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A B S T R A C T   

Acknowledging the conditionality of model-based evidence facilitates the dialogue between 
model developers and model users, especially when models are used to guide decisions at the 
science-policy interface. In general, model users have limited access to verify the realism of a 
model, being only exposed to model plausibility and trustworthiness; instead, modellers have an 
an array of validation and verification techniques available. In the end, model credibility is what 
both developers and users aim for, also in the interest of shielding from the possible pitfall of 
over-interpreting the model results. To this end, in this contribution we discuss sensitivity 
auditing, an extension of sensitivity analysis, that can help model developers and users to over-
come communication barriers and foster dialogue around modelling activities. The use of 
sensitivity auditing is not limited to models in a restricted sense, but it can be applied to any 
policy-relevant instance of quantification, including metrics, rankings and indicators. We present 
six real-world applications of sensitivity auditing to instances of quantification in a range of socio- 
environmental systems, including public health, education, and the water-food nexus. These 
examples reveal the usefulness of sensitivity auditing in facilitating the proper use of numbers and 
models at the science-policy-society interface and in avoiding uncertainty laundering.   

1. Introduction 

Society is increasingly exposed to evidence from mathematical models. As in the case of COVID-19, it has become apparent that the 
level of reciprocal domestication between models and society has scope for improvement (Saltelli, Bammer et al., 2020), lest models 
themselves become mired in controversy (Rhodes & Lancaster, 2020). 

Models are typically controlled by large numbers of interacting factors. The construction of a model involves modelling choices and 
assumptions that tend to stratify over the lifetime of the model. This calls for the careful and continuous monitoring of uncertainty at 
all stages of model construction and operation, especially when models are called on to inform the adoption of policy decisions or the 
drafting of regulations (Pontius & Millones, 2011). 

Uncertainties may be characterised using two distinct but related methods of analysis. The first is uncertainty analysis (UA) (Saltelli 
et al., 2008), wherein several uncertain model inputs are assigned a probability distribution that reflects their measurement error, 
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natural variation, inherent randomness, and/or the disagreement of experts. By sampling from these distributions and running the 
model repeatedly, it is possible to propagate these uncertainties and generate an empirical distribution function for the output(s) of 
interest. This is also known as an error propagation exercise or forward uncertainty analysis. The available methods for performing this 
analysis are often classified as Monte Carlo methods. Their purpose is to explore the space of the input factors and to generate a full 
spectrum of model behaviours. 

A second useful tool is sensitivity analysis (SA) (Saltelli et al., 2008), in which the goal is to ascertain the most influential uncertain 
inputs. In other words, SA determines the sensitivity of the model’s outputs to individual inputs (or groups of inputs) by systematically 
exploring their uncertainty space. 

Both UA and SA imply a degree of discretion and judgement. This is especially the case when setting the boundary of the modelled 
system in terms of choosing which physical and/or social processes to include, what temporal resolution and/or spatial scale to adopt, 
and so on. Additionally, performing UA and SA requires choices as to what inputs are to be taken as uncertain, the selection of the 
probability distributions to describe the input uncertainty, and the question of what type of sensitivity (i.e., importance) measure to 
use. 

The description so far has been of a ‘technical’ nature. However, the choices described might be conditioned by individual bias – 
whether disciplinary or normative – or by plain interests. It is not difficult to imagine a situation in which a model is used to assist in a 
decision related to policy or regulation and where different actors have divergent visions of what should be modelled and how. In other 
words, mathematical models reflect the cultural and normative biases of their developers. As a result, the entire modelling process and 
its conclusions, including its technical UA and SA, can be deconstructed by first revealing and then contesting the modeller’s choices 
and views. These may include the model’s purpose and the frames adopted. 

The value of deconstructing the modelling process is especially significant in situations characterised by high stakes, urgent de-
cisions, uncertain facts, and contrasting values. This is the realm of Post-normal Science (PNS) (Funtowicz & Ravetz, 1993, 1994; 
Ravetz, 1997) for settings where the use of science falls beyond the traditional puzzle-solving domain of normal science (Kuhn, 1962). 

The key ingredients of PNS, which are especially valuable in relation to forms of quantification of various natures, are:  

• The non-separability of facts from values in the framing of the problem;  
• The consideration of the position to the observer (i.e., an invitation to reflexivity);  
• The reference to an extended peer community, intended as deliberative, contributing both disciplinary and non-disciplinary 

knowing to the solution of a problem. This community may include academics as well as whistleblowers, investigative journal-
ists, and lay citizens involved in or interested by the problem at hand. 

That is to say, technical SA is never the end of the story when the model must be audited or scrutinised; something more is needed. 
We propose here sensitivity auditing, an approach to extend uncertainty and sensitivity analyses to PNS-like settings (Saltelli et al., 
2013). The name sensitivity auditing reflects the ambition to render the model accountable to an audience beyond its creators (Saltelli & 
Funtowicz, 2014). 

The audience for the approach would ideally consist of the extended peer community that has a stake or interest in the issue being 
quantified. Here, sensitivity auditing would be useful to negotiate the nature of the problem, the framing of the story being told by a 
quantification, and – in general – its underpinning technical and political assumptions. It is not rare that in a conflicted issue, in what 
have been termed ‘wicked problems’ (Rittel & Webber, 1973), what constitutes a solution for a party is the problem for the opposing 
one. 

2. Sensitivity auditing 

Sensitivity auditing has been recommended in guidelines for impact assessment, including those of the Science Advice for Policy by 
European Academies (2019) and those revised by the European Commission (2021). 

Sensitivity auditing is based on a seven-point checklist shown as follows:  

• Rhetorical use: Check against a rhetorical use of mathematics – Are large models being used where simpler ones would suffice? 
Are model results and scope extrapolated beyond their intended range/settings of applicability?  

• Assumption hunting: What assumptions were made? Were these explicit or implicit?  
• Detect Garbage In, Garbage Out (GIGO): Was the uncertainty in the input artificially constrained to boost the model’s certainty? 

Or, conversely, was it bloated so as to, for example, prevent regulation in a case of harmful products?  
• Anticipate criticism: Find sensitive assumptions before they find you – It is better to anticipate criticism by undertaking robust 

uncertainty and sensitivity analyses before publishing one’s results.  
• Aim for transparency: Black box models do not play well within a public debate.  
• Do the right sums: Do the right sums, not just the sums right - Is the issue properly identified or does the model address the ‘wrong’ 

problem (or a closed definition of what the problem might be), instead of including multiple perspectives?  
• Perform UA, SA: Perform thorough and state-of-the-art uncertainty and sensitivity analyses. 

All parties in a dispute in the context of conflicting scientific evidence could in principle use sensitivity auditing. For instance, to 
build a defensible, plausible model. An opposing party could use the approach instead to demonstrate the irrelevance, bias or strategic 
use of a model-based inference to serve one own’s agenda produced by the ‘antagonist’. The valuable aspect of this situation is that all 
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parties need to engage with the evidence suggested by their opponents instead of just dismissing it. 
In this contribution, we present for the first time a systematic mapping of sensitivity auditing onto other theoretical frameworks 

recently proposed, as well as positioning the methodology into the emerging field of ethics of quantification. 
The tenets of sensitivity auditing were stressed in a recent manifesto, Five ways to ensure that models serve society (Saltelli, Bammer 

et al., 2020). In the document, the modelling of the COVID-19 pandemic was taken as the point of departure to discuss the social nature 
of modelling and the need for better societal negotiation of what models can achieve. Sensitivity auditing has also an affinity with the 
Numeral Unit Spread Assessment Pedigree (NUSAP) system in evaluating the quality of quantitative information (Funtowicz & Ravetz, 
1990; van der Sluijs et al., 2005), as well as the technologies of humility of Jasanoff (2007) (Table 1). 

The next section illustrates selected instances of quantification (models, indicators, and metrics) where sensitivity auditing was 
applied. Metrics, ranks and indicators are often presented as crisp numbers, even when based on sophisticated modelling activities, and 
built under the assumption that they can capture complex socio-economic phenomena. For this reason, the application of sensitivity 
auditing to these forms of quantification is relevant, especially when the numbers form the basis for policies and decisions. 

We chose six case studies from various socio-environmental fields to encourage the uptake of sensitivity auditing across domains 
having different modelling practices. In this way we aim to raise interest from a wider audience corresponding to different schools and 
cultures of modelling. Focusing on a single model/modelling activity would certainly offer the advantage of a more detailed close up 
on the approach, yet readers outside the specific domain investigated would miss the potential of sensitivity auditing. 

To offer an idea of the versatility of the approach, selected examples are given relevant to policymaking and/or that have received 
vast media coverage. The pool of instances of quantification covered ranges from modelling practices in terms of several modelling 
activities within a particular domain to single indicators/ranks. We apply systematically all rules to all cases by expanding on the 
findings of the previous publications in which we have deconstructed modelling activities from our research field or through col-
laborations with modellers from those fields. This obeys a didactic function: in real life, the rules will need to meet the demands of the 
users; additionally the rules are - in our experience - to be applied recursively. 

3. Case studies of quantifications on socio-environmental systems 

In this section, we present six examples for investigation (Table 2) with the sensitivity auditing seven-point checklist. The two cases 
from the domain of hydrology (sociohydrology and global hydrological models) are new. These examples, which come together under 
the umbrella term of socio-environmental systems, were typically designed to address major societally relevant questions, including 
the following: How much of the biological capacity of the planet is required by a given human activity or population? What are the 
impacts of future hydro-meteorological conditions on water availability? How will the hydrological cycle respond and evolve over time 
under a human-dominated biosphere? What are the available agro-ecological strategies to improve rural livelihood and food security? 
The inherent complexity of these sustainability-related questions, together with severe uncertainties imposed by anthropogenic socio- 
economic and climatic changes, make these case studies suitable candidates for performing sensitivity auditing. A brief description of 
the case studies is given in the rest of this section. 

• Nutrition and public health economic evaluations: Lifestyle habits such as diet, smoking, and physical activity level are epidemio-
logically linked to non-communicable diseases (NCD). For this reason, it is important to evaluate how policies aimed at triggering 
changes in these factors may produce societal consequences in terms of disease likelihood. The policies are underpinned by the 
available body of evidence, in which modelling activity plays a key role (Lo Piano & Robinson, 2019). Modelling activities are 

Table 1 
Comparison of sensitivity auditing with the manifesto for responsible modelling (Saltelli, Bammer et al., 2020) and Jasanoff’s technologies of hu-
mility (Jasanoff, 2007).  

Sensitivity auditing Manifesto for responsible modelling Jasanoff’s technologies of humility 

Rhetorical use of 
models 

Modelling hubris Technologies of hubris (including risk assessment, cost- 
benefit analysis, and climate modelling) 

Assumption hunting Mind the assumptions ‘Predictive technologies are limited in their capacity to 
internalise challenges that arise outside their framing 
assumptions’ 

Inflating or deflating 
uncertainty 

Mind the unknown ‘These technologies show peripheral blindness towards 
uncertainty and ambiguity’ 

Anticipate criticism – – 
Transparency ‘Predictions need to be transparent and humble’ Transparency implies participation 
Mind the framing Mind the framing Mind the framing. 

Reflect on vulnerabilities. 
Reflect on winners and losers. 
Reflect on learning opportunities. 

Perform proper 
sensitivity 
analysis 

‘…perform global uncertainty and sensitivity analyses … allowing all that 
is uncertain – variables, mathematical relationships, and boundary 
conditions – to vary simultaneously as runs of the model produce its range 
of predictions’ 

–  
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aimed at assessing the effects of the exposures on stress factors and gauging how policies aimed at reducing these factors may 
trigger economic benefits.  

• Ecological footprint: The EF is a successful sustainability indicator proposed by the Global Footprint Network. EF measures human 
demand on natural capital, which is understood as the quantity of natural land (expressed in global hectares equivalents) required to 
support a given local area, a specific country, or globally. The concept of Earth overshoot day is the dimension of EF that has received 
the widest press coverage. This quantity is assessed annually and represents the date by which humanity is expected to have used all 
available natural resources from the Earth’s yearly natural budget. The systematic anticipation of the yearly Earth overshoot day is 
widely recognised as a sign of humanity’s unsustainable pattern of economic development. 

• Global estimates of irrigation water requirements: The impact of humanity on Earth’s water resources is a crucial dimension of sus-
tainability, with the largest water withdrawals typically allocated to irrigate agricultural lands. The progressive increase in 
computing power and the growing awareness of humanity’s impact on global water resources led to the creation of the first global 
hydrological models at the end of the 1980s (Bierkens, 2015). Nowadays, several global models produce spatially-distributed 
estimates of irrigation water requirements (Doll and Siebert (2002), Hanasaki et al. (2008), Sutanudjaja et al. (2018)). Regula-
tory agencies such as the United Nations (UN), the World Bank, and the IPCC use these models to inform policies on water use, 
climate change, and food security (Veldkamp et al., 2018).  

• Sociohydrology: The field of sociohydrology emerged in response to the perceived failure of the traditional paradigm in water 
resource management, which regarded human activity merely as a boundary condition of the hydrologic system (Sivapalan et al., 
2012). Sociohydrology seeks a more thorough understanding of how the hydrological cycle changes according to interactions 
among natural and human forces. CHAWS models play a prominent role in understanding the complex water-related problems that 
human societies are currently facing. The key features of these models are complexity, cross-scale dynamics, and uncertainty (Liu 
et al., 2007; Sivapalan, 2015; Sivapalan et al., 2012; Wheater & Gober, 2013).  

• Food security: Food security is concerned with the global system’s capacity to meet the nutritional needs of a growing global 
population. The UN established a Zero Hunger Strategy cutting across several Sustainable Development Goals, as identified in the 
agenda for 2030 (United Nations). We focus on a work by Bahadur et al. (2016) wherein a trajectory was proposed for achieving 
healthy and sustainable food provision in terms of better agricultural techniques and dietary readaptation.  

• PISA: The PISA test was designed by the Organisation for Economic Co-operation and Development (OECD) to measure the 
problem-solving skills of fifteen-year-old school pupils (https://www.oecd.org/pisa/). The test has been run every three years since 
2000, producing periodic country rankings. 79 countries participated in the 2018 round of tests. Criticisms of the methodological 
and ideological stances of the test, among other aspects, were raised with the publication of an open letter in The Guardian in 2014. 
In the course of the dispute, academics and non-governmental organisations called for a moratorium on and rethinking of the test 
(Araujo et al., 2017). 

4. What aspects emerge by applying the sensitivity auditing checklist? 

In this section, we offer key highlights from applying the seven rules to the six case studies.  

• Rhetorical use: Using sensitivity auditing, Lo Piano and Robinson (2019) concluded that in the field of nutrition and public health 
economic evaluations, most authors adopt Markov chain models despite the availability of less-computational demanding repre-
sentations (Clarke et al., 2005). 

The same issue emerges in the domain of global hydrological models, which are based on large-scale algorithms including a 
plurality of sub-models and dozens of factors, pushing models at the cutting-edge of computer power (Smith, 2015; Sood & Smakhtin, 
2015). Sensitivity auditing has shown that the irrigation water withdrawal values that these models output can be nicely approximated 
using a simple linear regression with the extension of irrigation as the only predictor variable (Puy, Borgonovo, Lo Piano, Levin, & 
Saltelli, 2021). An excess of model detail also dominates the field of sociohydrology, where several factors/components are usually 

Table 2 
Example applications of quantification sensitivity auditing. The name of the quantification has been spelled out when the study has focused on a 
single approach.  

Field, quantification name Type of quantification Model scope Ref. 

Nutrition and Public Health Several modelling 
activities 

Produce economic evaluations and policy 
comparisons 

Lo Piano and Robinson (2019) 

Sustainability, Ecological Footprint (EF) Indicator Quantify and benchmark humanity’s 
impact 

Giampietro and Saltelli (2014a, 
b) 

Global Hydrological Models Several modelling 
activities 

Inform policies on irrigated agriculture Puy et al. (2022a) 

Sociohydrology, Coupled Human and Water 
Systems (CHAWS) 

Several modelling 
activities 

Understand human-driven impacts on the 
hydrological cycle 

Ghoreishi et al. (2021) 

Food Security Model Showcase a sustainable food system for the 
year 2050 

Lo Piano (2017), Saltelli and Lo 
Piano (2017) 

Education, Programme for International Student 
Assessment (PISA) test 

Metrics Evaluate the literacy level across countries Araujo et al. (2017)  
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included in the structure of models to capture human reactions to hydrological variability. As many aspects of hydro-social processes 
are unknown or contradictory, and universally accepted laws for human behaviour related to economic growth, politics, history, 
culture, and other factors do not exist, modellers often tend to compensate for their lack of knowledge by adding more and more factors 
for which scarce evidence is available (Levy et al., 2016; Sivapalan & Blöschl, 2015). 

An interesting case of overinterpretation of a quantification is offered by the EF accounting scheme (Galli et al., 2016; Giampietro & 
Saltelli, 2014a). What is presented as a measure of the planet’s ecological limits is merely a balancing of CO2 emissions with available 
land acting as a sink, on which considerable disagreement exists (Galli et al., 2016; Giampietro & Saltelli, 2014a). 

Prevailing narratives interpret the PISA test by suggesting a causal relationship between test scores and economic growth. This is, 
for instance, the case in a document from the European Commission, which states that if the countries of the European Union (EU) 
could significantly increase their PISA scores, this would directly lead to a quantifiable growth in Gross Domestic Product (GDP) 
(Woessmann, 2016).  

• Assumption hunting: In the field of nutrition and public health economic evaluations, Lo Piano and Robinson (2019) noted a series of 
unexplored assumptions related to:   
– The modelling of the dose-responses adopted in terms of risk factor estimates;  
– The dose-intake variation upon policy implementation and how this would affect different socio-demographic cohorts and 

geographical areas;  
– The timeframe of the interventions and their diminishing/increasing returns;  
– The actual pool of NCDs taken into account in the modelling exercise and their consistency with the investigated timeframe. 

These unexplored assumptions may result in a biased picture of the space of the policy options, which may lead to the selection of 
sub-optimal policies or unintended effects. 

In the EF assessment (Giampietro & Saltelli, 2014a), unexplored assumptions include the issue of neglecting the decrease in CO2 
absorbing capacity with the ageing of forests, or the paradox that replacing natural ecosystems with more productive human-made 
vegetation would lead to an improvement in the planet’s biocapacity rather than impoverishment due to loss of biodiversity and 
natural habitats. 

In the food security assessment (Saltelli & Lo Piano, 2017), available projections to 2050 neglected the diminishing return phe-
nomenon for yields when increasing the cultivated area. The authors also made several claims concerning the possibility of reducing 
the extension of globally cultivated land thanks to higher yields, while neglecting various forms of pressure on the ecosystem. The joint 
effect of these assumptions is at odds with the plausibility of achieving food security in the year 2050 by cultivating a lower global land 
extension. 

Regarding hydrology, sensitivity auditing led to the conclusion that global hydrological models are implicitly grounded in an 
engineering vision of irrigation, wherein irrigation water withdrawals are defined by quantifiable physical and biological processes. 
This vision ignores farmers’ practices and know-how, which significantly influence crop water demand and agricultural water 
management (Puy et al., 2022a). Even CHAWS models are based on ‘black-box’ assumptions (Roobavannan et al., 2018) regarding 
human values, beliefs, livelihoods, and the environment, which are believed to drive human behaviour with respect to water resources 
usage. 

In terms of political assumptions, the PISA test builds on the postulate that it is possible to benchmark the skills students need in 
order to succeed in present-day ’knowledge societies’ against a one-size-fits-all international standard – typically literacy, math, and 
science. Other important subjects, as well as differences in curricula across countries, are excluded from the test. However, countries’ 
well-being and success may emerge from these very curricula differences, and all countries cannot be assumed to necessarily pursue a 
knowledge economy trajectory (Araujo et al., 2017). Failure to capture this aspect could hamper the capacity to design and promote an 
education system that acknowledges the values and identities of countries.  

• Detect GIGO: Some studies in the field of nutrition and public health made use of artificially constrained figures in terms of the 
uncertainty in nutrient intake (Lo Piano & Robinson, 2019). 

Even in the EF accounting, no error in terms of biocapacity is considered, nor is the accuracy of the variable discussed at the local, 
national, and global levels. A data quality score is the only proxy included at the country level. 

In the case of CHAWS, sensitivity auditing notes that underplaying uncertainties in human-water systems causes considerable 
biases in the projected future changes and acceptable decisions. For example, in flood risk assessment, the underestimation of future 
flood damage can severely limit the economic development of an area due to short collective memory, excessive trust in flood pro-
tection structure, and a modelled high risk-taking attitude (Viglione et al., 2014). As another example, Zarekarizi et al. (2020) showed 
that ignoring deep uncertainties surrounding flood hazards, economic factors, and the house lifetime can drastically change the 
‘optimal building elevation’ to meet the US Federal Emergency Management Agency regulations for mitigation decisions. 

In the food security assessment, the figures for the reduction of the global cultivated land area are produced with three significant 
digits, estimated at 438 million hectares for 2050 (Badur et al., 2016). However, uncertainty figures in the current yearly global 
cultivated land extensions are around 20% (i.e., 1000 million hectares (Lo Piano, 2017)). 

When communicating the PISA test results, the survey organisers report only the standard error of the countries’ test scores. Other 
factors of uncertainty that could significantly contribute to volatility in country rankings are neglected. This is the case, for instance, in 
the potential bias arising from the exclusion of students with special educational needs or newly arrived immigrants. This has led to the 
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figures for some countries in certain editions of the test falling below the representativeness threshold imposed by the test designers as 
an assurance of its reliability (Wuttke, 2007). The same issue may emerge from the tendency of the less capable students to refrain from 
participating in the test, which may eventually result in a significant bias between the ‘actual’ and ‘estimated’ scores of a country, well 
beyond what is captured in the standard error of the country’s rank (Micklewright et al., 2012).  

• Anticipate criticism: In the field of nutrition and public health evaluation, the methods used to impute missing data regarding dose 
intake (i.e., using other countries’ figures or running correcting algorithms) were not tested using UA or SA. 

Even in the case of PISA, calls from practitioners have remained unheard to test the sensitivity of the rankings and their volatility to 
modelling assumptions, data collection methods, and the use of the data items (Micklewright & Schnepf, 2006). Leaving uncertainty 
unaddressed is still a common practice, as in the case of the EF. The same holds for the 2050 assessment of food security, where 
reporting on the assessment merely specifies a single number and, in this way, overlooks its possible range of variability and its causes.  

• Aim for transparency: Variable levels of transparency are observable in the case studies. For instance, the global irrigation water 
withdrawal estimates outputted by various large-scale models are available at the Inter-Sectoral Impact Model Intercomparison 
Project (ISI-MIP) (Warszawski et al., 2014). Some of these models are open-source, where the code is available in existing re-
positories (e.g., GitHub LPJmL 4.0, VIC, PCR-GLOBWB), whereas others are still in the process of opening up (e.g., WaterGap 
(Müller Schmied et al., 2020)). However, the underpinning code is rarely commented and the repositories do not include a user 
manual (Kauffeldt et al., 2016). Even CHAWS models are typically not open-access or they are made only available for limited case 
studies (Pouladi et al., 2019; Shafiee & Zechman, 2013; Zhao et al., 2013), often with wanting documentation. 

In the case of the EF, the documentation on the accounting is available but relevant technical coefficients are not openly traceable. 
This is the case for the equivalence factors, which reflect the relative productivity of world average hectares of different types of land 
use. The question of how these quantities were arrived at can only be answered by using a satellite workbook of the footprint accounts, 
which is accessible upon request; as such, the resources are not directly available in an open repository. The same applies to the model 
that underpins the findings of the food security study presented in Badur et al. (2016). 

In the field of nutrition and public health evaluation, a notable example is that of Joint Action on Nutrition and Physical Activity 
(JANPA), whereby a model has been used to explore policy impacts and compare the growing prevalence of overweight and obesity in 
children. The model is privately owned and has not been made available for scrutiny by the public and other modellers.  

• Do the right sum: Flattening health evaluations along a mere economic dimension runs the risk of overlooking the social and cultural 
aspects of lifestyle and nutrition, which – in reality – may be the most relevant aspects for citizens when making choices. The notion 
of health and quality of life is to be captured as per the normative dimensions of citizens’ values, which are not necessarily rep-
resented by monetary proxies. 

Even for global hydrology modelling, most studies do not address the geopolitics of water resources nor important policy di-
mensions such as resource ownership (public vs. private) and access. Emphasising efficiency and productivity hampers the perception 
of significant problems of inequalities in access to resources. The concentration of substantial data and computational resources within 
international organisations may exacerbate North-South power asymmetries and foster data colonialism (Thatcher et al., 2016). 

In the case of food security, the analysis proposed is framed from a developed-world perspective, primarily to be tackled with 
technical solutions and a policy package aimed at addressing the issues in this area of the world. However, the political issue of power 
asymmetry in the international food commodity trade (e.g., in terms of unequal caloric exchange in food crops (Falconi et al., 2017)), 
as well as how this affects developing countries, are left entirely unexplored in the study. In other words, a political problem has been 
reframed into a technical one, while privileging the view of a minority. 

The risk of addressing the wrong question has also been raised for CHAWS that focus on the question of “What is the most likely 
future?” rather than “What kind of future do we want and what are the consequences of different policy decisions relative to that 
desired future?” (Gober & Wheater, 2015). Closer collaborations among sociohydrologists, practitioners, and other real-world actors 
have been advocated to overcome this issue (Lang et al., 2012; Rokaya et al., 2017). 

The PISA test was conceived under the assumption that it would facilitate measurement of the effectiveness of students’ prepa-
ration. This is conceptualised as the degree to which the teaching that students have received is useful regarding the life challenges 
they will encounter in today’s knowledge societies. The test de facto makes the ‘economic’ case for education, which is exclusively 
presented and discussed as a means for economic growth rather than for Bildung, self-cultivation, and emancipation. Incidentally, it is 
possible to see the same narrative underpinning PISA at play in the pervasive rankings of universities, which have been instrumental in 
creating a global market for higher education.  

• Perform UA, SA: We identified several levels of characterisation of uncertainty in the studies considered. These ranged from an 
almost full omission (in the case of the EF, the food security assessment, and the PISA test scores) to various levels of apportioning. 
In the field of nutrition and public health economic evaluations, the vast majority of the studies implemented SA by varying one- 
factor-at-a-time (OAT). However, the approach is wanting for non-additive models because it fails to capture interactions across 
factors and leaves the vast portion of the output uncertainty space unexplored (Saltelli & Annoni, 2010). 
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In global hydrological models, it is also notable that previous research have mostly assessed parametric and structural uncertainties 
in a piecewise manner. This has involved examining the effect derived from changing specific structures (e.g., evapotranspiration 
equation (Vörösmarty et al., 1998) and climate forcing (Müller Schmied et al., 2014)), mainly through OAT or other non-global 
techniques. Another adopted sub-optimal strategy has been to explore uncertainties through model ensembles, as in Schewe et al. 
(2014) or Wada et al. (2013), which do not sample all model formulations (Parker, 2013). A limitation of model ensembles is that they 
do not systematically sample the uncertainty space (Puy et al., 2022a). It is also difficult to know whether the convergence of the 
ensemble is due to the robustness of the estimation or the failure to capture a significant source of uncertainty. 

Better practices are found in the domain of sociohydrology, where uncertainties related to the social aspect of CHAWS (e.g., 
demography, socio-economic development, and agent behaviour), as well as those in the hydrologic environment (e.g., non- 
stationarity deriving from anthropogenic factors such as changes in land use, climate, and water use), have been simultaneously 
addressed. Yet only two studies ((Elshafei et al., 2016; Ghoreishi et al., 2021)) performed a global SA by simultaneously investigating 
CHAWS’ sensitivity to those model factors that (i) govern the internal dynamics of the system, and (ii) determine the external so-
ciopolitical context. 

5. Discussion and conclusions 

To what extent did sensitivity auditing help to make sense of the various quantifications discussed in the present work? How can it 
contribute to better use of mathematical models, or to the process of reciprocal domestication between models and society? 

An important element of this analysis is the scope of a quantification. It is possible to extrapolate models and statistical indicators 
alike beyond the function they were originally conceived for. Sometimes, they may become the very target of policies, like in the case 
of the PISA test. In so doing, they cease to serve as good metrics (Goodhart, 1981). The same applies to mathematical models when the 
model replaces the modelled system as the locus of attention (Rayner, 2012). For example, if EF is taken at face value, ecologically 
unsound measures may be adopted by replacing natural ecosystems with more productive human-made vegetation. As noted in Page 
(2018), using a single model may correspond to hubris; moreover, different forms of quantification, as well as qualitative analyses, may 
better protect against the risk of poor decisions. 

Another important element that has emerged from our analysis is the balancing of the level of complexity and the model’s purpose. As 
far as mathematical models are concerned, the examples discussed here indicate a risk of excess in model details, as discussed for global 
hydrological models (Puy, Borgonovo, Lo Piano, Levin, & Saltelli, 2021) and models used in nutrition and public health economic 
evaluations (Lo Piano & Robinson, 2019). Developers often pursue complexity in the hope that the model will eventually be ‘right’, 
neglecting the trade-off between model complexity and propagation error, which is a phenomenon known as the uncertainty cascade 
(Christie et al., 2011) or O’Neil’s conjecture (O’Neill, 1989). At the same time, a complex model is perceived as conferring epistemic 
authority. However, the appropriate level of model complexity depends on the model’s purpose and function, such as whether it aims 
to understand dynamics, manage resources, predict variables, or inform policy-making (Puy et al., 2022b). 

A trade-off that modellers often face is exploring the model uncertainty space versus adding complexity. Leaving unexplored as-
sumptions may correspond to an instrumental attempt to save the model from irrelevance; after all, no market exists for a model whose 
output is too uncertain to inform a policy direction. Additionally, model overcomplexification may be used as a justification to leave 
the model uncertainty space unexplored, such as when one may already have used all the computational power available and more 
simulations may be unaffordable. As such, decision-makers could be presented with spuriously accurate figures that narrow the 
possible course of action, limiting the policy options to a single or restricted pool of outcomes. Our recipe here is to allocate resources to 
explore the uncertainty space of assumptions, especially when attempting to develop a model in a direction of greater detail and 
complexity. Increasing complexity without simultaneously exploring the implications of this addition results in unexplored 
complexity, which is ultimately detrimental to trust in the modelling work. 

For instance, Sheikholeslami et al. (2019) showed that for a complex coupled land-surface hydrology model developed by Envi-
ronment and Climate Change Canada (MESH) (Pietroniro et al., 2007), the model output variability was primarily determined by 4 of 
the 100 input factors. 

There is a substantial amount to gain by heeding practices for transparent quantification. The ingredients of open science (Fecher & 
Friesike, 2014), which include open models, data, and code, are welcome foundations for strategies to alleviate the problems high-
lighted by our sensitivity auditing. Progress has indeed been made, for instance, in some global hydrological models (Kauffeldt et al., 
2016). However, existing initiatives for open and responsible modelling need to gain traction. On the same grounds that research 
institutions and journals now consider pre-registration and availability of data mandatory, this should be extended to properly 
commented source code (Walters, 2020). 

Assumptions and model framing also represent a crucial issue. Tacit assumptions may be at the basis of a model, as discussed in the 
case of food security. The methodological and normative stances on which these assumptions rest may appear obvious or ‘standard’ to 
the modellers, but heretical in the eyes of an observer with a different orientation. By bringing them under the spotlight, sensitivity 
auditing allows to disclose what choices of inclusion and omission a modelling activity is based on, i.e. what it is assumed in and what 
is assumed out in the representation, which relations of causality have been proposed and their rationale. The impact of some of these 
can quantitatively be assessed through uncertainty and sensitivity analyses (rule 4 and rule 7 of the checklist). Transparency (rule 6) 
about both quantifiable and unquantifiable assumptions is also essential to promote scrutiny and reflexivity from the extended peer 
community. 

As noted by Beck, “It is not uncommon for political programmes to be decided in advance simply by the choice of what expert representatives 
are included in the circle of advisers” (Beck, 1992). Accepting that the technique is never neutral (Saltelli, Benini et al., 2020) implies that 
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spelling out the adopted standpoint to all interested parties is necessary for the healthy use of quantification. 
Finally, what role can modelling play in the context of extended peer communities?. Knowledge and model quality appraisal tools 

have proven to be quite effective to shed light on modelling studies and practices. An example not discussed in the present work but 
relevant to our discussion is that of extended peer communities in action, as investigated in Laes et al. (2011). Here, the community 
involved in the ExternE project attempted to estimate the external costs of a potential large-scale nuclear accident at a Belgian reactor. 
In the course of a veritable ‘hunt for assumptions’, the workshop participants identified as many as 30 assumptions underpinning the 
calculations. The methodology adopted was the NUSAP scheme for knowledge-quality assessment (van der Sluijs et al., 2005), which 
allowed the experts and stakeholders to bring to the fore the implicit meanings and value-laden nature of the assumptions under-
pinning the proposed quantification. The participants also managed to identify the six most critical calculation steps and concluded 
that most of them were questionable, and ultimately unreliable to the effect of producing a plausible estimate of the cost of an accident. 

Making models and their use more responsible can serve as an important element of an overall ethics of quantification (Saltelli & Di 
Fiore, 2020; Saltelli et al., 2021), both for visible numbers (mathematical and statistical models, rating, and ranking) and invisible ones 
(e.g., deep learning algorithms used to make decisions in business, policy, and everyday life (Lo Piano, 2020)). Recent studies on the 
sociology of quantification (Mennicken & Espeland, 2019; Popp Berman & Hirschman, 2018) offer rich material for modellers to 
consider in their work. Established good practices or guidelines (see the Supplementary Material for a review) are not lacking in the field 
of quantification. The problem with modelling proper is that it is not an established discipline, and different academic communities 
pursue it in their own separate ways (Saltelli, 2019a). Thus, the dialogue among modellers is less structured than that among, for 
example, statisticians debating significance or official statisticians with their codes of good practice. 

Many researchers have insisted – as we do in sensitivity auditing – on the need to pay attention to context and purpose, and to re- 
validate models whenever they change or are applied to a different case (Badham et al., 2019; Eker et al., 2018; Hamilton et al., 2019; 
Jakeman et al., 2006; Little et al., 2019; Padilla et al., 2018). Several prior works recommend that modellers should heed the advice 
from the social sciences, but two problems arise here. 

One problem is the existence of a crisis in scientific practice (see Saltelli and Funtowicz (2017) or references in Saltelli, Bammer 
et al. (2020)[supplementary]). The crisis has led some authors to discuss a “Darwinian fitness” of bad science (Smaldino & McElreath, 
2016), which is a comment also voiced by statisticians combating malpractices such as P-hacking and HARKing (Kerr, 1998). The same 
types of malpractice are also present in mathematical modelling (Rhodes & Lancaster, 2020), which are aggravated by the lack of 
disciplinary oversight mentioned above (Saltelli, 2019b). 

A second problem is that the two great families of science – the natural and social sciences – are still scarcely permeable relative to 
one another. For Crowe (1969), there are two “insular scientific communities – the natural and the social – between which there is very 
little communication and a great deal of envy, suspicion, disdain, and competition for scarce resources”. As a result, according to the 
sociologist of science Pinch (1992), social studies appear to have little traction on the disciplines they study; the sociology of science 
and the scientific disciplines themselves do not communicate as much as they could. 

For these reasons, it is possible that the adoption of approaches such as sensitivity auditing will be driven more by necessity – the 
danger of a collapse of trust in numbers – than by a voluntary movement of all modelling communities. We see the structured use of 
sensitivity auditing at the stage of model building, where it is applied to anticipate criticism, as a promising route in the direction of a 
positive change for responsible modelling. Sensitivity auditing could serve as a powerful analytical lens in the present blossoming of 
forms of activism to scrutinise different instances of quantification (see Supporting Materials), as reflected by the examples discussed in 
this paper. 
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