ thermal conditions, may be a consequence of their relatively
restricted mobility. Unlike Collembola, which are more capable of
moving rapidly to habitats in their preferred temperature range
(Figs. 3-5), restricted mobility leaves non-acclimated mites suscep-
tible to a sudden cold exposure. Hence, it may be better for mites to
select sub-lethal low temperatures and acclimate. Hayward et al.
(2003) have demonstrated such a preference for low temperatures
in A. antarcticus using a thermal gradient. The high CTmin value of
the mite may therefore be a product of ‘‘choice’’ rather than an
inability to coordinate movement.

4.2. Activity at high temperatures

Deutsch et al. (2008) suggested that, with increasing distance
away from the equator, the thermal sensitivity of terrestrial inver-
tebrates to a temperature rise decreases. Many studies, including
that of Piyaphongkul et al. (2012), have shown tropical insects to
have upper lethal temperatures (ULTs) very close to the highest
temperatures they experience in their natural habitat, while Ever-
att et al. (2013), Deere et al. (2006), Sinclair et al. (2006) and Slab-
ber et al. (2007) have shown the converse in polar Collembola and
mites. The current study also supports the suggestion of Deutsch
et al. (2008), and shows the CTmax of three polar species to be
above 30 �C, and even as high as 34.1 �C in A. antarcticus (Fig. 2).
In addition, each species exhibited their fastest movement at
25 �C (data not shown for Collembola), a temperature rarely expe-
rienced in the High Arctic or maritime Antarctic habitats typical for
these species. While some polar microhabitats may already briefly
exceed 30 �C (Everatt et al., 2013; Smith, 1988), these instances are
rare and of very restricted physical extent. Even if such extremes
become more frequent as a result of climate warming, it is unlikely
that an individual invertebrate would be present in such a location,
and even if so, it could quickly move to a more suitable microhab-
itat. Based on predicted microhabitat temperature increases of
around 5 �C over the next 50–100 years (Convey et al., 2009; Turn-
nd individuals acclimatised to the Antarctic summer (C. antarcticus and A. antarcticus
imatised individuals). Asterisks indicate a treatment significantly different from 4 �C

�2 �C Summer acclimatised

�8.9 ± 0.7⁄ �14.9 ± 1.4⁄

�15.9 ± 1.8⁄ �11.9 ± 1.6⁄

�8.1 ± 0.3⁄
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er et al., 2009), the heat tolerance of these polar invertebrates cer-
tainly suggests scope for them to endure future warming.

4.3. Thermal activity windows

While the polar terrestrial invertebrates of this study showed
little sensitivity to a temperature rise, their thermal range of activ-
ity is similar to that of temperate and tropical species. The activity
of M. arctica ranged from �4 (CTmin) to 31.7 �C (CTmax), a thermal
activity window of 35.7 �C. Likewise, C. antarcticus and A. antarcti-
cus showed activity windows of 33.6 �C and 34.7 �C, respectively.
These windows of activity are comparable to the temperate aphid,
Myzus persicae, in which the CTmin was between 4 and 9.4 �C, and
the CTmax between 39.6 and 40.7 �C, but are shifted towards lower
temperatures (Alford et al., 2012). Other temperate species such as
the predatory mirid, Nesidiocoris tenuis, the mite, Tetranychus urti-
cae, and moth, Cydia pomonella, and tropical species such as the
seed harvester ant, Messor capensis, show somewhat broader ther-
mal activity windows of around 40 �C or more (Chidwanyika and
Terblanche, 2011; Clusella-Trullas et al., 2010; Hughes et al.,
2010). Invertebrates native to locations slightly further north in
the sub-Antarctic, such as the spiders, Myro kerguelenensis and Pri-
nerigone vegans, also show thermal activity windows above 40 �C
(Jumbam et al., 2008).

4.4. The effect of low temperature acclimation on thermal activity
thresholds

The role of acclimation on thermal activity thresholds has only
been explored infrequently. Most studies have been carried out on
the fruit fly, Drosophila, and have shown a clear relationship be-
tween the acclimation temperature and the CTmin (Hori and Kim-
ura, 1998; Hoffman et al., 2005; Kelty and Lee, 2001; Mellanby,
1939; Rako and Hoffman, 2006). Gibert and Huey (2001) showed
that the CTmin of several Drosophila species decreased by 1 �C for
every 4 �C drop in development temperature. This result is in line
with the Beneficial Acclimation Hypothesis (BAH), which suggests
that the performance of individuals is improved at temperatures
close to those which they have previously experienced (Leroi
et al., 1994). Frazier et al. (2008) provided further evidence sup-
porting the BAH in D. melanogaster by demonstrating greater flight
performance at cool temperatures in individuals acclimated at 15
rather than 28 �C. More recent work in other invertebrates, includ-
ing the cricket, Acheta domesticus, the moth, C. pomonella, and the
spiders, M. kerguelenensis and P. vegans, also support the BAH with
respect to low temperature activity (Chidwanyika and Terblanche,
2011; Jumbam et al., 2008; Lachenicht et al., 2010). There are
exceptions, however, such as in the ant, M. capensis, in which indi-
viduals acclimated at an intermediate temperature performed best
under the coolest conditions tested, this instead supporting the
Optimal Acclimation Hypothesis (OAH = individuals acclimated at
an intermediate temperature will perform better at all tempera-
tures) (Clusella-Trullas et al., 2010; Huey and Berrigan, 1996).
The acclimatory ability of the three polar species examined here
was in agreement with the former hypothesis, BAH. A period of
one month at �2 �C lowered chill coma onset significantly in all
three species, and lowered the CTmin in the two Antarctic inverte-
brates, compared with individuals maintained at +4 �C (Fig. 1). Fur-
ther evidence of beneficial acclimation was seen for the CTmax and
heat coma, with both showing a considerable downward shift fol-
lowing time at �2 �C, as well as following summer acclimatisation
(averaging approximately + 1 �C) in the two Antarctic species
(Fig. 2). While these findings are consistent with the reports in Dro-
sophila and other aforementioned species, they contrast with those
of Young (1979), who reported that the chill coma temperature of
A. antarcticus was unaffected by acclimation.
An ability to depress their lower thermal thresholds of move-
ment and hence remain active at lower temperatures would be
of great benefit to polar terrestrial invertebrates. Currently, polar
summers can last for as little as 1–3 months of the year (Convey,
1996). By acclimatising their thresholds of activity to lower tem-
peratures, polar terrestrial invertebrates would be better able to
forage and reproduce during the spring and autumn, as well as
during cooler periods in summer.

The maximisation of activity and adaptation to the low temper-
ature environment was also seen in relation to the SCP. When the
body fluids of an invertebrate are frozen, the invertebrate is no
longer considered capable of movement and the SCP is seen as
the absolute limit of mobility. In many temperate and tropical spe-
cies, the lower lethal thresholds, and thus also the CTmin and chill
coma, are well above the SCP (Bale, 2002). However, in the current
study, prior to acclimation, the chill coma temperature of all three
species, and the CTmin of the two Collembola, were within 2–3 �C
of the SCP (Fig 1; Table 1). Likewise, the continental Antarctic col-
lembolan, Isotoma klovstadi, was observed to be capable of walking
at all temperatures down to its SCP, with an average chill coma on-
set temperature of �11.9 to �13.3 �C over the summer season (Sin-
clair et al., 2006). These organisms are consequently able to search
for more preferable habitats as the temperature falls, and possibly
perform beneficial activities, such as foraging, very near to their
SCP.

4.5. The effect of high temperature acclimation on thermal activity
thresholds

Climate warming has resulted in a significant rise in polar tem-
peratures, and will undoubtedly lead to future increases (Arctic
Council, 2005; Convey et al., 2009; Turner et al., 2009). An advan-
tage may therefore be gained by being able to acclimate to higher
temperatures. However, the species examined here showed no
acclimation ability allowing an increase in their upper activity
thresholds following a two week period at 9 �C, and even showed
a decline in both their CTmax and heat coma (Fig. 2). Everatt
et al. (2013) and Slabber et al. (2007) also found that acclimation
to higher temperatures (9 and 15 �C, respectively) either resulted
in no change in, or impaired, survival at temperatures above
30 �C in both Collembola and Acari. Further, a number of studies
have shown little plasticity in upper thermal tolerance traits in
non-polar species, including in the cricket, A. domesticus, the fruit
fly, D. melanogaster, dung beetles, and the tsetse fly, Glossina pallid-
ipes (Gaston and Chown, 1999; Goto et al., 2000; Hoffman et al.,
2005; Lachenicht et al., 2010; Terblanche et al., 2011). There is
now a general consensus that thermal tolerance shows less pheno-
typic plasticity at higher temperatures than at lower temperatures
in invertebrates, and that this may be due to each involving a dis-
tinct suite of physiological and molecular mechanisms (Bowler and
Terblanche, 2008). Even though the polar species of this study
show a limited ability to acclimate their upper thermal thresholds
to higher temperatures, the upper thermal tolerance they already
possess (see Section 4.2.) gives these invertebrates sufficient
capacity to cope with future climate warming.

Intriguingly, a subtle difference may exist between the locomo-
tion speeds of the mite and the Collembola. In A. antarcticus, move-
ment was greater between 0 and 25 �C in individuals which had
received a 2 week acclimation at 9 �C, as compared to individuals
reared at 4 �C. Whereas in the Collembola, movement was im-
paired between 0 and 20 �C by the same acclimation treatment.
Alaskozetes antarcticus is already known to have a greater capacity
to survive higher temperatures than the Collembola (Everatt et al.,
2013). It is therefore plausible that A. antarcticus is able to benefit
physiologically from a period at 9 �C, while the Collembola may
find the temperature damaging.
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It should be noted that, while no acclimation response was
exhibited for the CTmax and heat coma following two weeks at
9 �C, acclimation did occur in both �2 and +4 �C reared individuals,
with all species showing significantly higher CTmax and heat coma
temperatures under +4 vs �2 �C treatments (Fig. 2). The ability to
acclimate in response to these two temperature regimes perhaps
illustrates the process of natural acclimatisation between winter
and summer conditions. However, as the upper thresholds of activ-
ity in �2 �C acclimated individuals are already above the highest
summer temperatures they experience, the observed change may
simply reflect the acclimation of their lower activity thresholds,
which are lowered following one month at �2 �C (Fig. 1). This fur-
ther supports the consensus highlighted above, that greater plas-
ticity is shown at lower temperatures but not at higher
temperatures. Physiological changes that improve activity at low
temperatures, such as increased membrane fluidity and subse-
quent improvement in the function of neurotransmitters, ATPases
and ion channels (MacMillan and Sinclair, 2010), are likely to be to
the detriment of higher temperature activity.

5. Conclusion

The current study has expanded on previous studies to show
that the polar mite, A. antarcticus, and Collembola, C. antarcticus
and M. arctica, are capable of sub-zero activity. These invertebrates
also show plasticity in their CTmin and chill coma temperature fol-
lowing acclimation at lower temperatures, as well as being capable
of activity at temperatures close to their SCPs. By depressing their
lower thermal activity thresholds as temperature falls, these inver-
tebrates are able to maximise the short growing season. At higher
temperatures, these species are able to remain active above 30 �C, a
temperature far higher than is experienced in their Antarctic or
Arctic habitats. This indicates polar terrestrial invertebrates have
a thermal activity window comparable to that of temperate and
tropical insects and, in spite of their limited physiological plasticity
at higher temperatures, have thermal scope to tolerate future rises
in temperature under climate change.
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