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Summary

Whole genome duplication (WGD) is a major factor in the
evolution of multicellular eukaryotes, yet by doubling the

number of homologs, WGD severely challenges reliable
chromosome segregation [1–3], a process conserved across

kingdoms [4]. Despite this, numerous genome-duplicated
(polyploid) species persist in nature, indicating early prob-

lems can be overcome [1, 2]. Little is known about which
genes are involved—only one has been molecularly charac-

terized [5]. To gain new insights into the molecular basis of
adaptation to polyploidy, we investigated genome-wide

patterns of differentiation between natural diploids and
tetraploids of Arabidopsis arenosa, an outcrossing relative

of A. thaliana [6, 7]. We first show that diploids are not
preadapted to polyploid meiosis. We then use a genome

scanning approach to show that although polymorphism is
extensively shared across ploidy levels, there is strong

ploidy-specific differentiation in 39 regions spanning 44

genes. These are discrete, mostly single-gene peaks of
sharply elevated differentiation. Among these peaks are

eight meiosis genes whose encoded proteins coordinate a
specific subset of early meiotic functions, suggesting these

genes comprise a polygenic solution to WGD-associated
chromosome segregation challenges. Our findings indicate

that even conserved meiotic processes can be capable of
nimble evolutionary shifts when required.
Results and Discussion

Meiotic Chromosome Behavior in Tetraploid A. arenosa
At least initially, WGD is commonly associatedwith deleterious
chromosome missegregation arising from multivalent associ-
ations among available homologs (e.g., [1–3, 8–11]). This is
especially challenging for autopolyploids, which arise from
within-species duplication and have multiple approximately
equally homologous chromosomes. We asked if for autotetra-
ploid A. arenosa (1) the tetraploid material we are working with
has diploid-like chromosome behavior, and (2) the diploid
genome we are comparing to is not preadapted for poly-
ploid meiosis, as has been seen in some species [e.g., 12].
Though bivalent formation among homologs appears to be
random and inheritance tetrasomic in natural autotetraploid
3These authors contributed equally to this work
4Present address: Department of Ecology and Evolution, University of

Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada

*Correspondence: kbomblies@oeb.harvard.edu
A. arenosa [13], metaphase I chromosomes associate
predominantly as bivalents like in diploids ([14] and Fig-
ure 1A). There are structural differences, however: tetraploids
have significantly more rod bivalents (and fewer ring bivalents)
than diploids do, which indicates natural tetraploid A. arenosa
averages fewer chiasmata per bivalent than diploid A. arenosa
(Table S1 available online). A reduction in chiasma number
to one per bivalent has previously been suggested as a
possible mechanism for meiotic diploidization in autopoly-
ploids because limiting crossovers to one per chromosome
prevents multivalent associations (e.g., [10, 11]).
We inducedWGD in two diploid A. arenosa genotypes using

colchicine and examined chromosome behavior of confirmed
neotetraploids in diakinesis and metaphase I, when multiva-
lents are readily discernable. Unlike natural autotetraploids,
synthetic neotetraploids exhibit extensive multivalent forma-
tion and ectopic connections between the chromosomes
(Figure 1A; Table S1). The cytological abnormalities in the neo-
tetraploid lines correlate with sharply reduced pollen viability:
the two colchicine-doubled lines had only 3% and 5% pollen
viability, in contrast to two natural autotetraploid lines that
had 91% and 92% pollen viability. Thus, diploid A. arenosa
provides an ‘‘unevolved’’ comparison for the natural tetraploid.
Bivalent associations and reduced estimated chiasma fre-
quency in natural autotetraploids, and the aberrant meiosis
of neotetraploids, are consistent with data from many other
autopolyploids (e.g., [8–11]), suggesting A. arenosa is a repre-
sentative model for studying themolecular basis of adaptation
to autopolyploid meiosis.

Evidence of Polygenic Selection in Autotetraploid

A. arenosa
Because of its connection to fertility [1, 2], selection for meiotic
stability immediately following WGD should be intense. Thus,
we reasoned that alleles contributing to stable chromosome
segregation in the autopolyploid should show reduced allelic
diversity and excess differentiation between autotetraploids
and diploids. High genetic diversity suggests A. arenosa
autotetraploids did not undergo a severe recent bottleneck
associated with WGD [7, 13] and/or have ongoing gene flow
with diploids [15]. We have previously shown evidence that
autotetraploid A. arenosa has undergone selective sweeps
[13], but because diploids were not included, it remained un-
known whether top outliers reflect adaptation to polyploidy
or species-wide patterns shared with diploids.
We used a genome scanning approach to compare the

genomes of diploid and tetraploid A. arenosa. We short-read
sequenced whole genomes from 16 natural autotetraploid
and 8 diploid individuals from six natural populations (Fig-
ure 1B; Table S2). We aligned reads to the closely related
A. lyrata genome [16]. More than 46 million sites had coverage
in all 24 individuals, of which about 5.6 million are polymorphic
relative to the A. lyrata reference (Table 1). There is extensive
shared variation between diploids and autotetraploids (>1.7
million sites) and remarkably few fixed differences (26 genome
wide; Table 1).
We scanned for signatures suggestive of selective sweeps

by analyzing consecutive windows of 100 polymorphic sites

http://dx.doi.org/10.1016/j.cub.2013.08.059
http://dx.doi.org/10.1016/j.cub.2013.08.059
mailto:kbomblies@oeb.harvard.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2013.08.059&domain=pdf
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Figure 1. Chromosome Spreads and Map

Locations

(A) 4, 6 diamidino-2-phenylindole (DAPI)-stained

meiotic chromosome spreads. The left column

shows chromosome counts; the middle column,

diakinesis; and the right column, metaphase I.

The top row shows diploid A. arenosa. Somatic

chromosome counts are as expected (2N = 16)

and associations are bivalents. The second row

shows a natural tetraploid. Chromosome count

(2N = 32) in somatic cells is shown at left. The

middle and right panels show bivalent asso-

ciations. The bottom row shows neotetraploid

A. arenosa. Somatic chromosome counts (left)

confirmed tetraploidy (2N = 32). Extensive

multivalent formation and fine ectopic interchro-

mosomal connections (examples indicated by

arrows) are evident at diakinesis and meta-

phase I.

(B) Map of populations. Tetraploid populations

are indicated with closed circles and diploids

with open circles.

See also Tables S1 and S2.
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(55,769 windows total) for 0.5% outliers in the distributions of
three metrics: FST [17] (Figure 2A), the two-dimensional site
frequency spectrum (2dSFS) [18] (Figure 2B), and the 0.5%
most negative values of linear regression residuals from the
relationship between diversity and differentiation. Outlier
values for this ‘‘residuals’’ metric indicate excess differentia-
tion for a given level of diversity (Figures 2C and 2D). All
0.5% outlier windows for all three tests are given in Table S3.
We generated an overlap list of windows found both among
0.5% outliers for 2dSFS and the residuals (Table S4). Though
both the residuals and FST quantify genetic differentiation,
we favored the former because it accounts for the positive
relationship between differentiation and diversity (e.g., see
Figure 2D).

The overlap list contains 39 distinct differentiated regions
spanning 44 genes; most contain only a single gene (Figures
3Aand3B; TableS4),with rapiddecay tobackground (e.g., Fig-
ure 3B). Using paired end information and de novo assemblies
aligned to A. lyrata, we verified gene order in these regions
(see Supplemental Experimental Procedures). This analysis
showed that neighboring loci in these regions are syntenous
between A. arenosa and A. lyrata, con-
firming that the rapid decay of differenti-
ation reflects low linkage disequilibrium,
not an alignment artifact. Low levels of
linkage disequilibrium are likely to be
the result of the large effective popula-
tion size of A. arenosa [6]. Six of the 44
genes overlap with our previous scan,
even though the analyses used different
methods and sample sets [11].

Meiosis Genes Are Overrepresented

among Genome Scan Outliers
Eight meiosis-related genes were on our
overlap list of 39 regions and 44 genes
(Figures 2 and 3; Table S4). In GO cate-
gory analysis, meiosis was the only
significantly overrepresented functional
category. However, there is some ambi-
guity in the GO category designation for
meiosis genes (the GO designation contains 219 genes, many
of which have no known role in meiosis); thus, we generated a
new list by searching A. thaliana gene descriptions (TAIR10;
http://www.arabidopsis.org) to identify 71 (out of w25,550)
genes that are clearly annotated as having a role in meiosis.
Of these 71 genes, 62 have good read alignment in
A. arenosa (Table S5). A random list of 44 genes would not
be expected to contain any meiosis genes on average (the
probability of one is w0.1).
We next asked whether meiosis genes as an overall class

have consistently high differentiation, which could indicate
they are under selection as a group even if most do not meet
stringent 0.5% cutoffs. We compared differentiation of 100
SNP windows mapping within meiosis genes (Table S5) to
windows in the rest of the genome using the residuals metric.
Aside from the eight outliers, the distribution of values for
windows falling in the remaining 54 well-aligned meiosis
genes were not distinguishable from the genome-wide
distribution (Figures 2D and 2E; t test p = 0.60). Thus,
meiosis-related genes show no gene set enrichment for differ-
entiation apart from the eight outliers. This result suggests

http://www.arabidopsis.org


Table 1. Genetic Differentiation between Diploid and Tetraploid

A. arenosa

Description Number

Total sites with coverage in all 24 individuals 46,254,812

Total polymorphic relative to A. lyrata reference 5,577,375

Fixed polymorphisms relative to A. lyrata reference 120,576

Shared polymorphisms between diploid and tetraploid

A. arenosa

1,701,318

Private polymorphism among eight diploid A. arenosa 533,850

Private polymorphism among 16 tetraploid A. arenosa 3,221,605

Fixed differences between diploids and tetraploids 26
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the eight meiosis-associated genes with strong differentia-
tion in A. arenosa represent a polygenic, naturally evolved
solution to WGD-associated challenges. Among these eight,
three were represented in a previous scan (ASY1, SMC3,
and PDS5) [13], whereas three others did not align in our
previous study and were thus not included (ZYP1a, ZYP1b,
and ASY3).

Functional Implications of Identified Meiosis Genes
In seven of the eight meiosis genes, sites with excess derived
allele frequency encode predicted amino acid substitutions,
and these are more common in tetraploids (Table S6). For
example, ZYP1a harbors 16 high-frequency-derived (relative
to the A. lyrata reference) substitutions in the tetraploid that
encode predicted coding changes, but none in the diploid.
ASY3, however, shows highly divergent polymorphism in
both ploidies.

The eight meiosis genes in our outlier set are not a random
sample: selection appears to have acted on multiple unlinked
loci to shift the allelic landscape of coordinated events in
early prophase I. All eight genes encode proteins crucial for
the organization of chromosome structure, alignment, and
synapsis of homologous chromosomes, and the controlled
formation of crossovers [19–21]. First, PRD3 participates
in the early initiation of homologous recombination [22, 23].
Coordination of subsequent events in recombination is
dependent on the interplay between the recombination
machinery and the chromosome axes. In yeast, this involves
Red1, Hop1, and Rec8 [24] whose functional homologs in
A. thaliana are ASY3, ASY1, and SYN1 [20, 25–29]. Their roles
appear to be largely conserved [20, 25–29], and all are differ-
entiated between A. arenosa ploidies. At zygotene aligned
homologous chromosomes are brought into close apposition
by the formation of the synaptonemal complex (SC) [30]
crosslinked by a transverse filament protein, Zip1 [31], which
also affects crossover fate [32]. In A. thaliana the SC trans-
verse filament is encoded by tandem duplicates, ZYP1a and
ZYP1b [33], both of which lie under a strong peak of ploidy
differentiation in A. arenosa. Two other differentiated genes
are SMC3 and scaffold_202722.1 (At1g77600 in A. thaliana).
The function of At1g77600 is unknown, but the encoded
protein has high homology to PDS5/SPO76, which is required
in fungi and animals for sister chromatid cohesion and regu-
lation of SC formation in cooperation with cohesins, including
SMC3 [34].

All of the meiosis proteins we identified are involved in coor-
dinated processes that contribute to chromosome juxtaposi-
tion and chiasma formation. ASY1 and ASY3 proteins directly
interact and their localization to the chromosome axis requires
the presence of SYN1 [25]. SYN1 in turn has been shown by
mass spectrometry to coprecipitate with ASY1, ASY3, and
ZYP1 (K. Osman and F.C.H.F., unpublished data). The finding
of differentiation in interacting proteins suggests that adapta-
tion to WGD-associated meiotic chromosome segregation
challenges might have been multigenic; whether this reflects
coevolution or additive contributions to phenotype remains
to be tested.

Conclusions

Understanding the genetic basis of naturally evolved solutions
to chromosome segregation with extra homologous copies is
relevant to a range of WGD contexts, including crop improve-
ment, polyploid human cancers, and our basic understanding
of an evolutionarily important phenomenon. The genes that
are sharply differentiated between diploid and tetraploid
A. arenosa encode proteins that affect the initial juxtaposition
and alignment of homologous chromosomes, formation of the
SC, and the controlled maturation of recombination intermedi-
ates into crossovers or noncrossovers [19–34]. Altering these
processes can ultimately affect the number and distribution of
crossover events (e.g., [19, 24–29, 32, 33]). Some cytological
studies have found evidence that established polyploids can
have reduced crossover frequencies relative to neotetraploids
or diploid relatives, and this has been hypothesized as a
mechanism of suppressing multivalent formation and thereby
stabilizing polyploid meiosis (e.g., [10, 11]). Our cytological
results are consistent with this, and our genome scan results
provide a candidate set of genes that could mediate this
outcome. It merits mention that an alternative possibility is
that some of these alleles may promote unreduced gamete
formation in diploids and thus directly contribute to polyploid
formation.
There is evidence of parallels with other systems. For

example, we observed strong differentiation in ASY1, whose
homolog has been implicated in meiotic stability in allopoly-
ploid wheat. The wheat gene Ph1, the only ‘‘diploidization
factor’’ molecularly characterized to date [5, 35], promotes
bivalent formation by solidifying similarity-based pairing fidel-
ity. In the absence of Ph1, transcription of the wheat homolog
of ASY1 is increased and its localization is affected, while
decreased ASY1 activity in transgenic lines promoted homeo-
logous pairing [36]. Though the genes themselves are not ho-
mologs, there are functional similarities among the genes we
identified and those critical to tetraploid, but not diploid, yeast
cells, which include genes involved in homologous recombina-
tion and sister chromatid cohesion [37]. Finally, in humans
cancer cells are often polyploid [3]. Though they divide mitot-
ically, a suite of meiosis genes, including a vertebrate homolog
of ASY1 (HORMAD1), as well as homologs of ZYP1 and SYN1/
REC8, are overexpressed in at least some cancers, where they
may contribute to genomic instability and show promise as
therapeutic targets (e.g., [3, 38, 39]). With ours, these studies
indicate parallels between kingdoms in processes that affect
chromosome segregation after WGD, while our work shows
that this conserved process can make evolutionary shifts
when necessary.

Experimental Procedures

Plant Material

Plant growth and DNA preparation were previously described [13]. To

generate neotetraploids, diploid SN seeds were treated with 0.1%

colchicine for 24 hr. We confirmed tetraploidy with chromosome

spreads. We assayed pollen viability (n = 90–120 grains/line) using Alexan-

der’s stain [40].
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Figure 2. Diversity and Differentiation of Meiosis Genes Relative to Genome-wide Patterns

(A–C) Genome-wide values for 100 SNP windows for FST (A), CLR score (B), and diversity/differentiation residuals (C). x axes are linear and indicate means,

and outlier meiosis genes are labeled.

(D) Nucleotide diversity of 100 SNPwindows in tetraploids plotted against differentiation between ploidies. Heavy line shows linear regression, and the ligh-

ter line, 1% cutoff. Red dots represent 100 SNP windows in meiosis genes with extreme outliers labeled. Note: each gene can have multiple hits as it can

have multiple 100 SNP windows.

(E) CLR Score versus Diversity/Differentiation Residual for all windows. Dotted lines indicate 0.5% cutoffs. Meiosis genes are indicated in respective

quadrants.

See also Tables S3, S4, and S5.
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Cytological Procedures

We fixed inflorescences in 3:1 ethanol:acetic acid. Anthers were isolated

and prepared as previously described [41]. Chromosomes were stained

with DAPI, mounted in Vectashield (Vector Lab) and visualized using aNikon

90i Eclipse fluorescent microscope with NIS elements software.

Genome Sequencing

Sequencing libraries were prepared using the Illumina Genomic Sample

Preparation Kit and sequenced on an Illumina HiSeq2000. Readsweremap-

ped to the repeatmasked Lyrata1.0 genome [16] using bowtie2 [42], and

bam files were processed with Samtools [43] and Picard (http://picard.

sourceforge.net). We used GATK [44, 45] for indel realignment, SNP dis-

covery, and genotyping using standard parameters for diploids and the

‘‘2ploidy 4’’ option for tetraploids. See the Supplemental Experimental Pro-

cedures for diploid de novo assembly.

Genomic Analysis

For details, see the Supplemental Experimental Procedures. Sites with

coverage in all 24 individuals were binned into 55,570 100-SNP consecutive

windows. We calculated FST between diploids and tetraploids following

[17, 46]. We also used a composite likelihood ratio test of the diploid-tetra-

ploid two-dimensional Site Frequency Spectrum (2dSFS) [18] and tested for

regions with excess allelic differentiation between diploids and tetraploids

for a given diversity within tetraploids. Our final set of differentiated regions

was defined as the overlap between these latter two tests.
Accession Numbers

All genomic sequencing reads are available from the NCBI SRA database

(bioproject number SRP021057) under accession numbers SRX340942,

SRX340943, SRX340944, SRX340945, SRX340946, SRX340947,

SRX340948, SRX340949, SRX340950, SRX340951, SRX340952, and

SRX341006.
Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and six tables and can be found with this article online at http://dx.doi.org/

10.1016/j.cub.2013.08.059.
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