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We consider models of programs that incorporate probability, dense real-time and data.
We present a new abstraction refinement method for computing minimum and maximum
reachability probabilities for such models. Our approach uses strictly local refinement
steps to reduce both the size of abstractions generated and the complexity of operations
needed, in comparison to previous approaches of this kind. We implement the techniques
and evaluate them on a selection of large case studies, including some infinite-state
probabilistic real-time models, demonstrating improvements over existing tools in several
cases.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Abstraction refinement is a highly successful approach to the verification of complex infinite-state systems. The basic idea
is to construct a sequence of increasingly precise abstractions of the system to be verified, with each abstraction typically
over-approximating its behaviour. Successive abstractions are constructed through a process of refinement which terminates
once the abstraction is precise enough to verify the desired property of the system under analysis. Abstraction refinement
techniques have also been used to verify probabilistic systems [6,11,13,7], including those with real-time characteristics [16,
17,8] and continuous variables [25]. Frequently, though, practical implementations of these techniques are hindered by the
high complexity of both the abstractions involved and the operations needed to construct and refine them.

In this paper, we target the verification of programs whose behaviour incorporates both probabilistic and real-time
aspects, and which include the manipulation of (potentially infinite) data variables. We analyse systems modelled as prob-
abilistic timed programs (PTPs) [17], whose semantics are defined as infinite-state Markov decision processes (MDPs). We
introduce an abstraction refinement procedure for computing minimum and maximum reachability probabilities in PTPs. As
in [6,11], we use an MDP-based abstraction. This provides outer bounds on reachability probabilities (i.e., a lower bound on
the minimum probability or an upper bound on the maximum). In addition, we compute dual, inner bounds, based on a
stepwise concretisation of adversaries of this abstract MDP, yielding upper and lower bounds on minimum and maximum
probabilities, respectively. Concretisation is also used, for example, in [11], for untimed models. The key difference in our
work is that we aim to keep the abstraction small by using local refinement and simplification operations, so as to reduce
the need for expensive operations such as Craig interpolation.

At the core of our approach is a refinement loop that repeatedly attempts to construct a concrete adversary of the PTP.
This is based on the exploration of the part of the state space on which the current abstract adversary can be concretised.
In each exploration step, we may encounter an inconsistency, in which case we derive a refinement operation and restart.
Otherwise, we numerically solve the constructed adversary, giving inner bounds on the desired probability values. The
refinement loop terminates once the difference between upper and lower bounds is smaller than a specified threshold ε.
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We implement our abstraction refinement approach, deploy it on various large case studies, and compare to the proba-
bilistic verification tools PRISM [18], PASS [9] and FORTUNA [3], illustrating improved performance in many cases. We are
also able to verify probabilistic timed programs containing both real-time behaviour and infinite data variables, which these
tools cannot handle.

1.1. Related work

Abstraction refinement for MDPs and related models is an active research field. In [6], techniques were proposed for
abstracting MDPs using the notion of probabilistic simulation. Building on the same approach to abstraction, [11] developed
a probabilistic version of the classic counterexample-guided abstraction refinement (CEGAR) method, which was then im-
plemented in the tool PASS [9]. This verifies a probability-bounded reachability property using a refinement scheme based
on probabilistic counterexamples and Craig interpolation. In contrast to the implementation of [6], PASS uses predicate ab-
straction, allowing it to analyse infinite-state models. More recent work [15] proposes an alternative probabilistic CEGAR
technique using stochastic tree counterexamples; this applies to finite-state MDPs, on which properties are specified us-
ing simulation rather than reachability. However, all three methods [6,11,15] were applied to discrete-time models (MDPs),
whereas our approach generalises to models with real-time behaviour. We provide an experimental comparison with PASS,
for MDP models, in Section 4.

In [13], a quantitative abstraction refinement technique for MDPs was proposed, using a different form of abstraction
based on stochastic games. This computes lower and upper bounds for reachability probabilities, the difference between
which determines if further refinement is needed. The framework of [13] was subsequently applied to verification of C
programs with probabilistic behaviour [12]. Later extensions to PASS also use game-based abstraction refinement [24]. In
recent work [7], the abstraction frameworks of [13,24] were adapted to handle arbitrary abstract domains, illustrating cases
where this can outperform predicate abstraction. As for [6,11,15] above, though, these methods [13,12,24,7] all focus on
models with a discrete notion of time.

Probabilistic timed automata (PTAs) are a subclass of the probabilistic timed programs (PTPs) that we target in this paper,
since only the latter allows arbitrary (infinite) data variables. For PTAs, several verification techniques exist. Most relevant
here is [16], which extends the abstraction refinement framework of [13] mentioned above, to PTAs, by using zones to
represent abstract states. Other possibilities include the digital clocks discretisation [19] and backwards reachability [21]. The
probabilistic model checker PRISM [18] supports verification of PTAs, using either [16] or [19]. In [16], abstraction refinement
was shown to outperform the other available techniques. Subsequently, an optimised version of backwards reachability,
implemented in the tool FORTUNA [3], was shown to exhibit superior performance on various examples. We compare the
performance of our approach to both PRISM and FORTUNA in Section 4.

Several PTA verification tools do support PTAs with data variables, but they are required to be finite. This includes PRISM,
discussed above, mcpta [10], which translates the modelling language Modest to PRISM using [19], and UPPAAL PRO, which
computes maximum reachability probabilities for PTAs by progressively partitioning the state space into sets of zones.

The closest approaches to the one presented here are [17] and [8]. In [17], an extension of the game-based abstraction
refinement framework of [13] is defined for PTPs, but not implemented. This defines abstractions as stochastic games,
rather than MDPs as in our approach. In recent work [8], PTPs (there called variable-decorated PTAs) are verified using
a combination of discretisation via digital clocks [19] and predicate abstraction methods from PASS [24]. Our approach
avoids the use of discretisation by using zones and aims to improve efficiency by using local refinement and simplification
operations to reduce the size of abstractions. The implementation of [8] is not currently available; we give a brief, indirect
comparison of results in Section 4.

2. Preliminaries

We assume a set V of variables, ranging over a domain D defined by a theory T (linear integer arithmetic in our exam-
ples). We require satisfiability of quantifier-free formulae in T to be decidable. The set of assertions over V , i.e., (conjunctive)
quantifier-free formulae in T , is denoted by Asrt(V), and Val(V) is the set of valuations of V , i.e., functions u : V → D . We
use Assn(V) for the set of assignments over V , given by a term rx for each x ∈ V . The result of applying assignment f to a
valuation u is f (u), given for each x ∈ V by f (u)(x) = u(rx). Given an assignment f and an assertion ϕ , the composition
ϕ ◦ f is defined by (ϕ ◦ f )(u) ≡ ϕ( f (u)).

For a set S , we use P(S) to denote the set of subsets of S and D(S) for the set of discrete probability distributions over S ,
i.e. finite-support functions � : S → [0,1] such that

∑
s∈S �(s) = 1. A distribution � ∈ D(S) with support {s1, . . . , sn} and

�(s j) = λ j will also be written λ1s1 + · · · + λnsn .

2.1. Clocks

We use a set X of clock variables to represent the time elapsed since the occurrence of various events. The set of
clock valuations is RX

�0 = {v : X → R�0}. For any clock valuation v and δ ∈ R�0, the delayed valuation v + δ is defined by
(v + δ)(x) = v(x)+ δ for all x ∈X . For a subset Y ⊆X , the valuation v[Y :=0] is obtained by setting all clocks in Y to 0, i.e.,
v[Y :=0](x) is 0 if x ∈ Y and v(x) otherwise. The valuation 0 has all clocks set to 0.
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A clock difference constraint over X is an upper or lower bound on either a clock or the difference between two clocks. It
is convenient to extend X with a dedicated zero clock x0 which is always 0, so that all clock difference constraints have the
form x − y � b with x, y ∈X0 := X ∪ {x0}, � ∈ {<,�} and b ∈ Z∪ {±∞}. We define the complement c of a clock difference
constraint c as: c := y − x < −b if c ≡ x − y � b; and c := y − x � −b if c ≡ x − y < b.

A (convex) zone is the set of clock valuations satisfying a number of clock difference constraints, and the set of all zones
is Zones(X ). We use several standard operations on zones:

• future: ↗ ρ = {v + δ | v ∈ ρ, δ ∈ R�0} is the set of clock valuations reachable from ρ by letting time pass;
• past: ↙ ρ = {v | v + δ ∈ ρ for some δ ∈R�0} is the set of clock valuations from which ρ can be reached by letting time

pass;
• clock reset: if Y ⊆X , then ρ[Y := 0] = {v[Y := 0] | v ∈ ρ} contains the valuations obtained from ρ by setting the values

of all y ∈ Y to 0;
• inverse reset: if Y ⊆ X , then [Y := 0]ρ = {v | v[Y := 0] ∈ ρ} contains the valuations which end up in ρ if the values of

all y ∈ Y are set to 0.

We will use one additional operation on clocks, for which we first require some standard operations on pairs (b,�) ∈
R�0 × {<,�} (see [2]). The set {<,�} is ordered by < � �, and the set of pairs (b,�) by the lexicographic combination ≺
of <R and �, i.e. (b1,<) ≺ (b1,�) ≺ (b2,<) for all b1 < b2. The sum of two pairs is then given by (b1,�1) + (b2,�2) :=
(b1 + b2,min�(�1,�2)).

Definition 1. Let ρ1, . . . , ρm be zones whose intersection ρ1 ∩ · · · ∩ ρm is empty. An unsatisfiable core for ρ1, . . . , ρm is a set
C of constraints such that:

(i) each constraint in C is implied by some ρk ,
(ii) the conjunction of all constraints in C is unsatisfiable, and

(iii) C is minimal in the sense that no proper subset C ′ � C satisfies (ii).

An unsatisfiable core always exists, since the zones are given by finite sets of constraints whose union U is unsatisfiable
(otherwise the zones would have a non-empty intersection), and the subsets of U satisfy the descending chain condition.
We can compute an unsatisfiable core with the following straightforward generalisation of the Craig interpolation procedure
for difference logic from [5].

For all i, j, let (bij,�i j) be the least pair for which ci j ≡ xi − x j �i j bi j is implied by some ρk . Note that the conjunction of
the ci j is unsatisfiable. This means that, if we label the edges of the complete directed graph on X0 with the pairs (bij,�i j),
then there is a cycle with a negative label sum [2]; using the Floyd–Warshall algorithm, we can find a shortest such cycle
(i1, . . . , ik).

The constraints along this cycle are xi j−1 − xi j �i j−1 i j bi j−1 i j for j = 1, . . . ,k, where i0 = ik; the label sum (b,�) being
negative means that summing the constraints results in an unsatisfiable implied constraint 0 � b. On the other hand, re-
moving one of the constraints (w.l.o.g., we can assume it is the first one) gives a path whose associated constraints are
satisfied by any clock valuation t of the form v(xi j ) = a + bi1 i2 + · · · + bi j−1 i j for some large enough a. So the constraints
along the cycle form an unsatisfiable core.

2.2. Markov decision processes (MDPs)

The underlying semantics for the models studied in this paper is defined in terms of Markov decision processes (MDPs),
a standard model for systems with both probability and nondeterminism. An MDP is a tuple (S, si, Se, T ), where S is a
(possibly infinite) set of states, si ∈ S is the initial state, Se ⊆ S is a set of error states and T : S →P(D(S)) is a probabilistic
transition function. In a state s ∈ S , the choice of a successor distribution � ∈ T (s) is nondeterministic and a successor state
is then selected probabilistically according to �.

An adversary for an MDP resolves the nondeterminism in each state, based on the current history, i.e., it is a function
σ : S+ →D(S) such that σ(s1 . . . sl) ∈ T (sl) for any path s1 . . . sl . The adversary is memoryless if σ depends only on sl; it can
then be written as a function σ : S → D(S). The behaviour of an MDP M under a particular adversary σ can be viewed as
a (possibly infinite-state) Markov chain. This allows us to define, in standard fashion [14], a probability space PrσM,s over the

set of all (infinite) paths1 from a given state s of M .
In this paper, we focus on one kind of property: the error probability pσ

M,s = PrσM,s({s1s2 . . . | s1 = s and s j ∈
Se for some j}), i.e., the probability of reaching one of M ’s designated error states. In particular, we aim to compute
the minimum error probability pmin

M,s = inf{pσ
M,s | σ is an adversary of M} or the maximum error probability pmax

M,s = sup{pσ
M,s |

1 The MDPs in this paper are infinite state due to the use of both unbounded data and dense real-time; see e.g. [20] for a discussion of how to ensure
measurability for such models.
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Fig. 1. Left: an example PTP P . Right: initial abstraction Ai(P ), labelled with node ids and upper probability bounds, and with abstract adversary σa marked
in bold.

σ is an adversary of M}. Probabilities from the initial state si of the MDP are denoted by omitting the subscript si , i.e.
pσ

M = pσ
M,si

, pmin
M = pmin

M,si
, and pmax

M = pmax
M,si

.

2.3. Probabilistic timed programs (PTPs)

The systems we will verify are probabilistic timed programs (PTPs) [17], which can be thought of as MDPs extended with
state variables and real-valued clocks (or as probabilistic timed automata with state variables). For simplicity, we assume
that a PTP contains an initial location which must be left immediately and never re-entered, and an error location which
cannot be left. We also make the common assumption that models are structurally non-Zeno [23].

Definition 2 (PTP). A PTP is a tuple P = (L,V,X , li, ui, le,I,T ) where:

• L is a finite set of locations and li, le ∈ L are initial and error locations;
• V is a finite set of state variables and ui ∈ Val(V) is the initial valuation;
• X is a finite set of clocks and I : L → Zones(X ) is the invariant condition, where we assume I(li) = {0};
• T : L → P(Trans(L,V,X )) is the probabilistic transition function, where Trans(L,V,X ) = Asrt(V) × Zones(X ) ×
D(Assn(V) ×P(X ) × L).

A (concrete) state of a PTP P is a triple q = (l, u, v) ∈ L × Val(V) × RX
�0 such that v ∈ I(l). The set of all states is denoted

Q c(P ), or Q c if P is clear from the context. The initial state is qi = (li, ui,0), and the set of error states is Q e = {(le, u, v) |
v ∈ I(le)}. A step of the PTP from state (l, u, v) consists of some delay δ � 0 followed by a transition (G,E,�) ∈ T (l). The
transition comprises a guard G , enabling condition E and probability distribution � = λ1( f1, r1, l1) + · · · + λk( fk, rk, lk) over
triples containing an update f j ∈ Assn(V), clock resets r j ⊆X and target location l j ∈ L.

The delay δ must be chosen such that the invariant I(l) remains continuously satisfied; since I(l) is a (convex) zone,
this is equivalent to requiring that both v and v + δ satisfy I(l). The chosen transition must be enabled, i.e., the guard G and
the enabling condition E must be satisfied by u and v + δ, respectively. An assignment, set of clocks to reset and successor
location are then selected at random, according to the distribution �.

Formally, the semantics of PTP P is given by an MDP � P � = (Q c,qi, Q e, T ) where λ1(l1, u1, v1) + · · · + λk(lk, uk, vk) ∈
T (l, u, v) if and only if there are δ � 0 and (G,E, λ1( f1, r1, l1) + · · · + λk( fk, rk, lk)) ∈ T (l) such that: (i) u � G; (ii) v + δ ∈
I(l) ∩ E ; (iii) u j = f j(u) for all j; and (iv) v j = (v + δ)[r j := 0] ∈ I(l j) for all j. Thus, any adversary σ : Q +

c → D(Q c) of
� P � is induced by two functions δσ : Q +

c → R�0 and τσ : Q +
c → Trans(L,V,X ) such that δσ (wq) and τσ (wq) ∈ T (l) satisfy

(i)–(iv) for all w ∈ Q ∗
c and q = (l, u, v).

Our focus in this paper is determining the minimum or maximum probability of reaching an error state in PTP P , denoted
pmin

P and pmax
P , respectively. These are defined as the values pmin

� P �
and pmax

� P �
for its MDP semantics � P �. We determine the

desired value up to a given precision ε > 0 by producing lower and upper bounds plb,min
P � pmin

P � pub,min
P or plb,max

P �
pmax

P � pub,max
P which differ by at most ε.

Example 1. Fig. 1 (left) shows an example PTP with integer variable c and clocks x, y. Guards (e.g. c > 0), enabling conditions
(e.g. x < 1), resets (e.g. x := 0) and probabilities (e.g. 1

2 ) label transitions; invariants (true) label locations.
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3. Abstraction refinement for PTPs

We now introduce our abstraction refinement approach for PTPs, which we call local abstraction refinement. Our abstrac-
tions are based on MDPs and yield both lower and upper bounds on the desired probability. The outer bound (plb,min

P or

pub,max
P ) is obtained from an adversary σa on the abstract MDP (which overapproximates the choices available to concrete

adversaries), while the inner bound (pub,min
P or plb,max

P ) is based on a partial concretisation of σa .
In the next section, we describe the basic ideas underlying our abstractions; in subsequent sections, we describe in

more detail how to generate suitably precise abstractions using a refinement loop. Throughout, we will assume a fixed PTP
P = (L,V,X , li, ui, le,I,T ) with semantics � P � = (Q c,qi, Q e, T ).

3.1. MDP abstractions

The abstraction for a PTP P in our approach is an MDP, which, for convenience, we augment with concretisation infor-
mation.

Definition 3 (MDP abstraction). For a probabilistic timed program P , an abstract state (or node) is a triple n = (l,ϕ,ρ) ∈
L ×Asrt(V)×Zones(X ). We use Q a(P ) to denote the set of all abstract states. An MDP abstraction is a tuple A = (N,ni, Ne, T ),
where:

• N ⊆ Q a(P ) is a finite set of nodes, ni ∈ N is the initial node, and Ne ⊆ N the set of error nodes;
• T : N → P(Trans(N,V,X )) maps nodes to finite sets of abstract transitions in Trans(N,V,X ) = Asrt(V) × Zones(X ) ×
D(Assn(V) ×P(X ) × N).

The set of dead nodes from which Ne is not reachable is denoted by Nd .

In order to formalise the relationship between an MDP abstraction A and its corresponding PTP P , we introduce the
notion of reflections. Recall from the definition of � P � that any adversary σ is induced by functions δσ : Q +

c → R�0 and
τσ : Q +

c → T , such that, for wq ∈ Q +
c with q = (l, u, v) and τσ (wq) = (G,E, λ1( f1, r1, l1) + · · · + λk( fk, rk, lk)), we get

σ(wq) = λ1q1 + · · · + λkqk with q j = (l j, f j(u), (v + δσ (wq))[r j := 0]). A reflection captures the idea that every concrete
adversary can be simulated in an abstraction; if, in addition, every transition in the abstraction represents a special case of
a concrete transition, we call this abstraction sound.

Definition 4 (Reflection). Let A = (N,ni, Ne, T ) be an MDP abstraction for P . A reflection of adversaries for A is a map
∇ : Q +

c ×R�0 → N with the following properties:

• ∇(wq, δ) = ni iff q = (li, _, _) and ∇(wq, δ) ∈ Ne iff q ∈ Q e;
• for any adversary σ of � P �, let ∇σ : Q +

c → N be the reflection of σ , defined as ∇σ (w) =∇(w, δσ (w)).
Then for any path w ∈ Q +

c , where σ(w) = λ1q1 + · · · + λkqk is induced by δσ (w) and τσ (w) = (G,E, λ1( f1, r1, l1) +
· · · + λk( fk, rk, lk)), there are G′ , E ′ such that the set T (∇σ (w)) contains an abstract transition of the form
(G′,E ′, λ1( f1, r1,∇σ (wq1)) + · · · + λk( fk, rk,∇σ (wqk))).

The need to have a delay as an extra argument arises from the behaviour of refinement with respect to clock constraints
(see Section 3.4). The delay is effectively a prophecy variable [1] representing the next decision of the adversary. This
dependency means, in particular, that we do not have a straightforward simulation relation between concrete and abstract
states; the reflection allows us, however, to construct a simulation for each concrete adversary (see Theorem 1).

Definition 5 (Concretisable transitions). Let A = (N,ni, Ne, T ) be an MDP abstraction for P . A has concretisable transitions
if, for each node n = (l,ϕ,ρ) ∈ N and abstract transition τ = (G,E, λ1( f1, r1,n1) + · · · + λk( fk, rk,nk)) ∈ T (n), where n j =
(l j,ϕ j,ρ j) for all j, the PTP P contains a concrete transition (G′,E ′, λ1( f1, r1, l1) + · · · + λk( fk, rk, lk)) ∈ T (l) with G ⇒ G′
and E ⊆ E ′ .

Definition 6 (Sound abstraction). An MDP abstraction A for PTP P is sound if it has a reflection of its adversaries and
concretisable transitions.

All our abstractions will be sound and have the following additional property.

Definition 7 (Tight abstraction). An MDP abstraction A is tight if, for every abstract transition (G,E, λ1( f1, r1,n1) + · · · +
λk( fk, rk,nk)) ∈ T (n), where n = (l,ϕ,ρ) and n j = (l j,ϕ j,ρ j) for all j, we have E ⊆ ρ , and G,E ensure validity of all
successors, i.e. G ⇒ ϕ j ◦ f j and E ⊆ [r j := 0]ρ j for all j.
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The significance of these properties is as follows. Soundness allows us to obtain correct bounds, while tightness ensures
progress. Specifically, a reflection of adversaries ensures that the reachability probabilities in the MDP underlying A yield
correct outer bounds plb,min

P := pmin
A and pub,max

P := pmax
A (see Theorem 1) while concretisability of transitions means that

we obtain correct inner bounds by partially concretising an abstract adversary (see Theorem 3). Tightness ensures that each
refinement step is a proper refinement, in the sense that each node obtained by splitting a node n either satisfies stronger
constraints than n or has stronger enabledness conditions on its outgoing transitions (see Theorems 4 and 5).

Theorem 1. If A is a sound MDP abstraction for PTP P , then pmin
A � pmin

P and pmax
A � pmax

P .

Proof. Let A = (N,ni,ne, T ) be an MDP abstraction for P with a reflection of adversaries ∇ : Q +
c × R�0 → N , and let σ

be an arbitrary adversary of � P �. Consider the MDP M = (Q +
c ,qi, {wq ∈ Q +

c | q ∈ Q e}, T ′) with the singleton transition sets
T ′(w) = {λ1(wq1) + · · · + λk(wqk)} obtained from σ(w) = λ1q1 + · · · + λkqk for all w . This is essentially the DTMC induced
by � P � and σ , and satisfies pmin

M = pmax
M = pσ

� P �
.

By the assumption that li cannot be revisited, all reachable states of M lie in qi Q ∗
r , where Q r = (L \ {li}) × Val(V) ×

RX
�0. Consider the relation R := {(wq,∇σ (q)) | wq ∈ qi Q ∗

r }. From the definition of ∇, we have that, for all (w,n) ∈ R ,
w = qi iff n = ni , w ∈ Q e iff n ∈ Ne , and T (∇σ (w)) contains an abstract transition (G′,E ′, λ1( f1, r1,∇σ (wq1)) + · · · +
λk( fk, rk,∇σ (wqk))) corresponding to the sole transition λ1(wq1) + · · · + λk(wqk) in T ′(w), such that (wq j,∇σ (wq j)) ∈ R
for all j. Thus, R is a probabilistic simulation, and we get pmin

A � pmin
M � pσ

� P �
and pmax

A � pmax
M � pσ

� P �
[6]. Since the

argument works for arbitrary σ , we also get pmin
A � pmin

� P �
= pmin

P and pmax
A � pmax

� P �
= pmax

P . �
To build abstractions for PTPs, we start with an initial abstraction, which is defined as follows.

Definition 8 (Initial abstraction). For a location l of PTP P , let nl denote the abstract state (l, true,I(l)). The initial abstraction
for P is the MDP abstraction Ai(P ) := ({nl | l ∈ L},nli , {nle }, T ) where: T (nl) = {αl(τ ) | τ ∈ T (l)} and αl(G,E, λ1( f1, r1, l1) +
· · · + λk( fk, rk, lk)) = (G,E ′, λ1( f1, r1,nl1 ) + · · · + λk( fk, rk,nlk )) with E ′ = I(l) ∩ E ∩ ⋂

j[r j := 0]I(l j).

Theorem 2. The initial abstraction Ai(P ) for PTP P is sound and tight.

Proof. Let Ai(P ) = ({nl | l ∈ L},nli , {nle }, T ). We define ∇ : Q +
c ×R�0 → N by ∇(wq, δ) = nl for q = (l, v, t). Clearly, ∇ maps

(wq, δ) to nli iff l = li , and to nle iff q ∈ Q e . Let σ be an adversary of � P � induced by the delays δσ (q) and transitions
τσ (q) as defined in Definition 4. Then, for each w ∈ Q ∗

c and q = (l, v, t), ∇σ (wq) = nl and, by the definition of Ai(P ), T (nl)

contains the abstract transition αl(τσ (wq)) = (G,E ′, λ1( f1, r1,nl1 ) + · · · + λk( fk, rk,nlk )) for τσ (wq) = (G,E, λ1( f1, r1, l1) +
· · · + λk( fk, rk, lk)). Altogether, this means that ∇ is a reflection of adversaries and, since concretisability of transitions is
ensured by the obvious mapping of αl(τ ) to τ , the initial abstraction Ai(P ) is sound.

Tightness is achieved by using the strengthened enabledness condition E ′ in αl(τ ) (since all state assertions are true,
G does not need to be changed). �

To extract the complementary (inner) bound pub,min
P or plb,max

P from an MDP abstraction A, we will need the notion of a
(memoryless) abstract adversary, which selects an outgoing transition from each node n of A. In practice, we obtain such an
adversary when computing the extremal reachability probabilities pmin

A,n or pmax
A,n for each node n in A.

Definition 9 (Abstract adversary). An abstract adversary for an MDP abstraction A = (N,ni, Ne, T ) is a function σa : N →
Trans(N,V,X ) such that σa(n) ∈ T (n) for all n ∈ N .

Example 2. Fig. 1 (right) shows the initial MDP abstraction Ai(P ) for PTP P from Example 1 (Fig. 1, left), for which we want
to determine the maximum error probability. The top of each box shows the abstract state (node); underneath is (to the
left) a node id and (to the right) the computed maximum probability of reaching error node ne . A corresponding adversary
σa is indicated in bold.

An abstract adversary resolves the nondeterminism in the MDP, giving a discrete-time Markov chain which will allow us
to compute pub,min

P or plb,max
P . More precisely, we build a (partial) concretisation, based on a forward exploration through

the model. We explore the Markov chain induced by σa using discrete states s = (n, u) consisting of a node n = (l,ϕ,ρ) of A
and a valuation u with u � ϕ . Interleaved with these forward exploration steps, we perform backwards propagation of time
constraints, starting with the invariants of the newly expanded successor states, which are then iteratively strengthened. We
formalise this as follows.

Definition 10 (Concretisation). A (partial) concretisation of an abstract adversary σa is a tuple C = (S, O , E), consisting of:
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• a set S ⊆ N × Val(V) of discrete states s = (n, u), with a subset O ⊆ S of open states whose successors still have to be
explored;

• a set E of edges e = (s, λ, r, s′), representing edges of the adversary transitions, with the associated probability λ and
resets r. For a state s = (n, u), Es ⊆ E is the set of edges with source s. We have:
– Es = ∅ if s ∈ O or n ∈ Nd ∪ Ne is a dead or error node;
– otherwise, Es = {(s, λ j, r j, (n j, f j(u))) | 1 � j � k} based on the edges in σa(n) = (G,E, λ1( f1, r1,n1) + · · · +

λk( fk, rk,nk)).

We denote by S = {s ∈ S | Es �= ∅} the set of expanded states in C .

Every partial concretisation induces time constraints η : (S ∪ E) → Zones(X ) and bounds π0,π1 : S → [0,1] on reachability
probabilities as follows.

• Let the zones η(s), η(e) for states s and edges e be the greatest solutions to the fixpoint equations:
– for all s = (n, u) with n = (l,ϕ,ρ): η(s) = ρ ∩ ↙ (ρ ∩ ⋂

e∈Es
η(e)),

– for each e = (s, λ, r, s′) with s = (n, u),σa(n) = (G,E,�): η(e) = E ∩ [r := 0]η(s′).
• The probability bounds πb(s) for b ∈ {0,1} are the least solutions to:

– πb(n, u) = 1 for n ∈ Ne an error node,
– πb(n, u) = 0 for n ∈ Nd a dead node,
– πb(s) = b for s ∈ O , and
– πb(s) = ∑

(s,λ,r,s′)∈E λ · πb(s′) otherwise (i.e. for s ∈ S).

The idea of this construction is that a partial concretisation whose associated time constraints are satisfiable represents
a portion of the model on which the abstract adversary’s chosen transitions can be consistently followed by a concrete
adversary; π0(ni, ui) and π1(ni, ui) then give a lower bound and an upper bound on pσ

P for any adversary σ doing so.
We can therefore use the probability bounds πb from the concretisation of a maximising or minimising abstract adversary

to determine inner bounds, i.e., we take plb,max
P := π0(ni, ui) or pub,min

P := π1(ni, ui).
In order to formalise this, we first define some auxiliary sets capturing the relationship between concrete and discrete

states. For s = (n, u) ∈ S , with n = (l,ϕ,ρ), we let Q s = {(l, u, v) ∈ Q c(P ) | v ∈ η(s)} and define Q S = ⋃
s∈S Q s and Q S =⋃

s∈S Q s; for q ∈ Q c(P ), Sq = {s ∈ S | q ∈ Q s} and Sq = {s ∈ S | q ∈ Q s}.
We then say that a concrete adversary σ for P follows the partial concretisation C = (S, O , E) if there is a map

s : Q +
S → S such that, for each path w = w1 . . . wm ∈ Q +

S , if wm ∈ Q S and σ(w) = λ1q1 + · · · + λkqk , then Es(w) =
{(s(w), λ j, r j, s(wq j)) | 1 � j � k} for some r1, . . . , rk ⊆X .

Theorem 3. Let C = (S, O , E) be a partial concretisation for adversary σa of A, such that all zones η(s) for s ∈ S and η(e) for e ∈ E
are non-empty. Then:

1. there exists a concrete adversary σ following C ;
2. for any such σ , we have π0(ni, ui) � pσ

P � π1(ni, ui).

Proof. 1. Let w = w1 . . . wm ∈ Q +
S

with wm = (l, u, v). Let s(w) be (n, u) ∈ S wm with n = (l,ϕ,ρ) (chosen arbitrarily if
|w| = 1) and let the abstract adversary’s chosen transition be σa(n) = (G,E, λ1( f1, r1,n1) + · · · + λk( fk, rk,nk)), where n j =
(l j,ϕ j,ρ j). Since s(w) ∈ S wm , we have that v ∈ η(s(w)) = ρ ∩ ↙ (ρ ∩ ⋂

e∈Es(w)
η(e)). Therefore, there exists some δ ∈ R�0

such that v + δ ∈ ρ ∩ ⋂
e∈Es(w)

η(e) (and v + ε ∈ ρ for all 0 � ε � δ, since ρ is convex).

By concretisability of transitions, there is a corresponding concrete transition τ ′ = (G′,E ′, λ1( f1, r1, l1) + · · · +
λk( fk, rk, lk)) with G ⇒ G′ and E ⊆ E ′ . Due to the above, a concrete adversary can choose this concrete transition after
a suitable delay δ, getting the distribution λ1q1 + · · · + λkqk , where q j = (l j, f j(u), v j) with v j = (v + δ)[r j := 0]. The edges
in Es are e j = (s(w), λ j, r j, s j), where s j = (n j, f j(u)); since δ was chosen such that v + δ ∈ η(e j) = E ∩ [r j := 0]η(s j)

for all j, we get v j ∈ η(s j), and thus s j ∈ Sq j , so we can choose s(wq j) = s j . Iterating this argument, we get a concrete
adversary following C .

2. Let σ be a concrete adversary following C , w = w1 . . . wm be any path within Q S in the Markov chain induced
by P and σ , and s1, . . . , sm be the corresponding path in the Markov chain (S, T S ) represented by C (with transitions
T (s) = λ1s1 + · · · + λksk for Es = {(s, λ j, r j, s j) | 1 � j � k}). By the above correspondence, the paths have equal probabilities.
From the soundness of the abstraction, we get a correspondence regarding reachability of the error:

• sm = (n, u) is an error state (n ∈ Ne) iff qm is an error state (qm ∈ Q e);
• if sm = (n, u) with n ∈ Nd , i.e. Ne is not reachable from n, then Q e is likewise not reachable from qm;
• if sm ∈ O , then the error may be reachable from qm with any probability in [0,1] (we made no assumption on the

behaviour of σ outside Q ).
S
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Fig. 2. Two partial concretisations for the MDP abstraction of Fig. 1.

This implies that the reachability probabilities of Se = {(n, u) ∈ S | n ∈ Ne} and of Se ∪ O are a lower and an upper bound
on pσ

P , and (see e.g. Thm. 1.3.2 in [22]) they are exactly the least solutions of:

• p(s) = 1 if s ∈ Se (resp. s ∈ Se ∪ O ), and
• p(s) = ∑

T (s)(s′)p(s′) otherwise,

making them equal to π0 and π1. �
Example 3. We return to the MDP abstraction and abstract adversary σa of Example 2, shown in Fig. 1 (right). Fig. 2
(left) shows a partial concretisation. The top of each box shows the discrete state; the bottom shows the lower probability
bound π0 (since we are computing maximum probabilities) and time constraint η(s). Unexpanded states are drawn with
dashed lines. For clarity, edge details are omitted. Fig. 2 (right) shows a subsequent partial concretisation, expanding state
(n3, c = 1). The outgoing transition contains a time constraint x < 1, which gets propagated backwards. One successor is
error state (ne, c = 1), leading to an increase in the lower bounds.

3.2. The refinement loop

Our approach to computing reachability probabilities for PTPs is based on an iterative abstraction refinement loop, which
generates increasingly precise MDP abstractions. At each iteration, we first compute minimum or maximum reachability
probabilities for the MDP, yielding an (outer) bound plb,min or pub,max and an abstract adversary. Then, we partially con-
cretise this adversary, based on a forward exploration through the model, yielding after each step a complementary (inner)
probability bound pub,min = π1(ni, ui) or plb,max = π0(ni, ui). If the difference between the lower and upper bounds for
the initial state of the model falls below a pre-specified tolerance ε, then abstraction refinement terminates. Otherwise,
concretisation continues until an inconsistency is identified, which will be used to refine the abstraction.

There are two classes of inconsistencies which may occur during concretisation: state-based inconsistencies, which, due
to tightness, will always manifest themselves as the failure of a valuation to satisfy the guard of the adversary’s chosen
transition, and time-based inconsistencies, which occur when there is no consistent choice of delay, and manifest themselves
as the occurrence of an empty zone η(_) = ∅ in the concretisation. Accordingly, there are two separate refinement operations
for an MDP abstraction: state refinement, which splits a node with a predicate ϕ ∈ Asrt(V); and time refinement, which splits
based on an inconsistent set of clock difference constraints c1, . . . , ck . The former is relatively standard, for abstraction
refinement techniques; the latter is a novel method that we have developed for the PTP model. In the next two sections,
we describe each of these in more detail. The main refinement loop is sketched in Fig. 3. Pseudocode and descriptions of
auxiliary functions addState(), expand() and backpropagate() are shown in Figs. 4 and 5. Details of the refinement functions
stateRefine() and timeRefine() are given in the next sections. The algorithm maintains an MDP abstraction A = (N,ni, Ne, T ),
along with:

• an abstract adversary σa and resulting outer bounds pmin
A,n or pmax

A,n ;
• a partial concretisation (S, O , E), along with the associated inner bounds πb(s) and time constraints η(s) and η(e) for

all s ∈ S and e ∈ E;
• a set bp ⊆ S of states whose time constraints still need to be strengthened to satisfy the required fixpoint equations

(see p. 43).

The outcome of the algorithm, if it terminates, is a set containing an inner and an outer bound {πb(ni, ui), pdir
A,ni

}. Note that
termination cannot be guaranteed in general, since the class of PTPs is Turing complete (it contains counter automata as a
subclass). If the system is a PTA, then in the worst case the refinement procedure constructs the region graph, since in each
iteration we nontrivially split a clock zone; see the proof of Theorem 5.

3.3. State refinement

State refinement is triggered when forward exploration encounters a state (n, u) such that u does not satisfy the guard
G of the transition σa(n). Since G is a conjunctive quantifier-free formula, at least one of its atomic constraints is violated
by u. We use the first failed constraint g to split n, introducing a case distinction. This makes the refinement local in the
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Input: PTP P , dir ∈ {min,max}, ε ≥ 0
A := Ai(P );
b := if dir = min then 1 else 0;
Loop:

compute σa and pdir
A,n for n ∈ N;

S, O , E,bp := ∅;
addState(ni , ui ); πb(ni , ui) := b;

while |pdir
A,ni

− πb(ni , ui)| > ε do
take s = (n, u) from O ;
let (G,E,�) = σa(n);
if u � G then stateRefine(n,u); goto Loop;
expand(s);
if backpropagate() then goto Loop;
update πb ;

return {πb(ni , ui), pdir
A,ni

};

Fig. 3. The refinement loop. In each iteration, the abstract adversary is computed, followed by a partial concretisation. The inner loop uses functions
expand(s) to obtain the successors of s and add them to the concretisation, and backpropagate() to ensure consistency of the time constraints. It is aborted
if a refinement step occurred.

addState(s)
if s /∈ S then

let (n, u) = s,
(l,ϕ,ρ) = n;

add s to S;
η(s) := ρ;
if n /∈ Nd ∪ Ne then

add s to O ;

expand(s)
let (n, u) = s, (G,E,�) = σa(n);
foreach λ j( f j , r j ,n j) in � do

s j := (n j , f j(u));
addState(s j);
add e j := (s, λ j , r j , s j) to E;
η(e j) := E ∩ [r j := 0]η(s j);
if η(s) � η(e j) then add s to bp;

Fig. 4. Procedure addState(s), left, adds a new state s to the partial concretisation, initialises its time constraints η(s), and schedules it for expansion (puts it
in O ) if necessary. Procedure expand(s), right, determines the successors s1, . . . , sk of s, adds the edges from s to s j , and adds s to bp if its time constraints
now need to be strengthened.

backpropagate()
while bp �= ∅ do

take s from bp, where s = (n, u) and n = (l,ϕ,ρ);
η′ :=RX

�0;

foreach e ∈ Es do η′ := η′ ∩ η(e);
if η′ = ∅ then

C := unsatisfiable core for ρ, {η(e) | e ∈ Es};
timeRefine(n, C ); return true;

η(s) := ρ ∩ ↙ η′;
foreach e = (s′, λ′, r′, s) ∈ E do

let (n′, u′) = s′ , (G′,E ′,�′) = σ(n′);
η(e) := E ′ ∩ [r′ := 0]η(s);
if η(e) = ∅ then

C := unsatisfiable core for E ′[r′ := 0], η(s);
timeRefine(n, C ); return true;

if η(s′) � η(e) then add s′ to bp;
return false;

Fig. 5. backpropagate() strengthens the constraints η(_) in order to make them consistent. A state s is in bp if η(s) does not imply η(e) for some edge
e = (s, λ, r′, s′). The function takes states from bp and strengthens their constraints (potentially causing new additions to bp) until a contradiction occurs
(in which case a refinement step is triggered and we return true) or bp is empty (in which case a fixpoint was reached, and we return false). Since in each
iteration one of the finitely many zones η(s) shrinks, and zones satisfy the descending chain condition, the procedure always terminates.

sense that we only use information directly related to state (n, u), rather than having to take the entire concretisation into
account. The result of this split is a pair of new nodes n+ = (l,ϕ ∧ g,ρ) and n− = (l,ϕ ∧ ¬g,ρ). We then modify the sets
of transitions:

• first, n+ and n− both inherit the outgoing transitions in T (n);
• then, for each τ = (G,E, λ1( f1, r1,n1) + · · · + λk( fk, rk,nk)) in A:

– find the indices I := { j | n j = n} of edges which need to be redirected;
– for each possible redirection ν : I → {n+,n−}, add a new transition τν := (Gν,E, λ1( f1, r1,n′

1) + · · · + λk( fk, rk,n′
k))

with n′
j = ν( j) for j ∈ I , n′

j = n j otherwise, and Gν obtained from G by adding the corresponding preconditions g ◦ f j

or ¬g ◦ f j for j ∈ I;
– for each n′ = (l′,ϕ′,ρ ′) with τ ∈ T (n′), replace τ by those τν for which ϕ′ ∧ Gν is satisfiable.
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stateRefine(n, u)
if n = ni then remove σa(ni) from T (ni); return;
let (l,ϕ,ρ) = n, (G,E,�) = σa(n);
g := first constraint from G with u � g;
n+ := (ln,ϕ ∧ g,ρ);
n− := (ln,ϕ ∧ ¬g,ρ);
T (n+) := T (n−) := T (n);
split(n, {n+,n−});

Fig. 6. stateRefine(n,u) splits node n into new nodes n+ , n− based on a guard constraint violated by u.

split(n, N ′)
N := (N \ {n}) ∪ N ′;
foreach n′ = (l,ϕ,ρ) ∈ N do

T ∗ := ∅;
foreach τ ∈ T (n′) and τ ′ = (G′,E ′,�′) ∈ tsplit(τ ,n, N ′) do

if ϕ ∧G′ satisfiable and ρ ∩ E ′ �= ∅ then add τ ′ to T ∗;
T (n′) := T ∗;

remove unreachable nodes;

Fig. 7. split(n, N ′) replaces the node n with the set N ′ of nodes into which n has been split, using tsplit (Fig. 8) to obtain the corresponding sets of
transitions.

tsplit(τ ,n, N ′)
let (G,E, λ1( f1, r1,n1) + · · · + λk( fk, rk,nk)) = τ ;
S := ∅; I := { j | n j = n};
foreach ν : I → N ′ do

for j = 1, . . . ,k do
n′

j :=if j ∈ I then ν( j) else n j ;

let (l′j ,ϕ
′
j ,ρ

′
j) = n′

j ;

Gν := G ∧ ∧
j∈I (ϕ

′
j ◦ f j);

Eν := E ∩ ⋂
j∈I [r j := 0]ρ ′

j ;

τν := (Gν ,Eν , λ1( f1, r1,n′
1) + · · · + λk( fk, rk,n′

k));
add τ ′ to S;

return S;

Fig. 8. tsplit(τ ,n, N ′) is an auxiliary function for the refinement procedures. Given that n is split into a set N ′ of nodes, it computes all possible variants of
the given transition τ where each edge leading to n is redirected to some node in N ′ instead.

Satisfiability checks needed in the last step of the above are performed using an SMT solver. Pseudocode for the refinement
procedure stateRefine(), along with auxiliary functions split() and tsplit() are shown in Figs. 6, 7, and 8.

Note that the strengthening of G to G′ ensures the refined abstraction is again tight, and this is the step which actually
introduces new predicates into the abstraction. Furthermore, the refined abstraction remains sound.

Theorem 4. Let A = (N,ni, Ne, T ) be an MDP abstraction of PTP P , and let A′ = (N ′,n′
i, N ′

e, T ′) be obtained from A by a state
refinement. If A is sound for P , then so is A′ . If A is tight, then so is A′ . Furthermore, A′ is a proper refinement of A in the sense that
the state assertions ϕ ∧ g and ϕ ∧ ¬g in the new nodes are both satisfiable.

Proof. Let ∇ be a reflection of adversaries for A, and let A′ be obtained from A by splitting n into n+ , n− using the
constraint g . We can then adapt ∇ by defining for each wq ∈ Q +

c with q = (l, u, v) and each δ � 0:

∇′(wq, δ) =
⎧⎨
⎩

n+ if ∇(wq, δ) = n, u � g,

n− if ∇(wq, δ) = n, u � g,

∇(wq, δ) otherwise.

Since ni and error nodes n ∈ Ne are never split (the former because it only occurs in (ni, ui), and inconsistency with
ui means that σ(ni) cannot be taken and can be discarded; the latter because there are no outgoing transitions), we
still have ∇′(wq, δ) = ni iff q = (li, _, _) and ∇′(wq, δ) ∈ Ne iff q ∈ Q e . Let w ∈ Q +

c , and σ be a (concrete) adversary for
P with σ(w) = λ1q1 + · · · + λkqk induced by δσ (w) ∈ R�0 and τσ (w) = (G,E, λ( f1, r1, l1) + · · · + λk( fk, rk, lk)). Since ∇
is a reflection of adversaries, T (∇σ (w)) contains a corresponding abstract transition τa = (G′,E ′, λ1( f1, r1,∇σ (wq1)) +
· · · + λk( fk, rk,∇σ (wqk))). Let I be the set { j | ∇σ (wq j) = n} and let the function ν : I → {n+,n−} be given by ν( j) = n+
iff q j � g . The refinement creates (among others) the new abstract transition τν := (G′′,E ′, λ1( f1, r1,∇′

σ (wq1)) + · · · +
λk( fk, rk,∇′

σ (wqk))) with G′′ obtained from G′ by adding the respective preconditions.
Existence of the concrete transition σ(w) implies that ∇′

σ (w) satisfies these preconditions, and τν occurs in T ′(∇′
σ (w))

after the split. So ∇′ is a reflection of adversaries. As for concretisability of transitions, let τ ′ = (G′,E ′, λ1( f1, r1,n′ ) + · · · +
1
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Fig. 9. MDP abstraction for the running example, after state refinement (see Example 4).

Fig. 10. Partial concretisations for the refined abstraction of Fig. 9 (see Example 4).

λk( fk, rk,n′
k)) be a transition in A′ . Then τ ′ was obtained from a transition τ = (G,E, λ1( f1, r1,n1) + · · · + λk( fk, rk,nk)) in

A such that:

(i) G′ ⇒ G and E ′ ⊆ E ;
(ii) for each j, either n j = n′

j or n j = n,n′
j ∈ {n−,n+}; and

(iii) either τ ∈ T (n′), τ ′ ∈ T ′(n′) for some n′ , or τ ∈ T (n), τ ′ ∈ T ′(n−) ∪ T ′(n+).

In each case, the associated locations are the same, so any concrete transition witnessing concretisability of τ also does so
for τ ′ , and we are done.

In order to preserve tightness, all transitions have their guard G strengthened by the preconditions of the newly intro-
duced constraints as needed; note that time constraints are copied from n to n+ , n− and remain unchanged otherwise, so
that E does not need to be changed.

Finally, ϕ ∧ g is satisfiable since otherwise the transition σa(n) = (G,E,�) would not have been in T (n), and ϕ ∧ ¬g is
satisfiable since the valuation u giving rise to the split satisfies both. �
Example 4. We return to the partial concretisation shown in Fig. 2 (right). The next step of forward exploration, from
(n3, c = 0), fails since the guard constraint c > 0 is violated. Thus, node n3 is split using the predicate c > 0. Fig. 9 shows
the resulting MDP abstraction, where node n3 has been split into n4 and n5, representing the states with c > 0 and c � 0,
respectively. This leads to a corresponding split of transitions. Note the strengthening of guards with preconditions to
ensure tightness. Fig. 10 shows two successive partial concretisations for the new abstraction. The first step encounters
the clock constraint x < 1 on the transition from n5 and propagates it backwards. In the second step, we expand (n4, c = 0),
encountering the constraints x < 1, y > 3. Backpropagation then obtains the constraints:

• ↙ (x < 1 ∧ y > 3) ≡ y > x + 2, added to (n4, c = 0);
• [x := 0](y > x + 2) ≡ y > 2, added to the edge (n1, c = 0) → (n4, c = 0);
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timeRefine(n, C )
let (l,ϕ,ρ) = n, {c1, . . . , cm} = C , with c j ≡ xi j−1 − xi j � j b j ;

/* where i0 = im, and ordered such that only i0 can be 0 */
if i0 > 0 then

for j = 1, . . . ,m do
ρ ′ := c1 ∩ · · · ∩ c j−1 ∩ c j ;
n∗

j := (l,ϕ,ρ ∩ ρ ′);

T (n∗
j ) := {(G,E ∩ ρ ′,�) | (G,E,�) ∈ T (n)};

else /* c1, cm are lower bounds */
n∗

1 := (l,ϕ,ρ ∩ c1);
T (n∗

1) := T (n);
for j = 2, . . . ,m − 1 do

ρ ′ := c2 ∩ · · · ∩ c j−1 ∩ c j ;
n∗

j := (l,ϕ,ρ ∩ ρ ′);

T (n∗
j ) := {(G,E ∩ c1 ∩ ρ ′,�) | (G,E,�) ∈ T (n)};

n∗
m := (l,ϕ,ρ ∩ c2 ∩ · · · ∩ cm−1);

T (n∗
m) := {(G,E ∩ c1 ∩ · · · ∩ cm−1 ∩ cm,�) | (G,E,�) ∈ T (n)};

split(n, {n∗
1, . . . ,n∗

m});

Fig. 11. timeRefine(n, C ) splits a node with time constraints obtained from an inconsistency. Note the strengthening of the enabledness conditions E , which
amounts to intersecting them with the corresponding source invariants. We distinguish two cases, depending on whether c contains single-clock bounds;
see the proof of Theorem 5 for details.

• ↙ (x < 1 ∧ y > 2) ≡ x < 1 ∧ y > x + 1, added to (n1, c = 0);
• [x := 0, y := 0](x < 1 ∧ y > x + 1) ≡ false, triggering a time refinement step.

3.4. Time refinement

The refinement step for timing inconsistencies is more complex, for several reasons. Firstly, because we treat time sym-
bolically, a failure of concretisability cannot always be localised as it could for the state predicate case. In general, for some
discrete state s, we will be dealing with a contradiction between the constraints for some incoming edge (s0, λ0, r0, s) and
those for the outgoing edges (s, λ j, r j, s j), j = 1, . . . ,k. In particular, we will need to use more than one difference constraint
for splitting and obtain more than two new nodes.

Secondly, because of the implicit passing of time between transitions, we must be careful when splitting with difference
constraints: suppose one of the constraints is a lower bound like x � 5. Naively splitting n = (l,ϕ,ρ) into (l,ϕ,ρ ∩ (x < 5))

and (l,ϕ,ρ ∩ (x � 5)) wrongly eliminates any path which enters n while x < 5, lets time pass until x � 5, and then leaves n.
We avoid this problem by not adding the lower bound x � 5 to the invariant of the second node; instead, we add it to the
enabledness conditions of its outgoing transitions, so that it only has to hold when the node is left.

One consequence of this is that the abstraction will not represent a partition of states, in the sense that exactly one
abstract state is associated to each concrete state. Instead, we have a partition (captured by the notion of reflection) of pairs
(q, δ) of a concrete state q and a delay δ � 0, in the sense that exactly one abstract state is associated to each such pair.

A time refinement step is triggered whenever, during the backpropagation of timing constraints, we find s = (n, u) such
that strengthening η(s) with the constraints η(e) on the outgoing edges e = (s, λ, r, s′) ∈ Es , and successively strengthening
the constraints η(e′) on the incoming edges with η(s), would encounter an empty zone. Given such a contradiction involving
n = (l,ϕ,ρ), the backpropagation algorithm computes an unsatisfiable core C = {c1, . . . , cm} (see Section 2.1), and calls
timeRefine, which, for each j = 1, . . . ,m:

• defines a set of constraints ψ j = {c1, . . . , c j−1, c j} – note that since C is unsatisfiable, every clock valuation satisfies at
least one of the complements ci , so that ψ1, . . . ,ψm define a partition of RX

�0 into zones;
• introduces a new state n∗

j = (l,ϕ,ρ ∩ ψ ′
j), where ψ ′

j is given by the constraints in ψ j not of the form x � c;
• adds to T (n∗

j ) all transitions from T (n), strengthening their enabledness conditions by the constraints in ψ j to take care
of lower bounds and ensure that again E ⊆ ρ .

Finally, the transitions in A are split like in the state-based case. For each τ = (G,E, λ1( f1, r1,n1) + · · · + λk( fk, rk,nk)),
we determine the set I := { j | n j = n}. Then, for each ν : I → {n∗

1, . . . ,n∗
m}, we compute τν := (G,Eν, λ1( f1, r1,n′

1) + · · · +
λk( fk, rk,n′

k)) where n′
j = ν( j) for j ∈ I , n′

j = n j otherwise, and Eν is the intersection of E with the target node precondi-
tions. Lastly, for each n′ = (l′,ϕ′,ρ ′) with τ ∈ T (n′), we replace τ by those τν for which Eν is non-empty. Pseudocode for
the time refinement procedure timeRefine() is given in Fig. 11.

Theorem 5. Let A = (N,ni, Ne, T ) be an MDP abstraction for PTP P and A′ = (N ′,ni, Ne, T ′) be obtained from A by a time refinement
step. If A is sound for P , then so is A′ . If A is tight, then so is A′ . Furthermore, A′ is a proper refinement of A in the sense that, for each
of the new nodes n∗ , either its invariant or the enabledness condition on its outgoing transitions is stronger.
j
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Proof. Let ∇ be a reflection of adversaries for A and A′ be obtained from A by splitting n = (l,ϕ,ρ) into n∗
1, . . . ,n∗

m using
an unsatisfiable core c1, . . . , cm . Like in the proof of Theorem 3, we can refine ∇ by mapping all w, δ with ∇(w, δ) = n to
a suitable n∗

j instead. We make one simplifying assumption on the ordering of c1, . . . , cm . Recall that any variable occurs
in exactly 2 or 0 constraints of an unsatisfiable core; in particular, there is at most one lower bound x � b and one upper
bound x′ � b′ . We assume that, if these do occur, they are c1 and cm , respectively.

We first treat the case in which each c j is a proper difference constraint, i.e. not an upper/lower bound. In this case, the
new nodes form a partition n∗

j = (l,ϕ,ρ ∩η j), where the η j are pairwise disjoint and closed under time elapse. This means
that, for each q = (l, u, v) ∈ Q c , there is an index jq such that v + δ ∈ ρ ∩ η jq for all delays δ � 0 with v + δ ∈ ρ . We thus
define:

∇′(wq, δ) =
{

n∗
jq

if ∇(wq, δ) = n,

∇(wq, δ) otherwise.

This again ensures ∇′(wq, δ) = ni iff q = (li, _, _) and ∇′(wq, δ) ∈ Ne iff q ∈ Q e .
Let w ∈ Q c(P ) and σ(w) = λ1q1 + · · · + λkqk , induced by δσ (w) ∈ R�0 and τσ (w) = (G,E, λ( f1, r1, l1) + · · · +

λk( fk, rk, lk)). Since ∇ is a reflection of adversaries, T (∇σ (w)) contains a transition τa = (G′,E ′, λ1( f1, r1,∇σ (wq1)) +
· · · + λk( fk, rk,∇σ (wqk))). The refinement produces a corresponding abstract transition τ ′

a = (G′,E ′′, λ1( f1, r1,∇′
σ (wq1)) +

· · · + λk( fk, rk,∇′
σ (wqk))), where E ′′ is obtained by intersecting E ′ with the invariant of ∇′

σ (w) and the preconditions of
the zones ∇′

σ (wq j). The existence of the concrete transition σ(w) shows that E ′′ is non-empty, and therefore τ ′
a will be

included in T ′(∇′
σ (w)).

In case we do have lower and upper bounds c1 ≡ x1 � b1, cm ≡ xm � bm−1, the split of n involves a fragment n∗
1 rep-

resenting all “early” steps, i.e. those taken while c1 is false, all others requiring the outgoing transitions to occur after it
becomes true. We reflect this in ∇′ as follows, for wq ∈ Q +

c with q = (l, u, v):

∇′(wq, δ) =
⎧⎨
⎩

n∗
1 ∇(wq, δ) = n, v + δ � c1,

n∗
jq

∇(wq, δ) = n, v + δ � c1,

∇(n, δ) otherwise,

where again jq is the unique index with v + δ ∈ ρ ∩ η jq . Otherwise, the argument works exactly as in the first case.
As in the state refinement case, we again observe that any transition τ ′ ∈ T ′(n′) is obtained from a transition in A

whose source node belongs to the same location as n′ , each of whose target nodes belongs to the same location as the
corresponding target in τ ′ , and whose enabledness conditions are implied by those in τ ′ , so that A′ inherits concretisability
of transitions from A.

Tightness is preserved by strengthening the enabledness condition E in each transition with the same constraints as
the invariant in its source node (in addition to lower bounds which are only added to E ), and also with the pre-images
[r := 0]ρ of the invariants in their new target nodes (done in tsplit()). State assertions are copied from n to the n∗

j and
remain unchanged otherwise, so that G does not need to be strengthened.

To show that A′ is a proper refinement, it is enough to show that, for each constraint c j in the unsatisfiable core, c j is
not implied by ρ , i.e. c j is satisfied by some t ∈ ρ . There are two cases, depending on where in the backpropagation the
inconsistency giving rise to the split occurred.

If it happened when trying to strengthen η(s) for s = (n, u), then:

ρ ∩ ↙
(
ρ ∩

⋂
e∈Es

η(e)

)
= ∅ ⇔ ↗ ρ ∩

(
ρ ∩

⋂
e∈Es

η(e)

)
= ∅

⇔ ρ ∩
⋂

e∈Es

η(e) = ∅

and the split is performed with an unsatisfiable core C for ρ, {η(e) | e ∈ Es}. By tightness, for each e ∈ Es , η(e) ⊆ E ⊆ ρ , and
η(e) �= ∅ since otherwise a refinement would have been triggered earlier. So each constraint in C is implied by a non-empty
subset of ρ , and therefore satisfied by some v ∈ ρ .

If the inconsistency occurred when strengthening η(e) for e = (s′, λ, r, s) with s = (n, u) and σa(n) = (G,E,�), then:

E ∩ [r := 0]η(s) = ∅ ⇔ E[r := 0] ∩ η(s) = ∅,

and the split is performed with an unsatisfiable core C for E[r := 0], η(s). By tightness, both are subsets of ρ . E[r := 0] is
non-empty since E is non-empty, and η(s) is non-empty since otherwise a refinement would have been triggered earlier.
Again, each constraint in C is implied by a non-empty subset of ρ , and therefore satisfied by some v ∈ ρ . �
Example 5. For presentational simplicity, we illustrate time refinement on a separate example. Fig. 12 (top left) shows part
of an MDP abstraction in which we want to split n1 with c = {x > 2, x < y, y < 1}. From c, we first obtain a partition
{x � 2, x > 2 ∧ x � y, x > 2 ∧ x < y ∧ y � 1}. The straightforward analogue to the state-based case, using these zones as
invariants in three copies of n1, falsely makes it impossible for time to progress beyond 2 in l1. Adding lower bounds such as
x > 2 to enabledness conditions instead of node invariants (as on the transition n5 → n2 in the corrected version) fixes this.
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Fig. 12. Time refinement (see Example 5): an MDP abstraction (top left); a naive, faulty refinement, splitting node n1 (top right); and a correct one (bottom).

4. Experiments

We have built a prototype implementation of our local abstraction refinement approach on top of the probabilistic model
checker PRISM [18]. We use an extended version of PRISM’s existing DBM library for manipulating zones and the MathSAT
4 SMT solver [4] for satisfiability queries. Experiments were run on a 64-bit PC with an Intel Xeon CPU X5660 2.80 GHz
and 32 GB RAM. Our implementation is parameterised by the strategy used to search the state space during concretisation.
For models with unbounded data types (see below), we use breadth-first search and set ε = 1 × 10−6 for termination of
refinement; for other models we use depth-first search and set ε to zero.

PRISM and its modelling language already have native support for PTAs, and these can incorporate data variables using
PRISM’s built-in datatypes (bounded integers and Booleans) so we use this as a basis for modelling PTPs. We evaluated
our implementation on 11 case studies. Firstly, we used 6 existing PTA benchmarks [26]: csma full, csma abst (two models
of the CSMA/CD protocol); nrp malicious, nrp honest (two variants of Markowitch & Roggeman’s non-repudiation protocol);
and firewire impl, firewire abst (two models of the FireWire root contention protocol). Secondly, we used real-time versions
of two more complex models: the Zeroconf model of [13] (zeroconf full), and the sliding window model of [11] (sliding
window real-time), which uses infinite data types (an unbounded integer storing the round counter). Finally, we tested our
implementation on three discrete-time (MDP) models with infinite data types: the (original, discrete-time) sliding window
protocol (sliding window discr.) and bounded retransmission protocol (brp) models from [11]; and the discrete-time model
of Zeroconf (zeroconf discr.) from [13], modified so that the counter of “probe” messages sent is an unbounded integer. This
change does not affect the value of the property we check. For brp, we fix the parameter TIMEOUT = 16. In order to support
infinite data types, we slightly extended the PRISM modelling language in the style of PASS [9]. All models and properties,
and our prototype implementation, are available at [27].

We compare our approach to other available tools. For PTPs with only bounded datatypes, we run PRISM [18] (v.4.0.1),
using its game-based abstraction refinement [13] engine (which outperforms digital clocks [19] on all but the zeroconf full
case study). We also compare to FORTUNA [3] (v.0.2), which verifies (priced) PTAs, but we are only able to run a subset of
the benchmarks since models are hard-coded into the tool. FORTUNA only handles maximum probabilities, but can compute
minimum probabilities for some models through hard-coded model translations. For the three MDP models, we compare to
the predicate abstraction tool PASS [9]. None of these tools are applicable for the sliding window real-time model, which uses
both clocks and unbounded data types. Recent work [8] describes an extension of PASS for real-time models. Presently, we
only have access to the experimental results in [8], rather than the tool; we make a brief comparison below.

For the csma full benchmark, we pre-process models to reduce the degree of probabilistic branching and avoid transition
explosion during refinement (details at [27]). PRISM performs better on the original so we use that for comparison.

4.1. Results

Experimental results for the real-time models are summarised in Tables 1 and 2, covering maximum and minimum prob-
ability properties, respectively. The results for discrete-time (MDP) models are in Table 3. For each abstraction refinement
method (PRISM, PASS and our local abstraction refinement), we show the number of abstract states (both the peak and final
number), the number of iterations of refinement and the total time. For FORTUNA, we just show states and time, since no
refinement is performed.

Our prototype consistently outperformed PRISM’s game-based abstraction for PTAs except on the firewire impl model
with T = 10 000. We use a significantly higher number of refinement steps, but these are small, local refinements and,
crucially, the size of the abstraction constructed is typically much smaller. It should be noted, though, that the zeroconf full
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Table 1
Experimental results for real-time models (maximum probabilities).

Model & parameters PRISM (stoch. games) Local abstr.-refinement FORTUNA Probability

States
(peak/final)

Iter. Time
(s)

States
(peak/final)

Iter. Time
(s)

States Time
(s)

csma
full
[bmax, K ]

3,8 69 123/69 123 10 18.6 3215/3215 1714 6.3 1058 1.2 2.32e−4
3,16 168 525/168 525 0 42.4 8032/8032 5419 28.1 2266 2.9 2.11e−9
4,8 239 353/239 353 10 151.4 8292/8292 3320 20.0 2315 4.4 1.65e−5
4,16 646 019/646 019 0 461.8 18 548/18 548 10 728 83.0 4547 9.1 7.65e−13

nrp
malicious
[T ]

20 30 088/30 088 6 36.8 556/556 540 4.6 635 1.9 0.10566
25 58 494/58 494 6 80.7 490/490 482 2.1 805 4.3 0.10566
30 85 807/85 807 6 124.5 770/770 762 7.6 crashed 0.10566
35 122 182/122 182 6 227.6 968/968 949 7.4 1145 10.4 0.10566

zeroconf
full
[N, M, K ]

3,8,4 142 627/1690 0 13.4 2273/2273 310 3.4 n/a 3.021e−5
3,8,8 231 363/3162 0 21.5 2476/2476 405 4.7 n/a 2.351e−9
4,8,4 1 979 351/5481 0 275.7 13 116/434 849 33.9 n/a 1.464e−4
4,8,8 3 109 815/8737 0 489.7 13 667/818 1189 53.5 n/a 5.013e−8

sliding
window
real-time
[N, p]

8,0.5 n/a 4666/4666 3561 61.8 n/a 0.78123
8,0.98 n/a 4286/4286 3231 284.1 n/a 0.05805
10,0.5 n/a 5888/5888 4455 104.9 n/a 0.78125
10,0.98 n/a 5317/5317 4013 614.1 n/a 0.05805

Table 2
Experimental results for real-time models (minimum probabilities).

Model & parameters PRISM (stoch. games) Local abstr.-refinement FORTUNA Probability

States
(peak/final)

Iter. Time
(s)

States
(peak/final)

Iter. Time
(s)

States Time
(s)

csma
abst
[bmax, T ]

1,1000 6420/6420 0 1.3 108/108 78 0.42 254 0.21 0.0
1,2000 24 789/24 789 37 9.5 402/397 471 1.3 437 0.39 0.86979
1,3000 80 741/80 741 76 158.5 749/749 876 2.95 1178 2.15 0.99982
1,4000 91 923/91 923 0 69.2 1236/1236 1451 9.26 1900 5.9 0.9999997

firewire
abst
[delay, T ]

360,5000 206/206 7 0.26 31/31 20 0.09 64 0.02 0.78125
360,10 000 1020/1020 19 0.86 97/96 91 0.30 181 0.05 0.97473
360,20 000 9070/9070 40 7.5 347/347 340 0.85 641 0.36 0.99963
360,30 000 34 682/34 682 46 102.1 1049/1049 1057 5.5 1378 1.44 0.99999

firewire
impl
[delay, T ]

360,2500 1443/1443 0 0.82 178/178 115 0.55 n/a 0.5
360,5000 4463/4463 17 3.2 991/990 1230 2.6 n/a 0.78125
360,7500 10 700/10 700 34 17.8 2030/2030 2196 9.9 n/a 0.93164
360,10 000 24 449/24 449 56 94.1 8434/8434 9143 382.5 n/a 0.97473

nrp
honest
[T ]

80 1531/1531 39 4.5 46/46 44 0.18 n/a 0.86491
100 2286/2286 49 9.0 56/56 54 0.23 n/a 0.92023
200 8311/8311 99 147.1 106/106 104 0.31 n/a 0.99427
400 31 611/31 611 199 2893.4 206/206 204 0.56 n/a 0.99997

model proves to be expensive for PRISM since the current implementation expands parallel composition in a PTA before
constructing an abstraction from it, resulting in a blow-up in the (intermediate) state space. It should be possible to adapt
PRISM to bypass this step and avoid the blow-up.

The comparison with FORTUNA is more varied. Our prototype runs slightly faster on the larger nrp models, and does
not fall far behind FORTUNA on the csma abst and firewire abst models. But FORTUNA performs much better on the csma
full examples. This is because abstraction refinement for these models needs a relatively high number of refinement steps,
each of which requires numerical computation to be performed. For PTAs, it is possible to avoid abstraction refinement
entirely, as done by FORTUNA. On more complex models with many data variables, the benefits of abstraction should be
more visible. In particular, for those with unbounded data variables, our abstraction refinement method works where PRISM
and FORTUNA do not.

PASS has several different refinement strategies, from which we select the best performing one on each model. The
results show that our prototype needs significantly less runtime on the sliding window discr. and zeroconf discr. case studies
(and scales to larger models on the latter). Like for the comparison with PRISM, we use more iterations of refinement, but
each one is cheaper; our abstractions also have significantly fewer states,

For the brp example, PASS performs slightly better: it benefits from a small number of states, while our implementation
suffers from heavy numerical analysis, especially when p1 and p2 are close to one, which makes value iteration converge
very slowly. On this example, we used a simple heuristic that gives significantly improved performance: we discover all
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Table 3
Experimental results for discrete-time models.

Model & parameters PASS Local abstr.-refinement Probability

States
(peak/final)

Iter. Time
(s)

States
(peak/final)

Iter. Time
(s)

sliding
window
discr.
[N, p]

8,0.5 62 160/3357 9 157.7 1546/1546 1197 9.0 0.4999
8,0.98 232 489/5009 6 2027.8 1480/1480 1136 31.6 0.01999999
10,0.5 202 487/1377 12 2244.6 2004/2004 1546 12.9 0.49999
10,0.98 307 748/4452 6 3490.4 1670/1670 1294 58.3 0.01999999

brp
[Max,
p1, p2]

10,0.5,0.5 899/899 10 1.5 793/793 480 7.048 4.883e−4
10,0.98,0.99 899/899 10 4.3 753/753 474 20.899 2.048e−19
20,0.5,0.5 1679/1679 20 4.5 1341/1341 869 11.121 4.768e−7
20,0.98,0.99 1679/1679 20 11.2 1821/1821 1048 165.048 2.097e−36
100,0.5,0.5 7919/7919 100 189.4 4752/4751 4170 254.181 3.944e−31

zeroconf
discr.
[N, M, K ]

3,8,4 4 465 394/10 012 6 283.4 5446/5446 1797 33.2 3.021e−5
3,8,8 4 465 394/17 276 8 459.4 7143/7143 2603 82.8 2.351e−9
4,8,4 memory overflow 17 209/17 209 2818 109.6 1.464e−4
4,8,8 memory overflow 19 411/19 411 3842 255.3 5.013e−8

conflict states during the symbolic execution of an adversary and choose the state with the maximum depth for splitting.
Interestingly, this heuristic does not improve performance for other case studies, which is worth further investigation. A dif-
ferent numerical solution method (not value iteration) might also help in this case. Further investigation on a wider set of
untimed models is required to make a more thorough comparison between local abstraction refinement and the techniques
implemented in PASS. At the present time, our focus is primarily on models incorporating both real-time and data aspects.

Finally, we make a brief comparison with the tool PASS-PTA, described in the recent paper [8]. Since this is not available
for testing, we give an indirect comparison based on the results in this paper and in [8]. The only model in common is csma
(property P1 in [8]), on which PASS-PTA is slower than PRISM and local abstraction refinement is faster. For zeroconf our
results are from a more complex variant of the model than in [8]. We intend to perform a more in-depth comparison when
PASS-PTA becomes available.

4.2. Overview

In summary, our approach tends to perform well, generating comparatively small abstract models using a relatively large
number of (small, local) refinement steps. When the number of refinements becomes particularly high (e.g., csma with
bmax = 4, K = 16), performance is degraded but, in our experiments, the tool still outperformed the game-based abstraction
of PRISM. This gain derives from the use of simple operations on smaller abstractions and a reduction in the amount of
numerical computation that needs to be performed.

Perhaps unsurprisingly, our approach performs better on real-time models, than on the versions that have been discre-
tised. Compare, for example, the zeroconf models in Tables 1 and 3. These models are equivalent (and indeed, the results
match), but abstraction is much more efficient when applied to the real-time version. For the sliding window model, a direct
comparison is not possible since the real-time version of the model contains an additional clock because of limitations in
the modelling language. This model does, though, illustrate the main benefit of our approach: the ability to verify models
where abstraction of both the timed and data aspects is required, in particular when both real-time clocks and unbounded
data types are present.

5. Conclusions

We have presented a novel abstraction refinement approach for the verification of probabilistic, real-time systems with
potentially infinite data variables. Our approach uses local refinement steps, which results in more compact abstractions
than alternative abstraction refinement techniques.

Future work includes extending it to support probabilistic hybrid automata (where operations to build and refine ab-
stractions are even more costly) and applying it to mainstream programming languages such as C, Java or SystemC.
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