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Summary

Translating sensory information into perceptual decisions is
a core challenge faced by the brain. This ability is under-

stood to rely on weighting sensory evidence in order to
form mental templates of the critical differences between

objects. Learning is shown to optimize these templates for
efficient task performance [1–4], but the neural mechanisms

underlying this improvement remain unknown. Here, we
identify the mechanisms that the brain uses to implement

templates for perceptual decisions through experience. We
trained observers to discriminate visual forms that were

randomly perturbed by noise. To characterize the internal
stimulus template that observers learn when performing

this task, we adopted a classification image approach (e.g.,
[5–7]) for the analysis of both behavioral and fMRI data. By

reverse correlating behavioral and multivoxel pattern
responses with noisy stimulus trials, we identified the crit-

ical image parts that determine the observers’ choice. Ob-
servers learned to integrate information across locations

and weight the discriminative image parts. Training
enhanced shape processing in the lateral occipital area,

which was shown to reflect size-invariant representations
of informative image parts. Our findings demonstrate that

learning optimizes mental templates for perceptual deci-

sions by tuning the representation of informative image
parts in higher ventral cortex.

Introduction

Extracting Classification Images from Behavioral and fMRI

Data
We tested the ability of observers (n = 9) to discriminate
between two classes of polygons (Figure 1A, class I or class
II). Although these stimuli are simpler than familiar objects,
they are advantageous in several respects. First, to investigate
learning, we chose a novel, rather than a familiar, stimulus
space. Second, to ensure that observers discriminated global
shapes rather than local differences between stimuli, we para-
metrically manipulated the stimuli with linear morphing and
rotated them in the image plane across trials. Third, we used
positional noise, which has been shown to support the effi-
cient extraction of classification images from smaller samples
than needed when luminance noise is used [1]; therefore, this
is an ideal method for extracting classification images from a
limited number of fMRI trials.

To identify the specific stimulus components that determine
the observer’s choice (i.e., the discriminative features), we
*Correspondence: z.kourtzi@bham.ac.uk
reverse correlated behavioral choices and fMRI signals with
noisy stimulus trials. This approach has been used widely in
psychophysics (for reviews, see [5, 6]); however, its applica-
tion to neuroimaging has been limited by noisy single-trial
fMRI signals and the small number of samples that can be ac-
quired during fMRI scans [8, 9]. To overcome these limitations,
we developed a new method that uses reverse correlation in
conjunction with multivoxel pattern analysis. We calculated
decision templates on the basis of the choices made by a
linear support vector machine (SVM) classifier that decodes
the stimulus class from the fMRI data measured on individual
stimulus trials. Thus, we combined the power of SVM stimulus
decoding to uncover neuronal preferences [10] with reverse
correlation classification images in order to reveal discrimina-
tive image features that are enhanced through learning.
To directly test the link between human behavior and fMRI

data, we compared human performance and behaviorally
relevant fMRI responses to an ideal observer. To extract
behaviorally relevant fMRI signals, we trained a linear classifier
to predict the observers’ choice. After this, we regressed both
behavioral responses and behaviorally relevant fMRI signals to
the input stimuli and computed the classification images. To
avoid circularity and evaluate whether behavioral performance
and neural representations become more efficient with
learning, we correlated behavioral and fMRI classification
images to an ideal observer rather than to each other.
Behavioral and fMRI Classification Images

To ensure that observers learned to classify the two polygon
classes, we trained them with auditory feedback (minimum
three sessions, 900–1,100 trials per session), resulting in
improved performance, as quantified by a 32.2% reduction
in class discrimination thresholds (F(1,8) = 58.44, p < 0.01).
Importantly, this improvement was reflected in the partici-
pants’ use of particular portions of the image when making
their decisions. Classification images based on the observers’
performance after training showed marked differences be-
tween image parts associated with the two stimulus classes
(Figure 2A). In contrast, we did not observe any consistent
image parts associated with the two stimulus classes before
training, ensuring that the classification images reflected the
perceived differences between classes rather than local image
differences between stimuli.
Having characterized the behavioral decision template, we

used fMRI to determinewhere in the visual cortex this template
is implemented. Given the known role of the ventral visual
pathway in shape processing, we chose to study this pathway
in detailwith the useof high-resolution fMRI recordings.Our re-
sults show that classification images in the lateral occipital area
(LO), but not in early visual areas, revealed image parts that
were perceptually distinct between the two stimulus classes
(Figure 2B, Figure S1 available online). Importantly, there was
little informationabout thisperceptual templatebefore training,
ensuring that fMRI classification templates reflect the
perceived classes rather than stimulus examples. Comparing
classification images derived from behavioral and fMRI data
showed that similar image parts became more discriminable
between the two stimulus classes after training, suggesting a
correspondence between behavioral and fMRI templates.
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Figure 1. Stimuli and Image-Based Description

(A) Sample pentagon-like stimuli comprising 30

equally spaced Gaussian dots with SD = 0.1�.
Two classes of shapeswere generated by varying

the location of the pentagon lines that differed in

their length. The top panel shows the stimulus

space generated by linear morphing between

class I and II polygons (stimuli are shown as a

function of the percent of class II). The bottom

panel shows example stimuli with position noise,

as presented in the experiment.

(B) Radial image decomposition. The class dis-

tance for each of 30 image parts (i.e., 12� large

image regions centered on the position of each

of the 30 Gaussian dots defining the shape con-

tour) was computed by subtracting the mean dis-

tance of class I (red lines) from themean distance

of class II stimuli (blue lines). Positive values indi-

cate larger distances for class I stimuli, whereas

negative values indicate larger distances for

class II stimuli. We identified three most informa-

tive image patches (120�, 210�, and 240�) with

the highest class distances. White stimulus re-

gions signify no differences between stimulus

classes.
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Quantifying Behavioral and fMRI Decision Template

To quantify behavioral and fMRI decision templates, we
compared human and SVM classifier performance to an ideal
observer model (i.e., the maximum performance that was
possible for this stimulus discrimination task).We used a radial
decomposition of the shapes (Figure 1B) and computed the
distance between classes for each image location on the basis
of the behavioral and fMRI data.

To assess whether decision templates became closer to the
ideal after training, we correlated behavioral and fMRI class
distances to ideal class distances for each participant before
and after training. This analysis showed that human perfor-
mance (Figure 3A) and fMRI activation patterns (Figure 3B) in
higher ventral areas became closer to ideal performance after
the observers had learned the stimulus classes. Importantly,
we did not observe significant correlations before training,
ensuring that our fMRI activation patterns reflect perceptual
templates (i.e., representations of discriminative image parts
between classes) rather than differential neural selectivity to
local image features before observers became familiar with
the stimulus classes. That is, linear regression analysis on the
behavioral and ideal class distances showed that both the cor-
relation (t(8) = 8.39, p < 0.01) and the slope (t(8) = 8.86, p < 0.01)
values were enhanced significantly after training (Figure 3A).

Furthermore, correlation (t(8) = 3.59, p < 0.001) and slope
(t(8) = 3.68, p < 0.001) values between fMRI and ideal class dis-
tances increased significantly after training in LO, suggesting
that learning enhanced the representation of the perceived dif-
ferences between classes (Figure 3B). In contrast, we did not
observe any significant changes after training in early (correla-
tion: F(1,8) = 3.43, p = 0.1; slope: F(1,8) = 4.01, p = 0.08) or ventral
(correlation: F(1,8) = 1.49, p = 0.26; slope: F(1,8) = 1.69, p = 0.23)
visual areas. This result in early visual areas was expected,
given that the stimulus manipulations we employed (i.e., stim-
ulus rotation across trials) prevented the learning of local im-
age positions.
Is it possible that the learning-depen-
dent improvement we observed in fMRI
classification images in accordance
with behavior was due to the fact that the classifier was
trained on behaviorally relevant fMRI signals? To control for
this, we trained the classifier on the choices of the ideal
observer that contained all information about the stimulus
space. This analysis (Figure S2A) resulted in similar correla-
tion patterns, as shown in Figure 3B, suggesting that our re-
sults could not be confounded by classifier choice. This link
between behavioral responses and fMRI activation patterns
in higher ventral areas was further supported by enhanced
trial-by-trial correlation after training between observer
choices and classifier predictions (Figure S2B). Additional
control analyses (for details, see the Supplemental Informa-
tion) showed that our results could not be confounded by
univariate signal differences across brain areas, motor re-
sponses, or eye movements.
Altogether, these results suggest that perceptual templates

of shapes are implemented in higher ventral cortex. As well as
being robust to local image rotations across trials, we found
that these templates were also tolerant to stimulus size
changes. In particular, after training, we tested observers’
performance for stimuli that were presented at different sizes
(1.53 or 23 larger) from the trained stimuli. We showed that
behavioral and fMRI classification images for stimuli of
trained and untrained size were highly similar. Specifically,
there were no significant differences (R: t(6) = 20.07, p =
0.95; slope: t(6) = 20.42, p = 0.69) between the correlations
of behavioral and ideal class distances for stimuli of trained
and untrained size. This was also true for the correlation
(F(1,6) < 1, p = 0.59) and slope (F(1,6) < 1, p = 0.48) values of
fMRI and ideal class distances between stimuli of trained
and untrained size in ventral visual areas. Although transfer
of learning across image changes is highly debated [11, 12],
our findings provide evidence that learning tunes representa-
tions of discriminative image parts in higher ventral cortex
that are tolerant to image changes rather than specific local
image positions.
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Figure 2. Classification Images

(A) Behavioral classification images before and after training averaged

across participants.

(B) fMRI classification images for V1 and LO before and after training aver-

aged across participants (see Figure S1 for all areas). Red indicates image

locations associated with a class I decision, whereas blue indicates image

locations associated with a class II decision.
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Identifying Discriminative Image Parts
The optimal strategy for discriminating between the two stim-
ulus classes is to take into account all image locations. Our re-
sults so far show that, after training, observers adopted this
strategy using all informative image locations. To quantify
this effect, we selected the three most informative image parts
that corresponded to shape corners differing between the two
stimulus classes (Figure 1B); that is, local maxima and minima
from the stimulus distance metric description with the highest
distance between classes.

Our results showed increased behavioral class distances
after training (F(1,8) = 151.43, p = 0.001) for these informative
image parts (Figure 4A), suggesting that the training enhanced
the observers’ ability to integrate information across discrimi-
native parts. It is unlikely that spatial correlations across image
locations could drive observer performance, given that noise
samples were independently assigned to each stimulus loca-
tion. However, to control for this possibility, we tested the per-
formance of the ideal observer when information was provided
only for each of the three informative image parts separately
(i.e., the stimuli remained the same but different weights
were applied across image locations). We found that no other
image parts could be recovered reliably in the classification
images when information was provided about one image
part only (Figure S3). This analysis provides evidence that im-
age locations are independent from each other, suggesting
that the optimal strategy is to integrate information across
them.
Analysis of the fMRI data (Figure 4B) showed that represen-

tations of these informative image parts are enhanced after
training in LO rather than earlier visual areas. In particular,
class distances increased significantly for informative image
parts after training in LO (F(1,8) = 9.67, p < 0.01) but not earlier
visual areas (V1: F(1,8) = 1.83, p = 0.21; V2: F(1,8) = 0.22, p =
0.65; V3v: F(1,8) = 3.3, p = 0.11; hV4: F(1,8) = 0.3, p = 0.6). Inter-
estingly, the results based on behavioral and LO class
distances indicate that observers may weight part three
more than parts one and two, suggesting a stronger effect of
training for weaker discriminative signals between stimulus
classes.
Is it possible that the learning-dependent changes we

observed in LO were simply due to higher classification accu-
racies in ventral areas after, rather than before, training? To
control for this possibility, we conducted two additional ana-
lyses. First, we randomly selected 60% of the fMRI trials (given
that mean classifier performance was 61% and ranged from
51% to 71% in LO), assigned correct labels to only these trials,
and trained the classifier (using all correct and incorrect trials)
to predict the stimulus class using an independent data set.
This analysis showed no changes in the classification images
in LO with training. Second, performing the class distance
analysis on data from participants with classification accuracy
higher than chance did not show any significant differences
before and after training in early and ventral visual areas (see
the Supplemental Information). Altogether, these analyses
suggest that our findings could not be simply accounted for
by differences in overall classification accuracies before and
after training.

Discussion

Combining classification image approaches with multivariate
fMRI analysis, we provide evidence for the mechanisms that
the brain uses to optimize mental templates for perceptual de-
cisions through experience. We demonstrate that higher
ventral areas (LO) implement decision templates by integrating
information across image locations and representing informa-
tive image parts in a size-invariant manner.
These findings advance our understanding of the brain

mechanisms that optimize the neural code for efficient percep-
tual decisions in three main respects. First, previous behav-
ioral studies have proposed that learning enhances perceptual
efficiency by retuning the decision template [1–4]. Although
fMRI analysis methods have successfully demonstrated
changes in the overall activation magnitude (i.e., increased
or decreased activations for trained stimuli) with learning
(e.g., [13–17]), they have been less sensitive in distinguishing
preferences of neural populations for distinct visual shapes.
As a result, the link between enhanced perceptual efficiency
due to learning and selectivity changes in brain patterns that
support perceptual decisions remains unexplored.
Previous imaging studies (for review, see [18]) have specu-

lated that decreased fMRI activations following training may
be due to the enhanced tuning of small neural populations
that encode behaviorally relevant information, resulting in
enhanced performance. Only recently, with the use of multi-
voxel pattern classification methods, have we been able to
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Figure 3. Comparison of Behavioral, fMRI, and

Ideal Class Distances

(A and B) Correlations of behavioral (A) and fMRI

(B) class distances with the ideal class distance

for each of the 21 informative image parts. fMRI

signals were derived from training the SVM clas-

sifier on the basis of the choices of the human ob-

servers (Figures 3 and S2B) or the ideal observer

(Figure S2A) with the classifier’s performance.

Correlations were performed for each participant

before and after training. Mean R coefficient and

slope values across participants are plotted. Er-

ror bars indicate the SEM. Because of noisy

BOLD signals, these values are lower for fMRI

than behavioral data.

Current Biology Vol 23 No 18
1802
link behavioral improvement after training to enhanced fMRI
selectivity [19]. However, this multivariate analysis alone
does not allow us to identify the informative image regions
that support perceptual decisions. Our approach—
comparing human and fMRI classifier performance to an
ideal observer—provides the first neuroimaging evidence
that learning does not simply modulate overall activity magni-
tude but tunes the representation of informative image parts
in the higher ventral cortex in order to support efficient shape
discrimination.

Second, previous imaging studies using pattern classifica-
tion approaches for the analysis of electroencephalography
and fMRI data [8, 9] have shown that behaviorally relevant fea-
tures (e.g., face features) are represented in visual areas selec-
tive for their processing. However, these studies did not test
the role of learning in shaping decision templates given that
familiar stimuli were used. We purposefully chose a novel
stimulus space for investigating the role of learning in opti-
mizing decision templates and simple, but carefully
controlled, stimuli that are suitable for studying processing
along the ventral visual stream. Our findings demonstrate
that learning tunes the representation of image parts in higher
ventral areas. Our approach combining
reverse correlation with pattern classi-
fiers could be extended further to extract
classification images from fMRI signals
in higher temporal areas related to
more complex naturalistic stimuli. Given
that these more anterior portions of the
ventral hierarchy are understood to
take their inputs from more posterior re-
gions, we would expect similar effects in
these regions for more complex objects,
as we demonstrate here for posterior
occipitotemporal regions with simple
shapes.
Finally, the high-resolution imaging

adopted in our study afforded us the
signal quality necessary to reveal multi-
voxel patterns that represent fine image
parts, but it restricted brain coverage to
the posterior occipitotemporal cortex
(i.e., no significant activations were
observed for our stimuli anterior to LO).
Previous work has also implicated fron-
toparietal circuits in flexible perceptual
decisions [20, 21]. Given the complex na-
ture of the BOLD signal, it is possible that
the fMRI selectivity that we observed for informative image
parts in higher ventral areas is enhanced by feedback from
frontoparietal circuits that may reweight sensory signals in
visual areas [22]. It is also important to note that—despite
the enhanced sensitivity of our methodology—multivoxel
pattern classification approaches reveal neural preferences
at the scale of large neural populations rather than the tuning
of individual neurons. Therefore, understanding the cortical
circuits that support adaptive brain processes for perceptual
decisions requires further whole-brain connectivity studies
combining advanced imaging and neurophysiological
techniques.

Experimental Procedures

Stimuli

Two classes of shapes (pentagons) were generated by manipulating the

location of the pentagon lines that differed in their lengths. We added posi-

tional noise to all stimuli that were produced by radially shifting the position

of each polygon dot on the basis of a Gaussian distribution (mean = 0, SD =

0.4�). Previouswork has shown that the human classification imagesderived

with positional noise are independent of the signal strength [23, 24]. To

assess this, we tested the observers’ ability to classify zero signal stimuli



1 2 3
0

0.5

1

1.5

Image part

C
la

ss
 d

is
ta

nc
e

1 2 3
0

0.5

1

1.5
V1

C
la

ss
 d

is
ta

nc
e

1 2 3
0

0.5

1

1.5
V2

1 2 3
0

0.5

1

1.5
V3v

Image part

C
la

ss
 d

is
ta

nc
e

1 2 3
0

0.5

1

1.5
hV4

Image part
1 2 3

0

0.5

1

1.5
LO

Image part

A 

B 

Figure 4. Class Distances before and after Training

(A and B) Behavioral (A) and fMRI (B) class distances are shown at three image locations with maximum and minimum class distance (see Figure 1B) before

(open diamonds) and after (filled circles) training. Class distances were normalized by setting minimum and maximum values to 0 and 1, respectively. Error

bars indicate SEM across participants. A control analysis (Figure S3) provides evidence that spatial correlations across image locations could not drive

observer performance.
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(i.e., randomdot stimuli). After training, classification images for these stimuli

were very similar to those obtained in our main experiment, suggesting that

the classification images we observed are independent of signal strength.

Design

Observers participated in a pretraining fMRI session, three to five behavioral

training sessions (900–1,100 trials per session, depending on participant

availability), and two posttraining fMRI sessions (see the Supplemental In-

formation). The study was approved by the University of Birmingham Ethics

Committee.

Classification Image Analysis

We calculated behavioral and fMRI classification images after rotating and

resizing each stimulus image to a standard orientation and size.We used the

noise fields (i.e., noise perturbations across trials) to compute classification

images.We subtracted the average of noise fields over all trials for which the
observers responded class I from the average of noise fields over all trials

for which the observers responded class II (see the Supplemental

Information).

Supplemental Information

Supplemental Information contains Supplemental Experimental Procedures

and three figures and can be found with this article online at http://dx.doi.

org/10.1016/j.cub.2013.07.052.
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