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ScienceDirect
The de novo design of artificial metalloproteins from first-

principles is a powerful strategy with which to establish the

minimum structure required for function, as well as to identify

the important design features for tuning the chemistry of the

coordinated metal ion. Herein we describe recent contributions

to this field, covering metallo-porphyrin, mononuclear and

multinuclear metal ion sites engineered into de novo proteins.

Using miniature artificial scaffolds these examples

demonstrate that complex natural protein folds are not required

to mimic naturally occurring metal ion sites in proteins. More

importantly progress is being made to engineer de novo

metalloproteins capable of performing functions not in the

repertoire of biology.
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Introduction
Metal ions are found in one-third of all proteins and play

important structural and functional roles. Significant

effort has been directed towards understanding the role

of the protein matrix in tuning the metal ion properties,

in an effort to elucidate the underlying design require-

ments. The ultimate goal is to utilise these design

principles so as to generate functional artificial metallo-

proteins. Mutagenesis studies of native protein scaffolds,

or re-engineering of metal ion sites into other protein

scaffolds, are often hampered by the complexity of the

natural scaffold and can be heavily biased by the ‘evol-

utionary baggage’ they contain. An attractive approach

therefore involves the de novo (from scratch) design of

both an artificial miniature protein fold and at the same

time a metal ion binding site. These would allow one to

address, without bias, what features of the protein matrix

are important in tuning the metal ion properties. Though

various de novo protein folds have been prepared in-

cluding b-sheets and mixed a/b-motifs, the introduction

of metal ion binding sites has generally focussed on a-

helices and bundles thereof (see Figure 1). These
Current Opinion in Chemical Biology 2013, 17:934–939 
scaffolds are easier to design, relying primarily on the

heptad repeat approach abcdefg and the population of the

a and d sites with hydrophobic residues which form a

hydrophobic core, and as such represent an attractive

starting point for metalloprotein engineers. This short

review has focused on the de novo design of metallopro-

teins which have been reported in the last couple of years.

Readers are directed to some excellent reviews covering

earlier findings [1–3].

Metallo-porphyrins
The introduction of metallo-porphyrins into designed

proteins has received significant attention as hemeproteins

are capable of performing a large range of functions in-

cluding oxygen transport, electron transfer/transport and

catalysis. Recently the design of a mini helix–heme–helix

architecture named mimochrome VI has been reported,

capable of forming an asymmetric 5-coordinate iron-por-

phyrin with a cavity on the distal face for small molecule

access. This was immobilised on a self-assembled mono-

layer coated gold electrode and found to electrocatalyti-

cally turn over dioxygen [4], and in solution reported to be

capable of peroxidise-like catalytic activity [5]. An attrac-

tive advantage of mimochrome VI is that unlike native

peroxidises, it is catalytically active in the presence of an

organic co-solvent, broadening the scope of where it could

be applied. A similar asymmetric 5-coordinate iron-por-

phyrin was introduced into a larger four-helix bundle as

mimochrome VI was too small to engineer an Arg residue

on the distal face, which enhanced hydrogen peroxide

activation and improved catalytic activity [6].

A rationally designed four-helix bundle containing two

iron-porphyrins was the first to bind dioxygen stably at

room temperature, by controlling and preventing water

access to the iron-porphyrin, and remarkably with a 10-

fold higher affinity than carbon monoxide [7��]. The iron-

porphyrin affinity of the distal His, and thereby access to

the 5-coordinate iron-porphyrin capable of coordinating

dioxygen, can be controlled by mutagenesis. Replacing

three Glu residues (which can bury in the hydrophobic

core) to Ala, resulted in an increase in distal His iron-

porphyrin affinity [8]. This mutation affects the oxidised

and reduced states differently, highlighting the import-

ance of characterising all oxidation states of a designed

metalloprotein.

Iron-porphyrin bound de novo helical scaffolds have also

been introduced into membranes for potential electron

transfer applications. A membrane spanning four-

stranded coiled coil has been computationally designed

with two iron-porphyrins located in the interior of the
www.sciencedirect.com
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Figure 1

(a) (b) (c) (d) (e) (f)
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Examples of various a-helical scaffolds for potential metal ion coordination; (A) dimer, pdb 1C94, (B) parallel homotrimer, pdb 3H5G, (C) parallel

heterotrimer, pdb 1BB1, (D) antiparallel homotrimer, pdb 1RB4, (E) a-helical bundle, pdb 2A3D, and (F) four-helix bundle (helix–loop–helix dimer), pdb

2KIK. Shown are main chain atoms as ribbons.
structure, sufficiently close so that electron transfer could

occur between the two, with the view to achieving

transfer across a bilayer [9]. Using a different membrane

soluble two-stranded coiled coil with an iron-porphyrin

sandwiched in-between, it was demonstrated that when

placed at an appropriate location, introduction of a single

aromatic residue significantly alters the iron-porphyrin

redox properties [10].

Despite the similarities, less effort has been directed

towards the design of other metallo-porphyrin binding

de novo proteins. A hetero four-stranded coiled coil has

been computationally designed capable of binding a zinc-

porphyrin in its hydrophobic core with a high degree of

discrimination over related metallo-porphyrins, using

both positive and negative design [11]. A database search

has identified that heme and chlorophyll require different

His rotamers for binding [12]. Finally, a four-stranded

coiled coil capable of binding two self-quenching zinc-

substituted bacteriochlorins, was studied in an effort to

better understand how the local environment tunes their

ground and excited state properties [13].

The previous examples all introduce the porphyrins into

the interior of the protein; however, cobalt-porphyrins

have been used to assemble ‘molecular threads’ by dimer-

ising coiled coils through ligands on their exterior [14,15].

Mononuclear sites
Mononuclear metal ion sites where the majority of ligands

are provided by the protein scaffold, have led to some
www.sciencedirect.com 
important successes. A tetrahedral ZnHis3O (where

O OH2/OH�), an excellent model of the carbonic anhy-

drase active site, and a separate trigonal HgCys3, with a

stabilising structural role, have been engineered into the

hydrophobic core of a three-stranded coiled coil, see

Figure 2. This represents the first example of a de novo
designed metalloprotein with two different metal ion

binding sites with two distinct roles, and displays impress-

ive catalytic activity [16]. Substrate access and metal

binding affinity were subsequently found to be sensitive

to the relative location of the active site within the coiled

coil (e.g., proximity to frayed terminus) [17��]. A similar

ZnHis3 site, designed at a protein–protein interface with

sufficient space to accommodate a substrate, has also been

reported to be catalytic [18].

The type 2 site in copper nitrite reductase was

mimicked by generating a CuHis3 site within a three-

stranded coiled coil. Both the reduced and oxidised form

of the copper coiled coil were fully characterised and the

complex found to be catalytically active and robust [19].

Notably this represents the first stable and functional

CuHis3 site in aqueous solution. A type 1 copper site has

been designed within a four-stranded a-helical bundle

(generated from a single peptide strand) with two His,

one Cys and an exogenous fourth weakly interacting

axial ligand. The nature of this fourth ligand is crucial in

establishing a type 1 or 2 site, and so it was necessary to

prevent water access. Like type 1 sites in native redox

proteins, the mimic displayed fast electron reaction rates

[20].
Current Opinion in Chemical Biology 2013, 17:934–939
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Figure 2

(a) (b) (c)
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Structure of (A) carbonic anhydrase (pdb 1CA2) and (C) the functional three-stranded coiled coil mimic containing both a ZnHis3O catalytic site and a

HgCys3 structural site (pdb 3PBJ). (B) Overlay of the ZnHis3O active site from carbonic anhydrase and the de novo metalloprotein. Shown are main

chain atoms as ribbons, metal ions as grey spheres, coordinating His (nitrogen blue) and Cys (sulfur orange) side-chains in stick form, and the

coordinated water/hydroxide as a red ball.
Various studies looking at the binding of heavy metals to

thiol rich sites in the hydrophobic interior of coiled coils or

helical bundles have been reported [21,22,23], as these

provide important insight into heavy metal biochemistry,

and have allowed challenging and fundamental questions

about metals in biology to be answered using these sim-

plified scaffolds. For example, insight into metal exchange

dynamics and the mechanism by which metal ions are

sequestered into thiol sites [24]; whether the location of a

metal site along a coiled coil alters its chemistry [17��,25];

the importance of ligand preorganisation for metal ion

binding to symmetric a or d substituted sites [26], or an

asymmetric equivalent generated in a single chain three-

helix bundle [27]; and the importance of stereochemically

active lone pairs (demonstrated for As(III) and Pb(II)) and

the role second coordination sphere residues play in accom-

modating these, thereby dictating the binding mode [28].

The recent report of the 207Pb NMR chemical shift of a

water soluble 207PbCys3 site, is of huge significance con-

sidering the importance of these sites in lead toxicity and

the wide chemical shift range. Intriguingly 207Pb NMR was

shown to be capable of discriminating between similar but

not identical PbCys3 sites, and as such could be a very

powerful tool in further understanding both metalloprotein

design and lead toxicity [29�].

Multinuclear sites
The design of multinuclear metal ion sites can be more

challenging. However, an important success is the

due ferri (two iron) family of designed proteins [30].

These have been redesigned to introduce O2-dependent

phenol oxidase activity, by engineering an active site
Current Opinion in Chemical Biology 2013, 17:934–939 
cavity in the interior of either a four-stranded heterote-

trameric coiled coil [31] or a four-helix bundle (helix-

loop-helix dimer) [32] (see Figure 3A). In addition to Fe,

the latter was also able to bind Zn, Co or Mn [33]. The

activity was then reprogrammed from the oxidation of

hydroquinones to the N-hydroxylation of arylamines by

four mutations, notably the addition of a His ligand in the

active site (inspired by the active site of AurF) [34��].

A different dinuclear Fe complex, a mimic of the hydro-

genase active site, has been linked to an a-helix through a

non-natural residue. The resulting complex performs

remarkably well at photo-induced hydrogen production

in water when in the presence of both a photosensitizer

and a sacrificial electron donor [35]. Importantly not all

functional models require multi-helix scaffolds.

Tetranuclear Cu [36] and Cd [37] sites in the interior of a

four-stranded and three-stranded coiled coil, respect-

ively, were created using a Cys–Xxx–Xxx–Cys metal

binding motif. The X-ray crystal structure of the Cd-

thiolate cluster is shown in Figure 3B [37]. A dinuclear Cu

site, designed to mimic the unusual CuA electron transfer

centre (the purple copper site) in subunit II of cyto-

chrome c oxidase, was engineered within a four-helix

bundle. Intriguingly this model suggests that the Met

residue located in the natural site may not in fact be

necessary [38�]. The first report of a tetranuclear iron-

sulphur cluster within a coiled coil (other protein folds

have previously been used) offers the opportunity to

assemble these into extended electron-transfer chains.

These could be useful models with which to gain greater
www.sciencedirect.com
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Figure 3

(a) (b)
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Structures of multinuclear metal sites within de novo designed proteins.

(A) NMR structure of the dinuclear zinc analogue of due ferri with vacant

coordination sites for dioxygen and phenol (pdb 2KIK) and (B) X-ray

crystal structure of a tetranuclear cadmium-thiolate cluster (pdb 4G1A).

Shown are main chain atoms as green ribbons, metals in grey, His

(nitrogen blue), Cys (sulfur orange) and Glu (oxygen red) side-chains, and

water/hydroxide in stick form.
understanding of long-range electron-transfer, or could be

developed into molecular wires [39].

Miscellaneous metalloproteins
The metalloproteins discussed so far have focused on

biologically relevant metal ion sites, which have generally

(though not exclusively) been introduced within the

interior of the protein scaffold. However, a number of

reports exist introducing non-biological metal ions into

the design or which take advantage of programmed pep-

tide self-assembly.

For example, dirhodium catalysts have been reported to

stabilise a-helices when coordinated through Glu or Asp

carboxylate side-chains in the i and either i + 3 or i + 4

position [40]. The authors then took advantage of coiled

coil assembly to selectively modify an aromatic side-chain
www.sciencedirect.com 
by positioning the dirhodium catalyst alongside an aro-

matic substrate on the adjacent a-helix [41]. They then

found that the promiscuous dirhodium catalyst can

modify 50% of natural amino acid side-chains due to

proximity-driven rate enhancement, achieved by the

coiled coil assembly [42��]. Importantly no other modi-

fication methods exist for some of these side-chains. A

functional biotin affinity tag was also successfully intro-

duced at a specific Trp using this approach [43], and

orthogonal modification of proteins has been achieved

using coiled coil assembly [44].

Coiled coil assembly has also been used to control the

positioning of two chromophores for energy transfer stu-

dies. This only occurs in the folded coiled coil and is

highly sensitive to the distance separating the two chro-

mophores, being optimal when located in adjacent e and g
sites on opposite a-helices [45].

Metal ions can also be used to induce and promote coiled

coil assembly. Introduction of a lanthanide chelator at the

N-terminus of a coiled coil, was found to result in coop-

erative lanthanide binding and coiled coil formation [46].

Metal (Cu, Ni or Zn) induced folding of a coiled coil

which was coupled to a native DNA binding domain, was

capable of regulating DNA binding [47]. We recently

reported coupling a gold triethylphosphine, thought to be

the active component of the therapeutic auranofin, to a

coiled coil with an exterior which resembles the DNA

binding domain of a natural transcription factor [48]. Not

all efforts in this field are directed towards mimicking

biologically relevant metal ion sites, with potential appli-

cations extending from energy transfer to DNA binding.

Conclusions
The use of artificial and miniature protein scaffolds allows

the inorganic chemist to answer challenging questions

about metal biochemistry, the importance of the protein

matrix, and ultimately be able to design new metallopro-

teins de novo capable of performing desired functions not

necessarily in the repertoire of biology. The examples

discussed herein are making significant progress to these

goals and importantly demonstrate that complex protein

architectures are not a requirement for tuning the metal

ion properties.
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